4987 lines
176 KiB
C++
4987 lines
176 KiB
C++
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/X86BaseInfo.h"
|
|
#include "MCTargetDesc/X86IntelInstPrinter.h"
|
|
#include "MCTargetDesc/X86MCExpr.h"
|
|
#include "MCTargetDesc/X86TargetStreamer.h"
|
|
#include "TargetInfo/X86TargetInfo.h"
|
|
#include "X86AsmParserCommon.h"
|
|
#include "X86Operand.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCParser/MCAsmLexer.h"
|
|
#include "llvm/MC/MCParser/MCAsmParser.h"
|
|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
|
|
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> LVIInlineAsmHardening(
|
|
"x86-experimental-lvi-inline-asm-hardening",
|
|
cl::desc("Harden inline assembly code that may be vulnerable to Load Value"
|
|
" Injection (LVI). This feature is experimental."), cl::Hidden);
|
|
|
|
static bool checkScale(unsigned Scale, StringRef &ErrMsg) {
|
|
if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
|
|
ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
static const char OpPrecedence[] = {
|
|
0, // IC_OR
|
|
1, // IC_XOR
|
|
2, // IC_AND
|
|
4, // IC_LSHIFT
|
|
4, // IC_RSHIFT
|
|
5, // IC_PLUS
|
|
5, // IC_MINUS
|
|
6, // IC_MULTIPLY
|
|
6, // IC_DIVIDE
|
|
6, // IC_MOD
|
|
7, // IC_NOT
|
|
8, // IC_NEG
|
|
9, // IC_RPAREN
|
|
10, // IC_LPAREN
|
|
0, // IC_IMM
|
|
0, // IC_REGISTER
|
|
3, // IC_EQ
|
|
3, // IC_NE
|
|
3, // IC_LT
|
|
3, // IC_LE
|
|
3, // IC_GT
|
|
3 // IC_GE
|
|
};
|
|
|
|
class X86AsmParser : public MCTargetAsmParser {
|
|
ParseInstructionInfo *InstInfo;
|
|
bool Code16GCC;
|
|
unsigned ForcedDataPrefix = 0;
|
|
|
|
enum VEXEncoding {
|
|
VEXEncoding_Default,
|
|
VEXEncoding_VEX,
|
|
VEXEncoding_VEX2,
|
|
VEXEncoding_VEX3,
|
|
VEXEncoding_EVEX,
|
|
};
|
|
|
|
VEXEncoding ForcedVEXEncoding = VEXEncoding_Default;
|
|
|
|
enum DispEncoding {
|
|
DispEncoding_Default,
|
|
DispEncoding_Disp8,
|
|
DispEncoding_Disp32,
|
|
};
|
|
|
|
DispEncoding ForcedDispEncoding = DispEncoding_Default;
|
|
|
|
private:
|
|
SMLoc consumeToken() {
|
|
MCAsmParser &Parser = getParser();
|
|
SMLoc Result = Parser.getTok().getLoc();
|
|
Parser.Lex();
|
|
return Result;
|
|
}
|
|
|
|
X86TargetStreamer &getTargetStreamer() {
|
|
assert(getParser().getStreamer().getTargetStreamer() &&
|
|
"do not have a target streamer");
|
|
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
|
|
return static_cast<X86TargetStreamer &>(TS);
|
|
}
|
|
|
|
unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
|
|
uint64_t &ErrorInfo, FeatureBitset &MissingFeatures,
|
|
bool matchingInlineAsm, unsigned VariantID = 0) {
|
|
// In Code16GCC mode, match as 32-bit.
|
|
if (Code16GCC)
|
|
SwitchMode(X86::Mode32Bit);
|
|
unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
|
|
MissingFeatures, matchingInlineAsm,
|
|
VariantID);
|
|
if (Code16GCC)
|
|
SwitchMode(X86::Mode16Bit);
|
|
return rv;
|
|
}
|
|
|
|
enum InfixCalculatorTok {
|
|
IC_OR = 0,
|
|
IC_XOR,
|
|
IC_AND,
|
|
IC_LSHIFT,
|
|
IC_RSHIFT,
|
|
IC_PLUS,
|
|
IC_MINUS,
|
|
IC_MULTIPLY,
|
|
IC_DIVIDE,
|
|
IC_MOD,
|
|
IC_NOT,
|
|
IC_NEG,
|
|
IC_RPAREN,
|
|
IC_LPAREN,
|
|
IC_IMM,
|
|
IC_REGISTER,
|
|
IC_EQ,
|
|
IC_NE,
|
|
IC_LT,
|
|
IC_LE,
|
|
IC_GT,
|
|
IC_GE
|
|
};
|
|
|
|
enum IntelOperatorKind {
|
|
IOK_INVALID = 0,
|
|
IOK_LENGTH,
|
|
IOK_SIZE,
|
|
IOK_TYPE,
|
|
};
|
|
|
|
enum MasmOperatorKind {
|
|
MOK_INVALID = 0,
|
|
MOK_LENGTHOF,
|
|
MOK_SIZEOF,
|
|
MOK_TYPE,
|
|
};
|
|
|
|
class InfixCalculator {
|
|
typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
|
|
SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
|
|
SmallVector<ICToken, 4> PostfixStack;
|
|
|
|
bool isUnaryOperator(InfixCalculatorTok Op) const {
|
|
return Op == IC_NEG || Op == IC_NOT;
|
|
}
|
|
|
|
public:
|
|
int64_t popOperand() {
|
|
assert (!PostfixStack.empty() && "Poped an empty stack!");
|
|
ICToken Op = PostfixStack.pop_back_val();
|
|
if (!(Op.first == IC_IMM || Op.first == IC_REGISTER))
|
|
return -1; // The invalid Scale value will be caught later by checkScale
|
|
return Op.second;
|
|
}
|
|
void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
|
|
assert ((Op == IC_IMM || Op == IC_REGISTER) &&
|
|
"Unexpected operand!");
|
|
PostfixStack.push_back(std::make_pair(Op, Val));
|
|
}
|
|
|
|
void popOperator() { InfixOperatorStack.pop_back(); }
|
|
void pushOperator(InfixCalculatorTok Op) {
|
|
// Push the new operator if the stack is empty.
|
|
if (InfixOperatorStack.empty()) {
|
|
InfixOperatorStack.push_back(Op);
|
|
return;
|
|
}
|
|
|
|
// Push the new operator if it has a higher precedence than the operator
|
|
// on the top of the stack or the operator on the top of the stack is a
|
|
// left parentheses.
|
|
unsigned Idx = InfixOperatorStack.size() - 1;
|
|
InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
|
|
if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
|
|
InfixOperatorStack.push_back(Op);
|
|
return;
|
|
}
|
|
|
|
// The operator on the top of the stack has higher precedence than the
|
|
// new operator.
|
|
unsigned ParenCount = 0;
|
|
while (1) {
|
|
// Nothing to process.
|
|
if (InfixOperatorStack.empty())
|
|
break;
|
|
|
|
Idx = InfixOperatorStack.size() - 1;
|
|
StackOp = InfixOperatorStack[Idx];
|
|
if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
|
|
break;
|
|
|
|
// If we have an even parentheses count and we see a left parentheses,
|
|
// then stop processing.
|
|
if (!ParenCount && StackOp == IC_LPAREN)
|
|
break;
|
|
|
|
if (StackOp == IC_RPAREN) {
|
|
++ParenCount;
|
|
InfixOperatorStack.pop_back();
|
|
} else if (StackOp == IC_LPAREN) {
|
|
--ParenCount;
|
|
InfixOperatorStack.pop_back();
|
|
} else {
|
|
InfixOperatorStack.pop_back();
|
|
PostfixStack.push_back(std::make_pair(StackOp, 0));
|
|
}
|
|
}
|
|
// Push the new operator.
|
|
InfixOperatorStack.push_back(Op);
|
|
}
|
|
|
|
int64_t execute() {
|
|
// Push any remaining operators onto the postfix stack.
|
|
while (!InfixOperatorStack.empty()) {
|
|
InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
|
|
if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
|
|
PostfixStack.push_back(std::make_pair(StackOp, 0));
|
|
}
|
|
|
|
if (PostfixStack.empty())
|
|
return 0;
|
|
|
|
SmallVector<ICToken, 16> OperandStack;
|
|
for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
|
|
ICToken Op = PostfixStack[i];
|
|
if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
|
|
OperandStack.push_back(Op);
|
|
} else if (isUnaryOperator(Op.first)) {
|
|
assert (OperandStack.size() > 0 && "Too few operands.");
|
|
ICToken Operand = OperandStack.pop_back_val();
|
|
assert (Operand.first == IC_IMM &&
|
|
"Unary operation with a register!");
|
|
switch (Op.first) {
|
|
default:
|
|
report_fatal_error("Unexpected operator!");
|
|
break;
|
|
case IC_NEG:
|
|
OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second));
|
|
break;
|
|
case IC_NOT:
|
|
OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second));
|
|
break;
|
|
}
|
|
} else {
|
|
assert (OperandStack.size() > 1 && "Too few operands.");
|
|
int64_t Val;
|
|
ICToken Op2 = OperandStack.pop_back_val();
|
|
ICToken Op1 = OperandStack.pop_back_val();
|
|
switch (Op.first) {
|
|
default:
|
|
report_fatal_error("Unexpected operator!");
|
|
break;
|
|
case IC_PLUS:
|
|
Val = Op1.second + Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_MINUS:
|
|
Val = Op1.second - Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_MULTIPLY:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Multiply operation with an immediate and a register!");
|
|
Val = Op1.second * Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_DIVIDE:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Divide operation with an immediate and a register!");
|
|
assert (Op2.second != 0 && "Division by zero!");
|
|
Val = Op1.second / Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_MOD:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Modulo operation with an immediate and a register!");
|
|
Val = Op1.second % Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_OR:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Or operation with an immediate and a register!");
|
|
Val = Op1.second | Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_XOR:
|
|
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Xor operation with an immediate and a register!");
|
|
Val = Op1.second ^ Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_AND:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"And operation with an immediate and a register!");
|
|
Val = Op1.second & Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_LSHIFT:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Left shift operation with an immediate and a register!");
|
|
Val = Op1.second << Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_RSHIFT:
|
|
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Right shift operation with an immediate and a register!");
|
|
Val = Op1.second >> Op2.second;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_EQ:
|
|
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Equals operation with an immediate and a register!");
|
|
Val = (Op1.second == Op2.second) ? -1 : 0;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_NE:
|
|
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Not-equals operation with an immediate and a register!");
|
|
Val = (Op1.second != Op2.second) ? -1 : 0;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_LT:
|
|
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Less-than operation with an immediate and a register!");
|
|
Val = (Op1.second < Op2.second) ? -1 : 0;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_LE:
|
|
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Less-than-or-equal operation with an immediate and a "
|
|
"register!");
|
|
Val = (Op1.second <= Op2.second) ? -1 : 0;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_GT:
|
|
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Greater-than operation with an immediate and a register!");
|
|
Val = (Op1.second > Op2.second) ? -1 : 0;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
case IC_GE:
|
|
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
|
|
"Greater-than-or-equal operation with an immediate and a "
|
|
"register!");
|
|
Val = (Op1.second >= Op2.second) ? -1 : 0;
|
|
OperandStack.push_back(std::make_pair(IC_IMM, Val));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert (OperandStack.size() == 1 && "Expected a single result.");
|
|
return OperandStack.pop_back_val().second;
|
|
}
|
|
};
|
|
|
|
enum IntelExprState {
|
|
IES_INIT,
|
|
IES_OR,
|
|
IES_XOR,
|
|
IES_AND,
|
|
IES_EQ,
|
|
IES_NE,
|
|
IES_LT,
|
|
IES_LE,
|
|
IES_GT,
|
|
IES_GE,
|
|
IES_LSHIFT,
|
|
IES_RSHIFT,
|
|
IES_PLUS,
|
|
IES_MINUS,
|
|
IES_OFFSET,
|
|
IES_CAST,
|
|
IES_NOT,
|
|
IES_MULTIPLY,
|
|
IES_DIVIDE,
|
|
IES_MOD,
|
|
IES_LBRAC,
|
|
IES_RBRAC,
|
|
IES_LPAREN,
|
|
IES_RPAREN,
|
|
IES_REGISTER,
|
|
IES_INTEGER,
|
|
IES_IDENTIFIER,
|
|
IES_ERROR
|
|
};
|
|
|
|
class IntelExprStateMachine {
|
|
IntelExprState State, PrevState;
|
|
unsigned BaseReg, IndexReg, TmpReg, Scale;
|
|
int64_t Imm;
|
|
const MCExpr *Sym;
|
|
StringRef SymName;
|
|
InfixCalculator IC;
|
|
InlineAsmIdentifierInfo Info;
|
|
short BracCount;
|
|
bool MemExpr;
|
|
bool OffsetOperator;
|
|
SMLoc OffsetOperatorLoc;
|
|
AsmTypeInfo CurType;
|
|
|
|
bool setSymRef(const MCExpr *Val, StringRef ID, StringRef &ErrMsg) {
|
|
if (Sym) {
|
|
ErrMsg = "cannot use more than one symbol in memory operand";
|
|
return true;
|
|
}
|
|
Sym = Val;
|
|
SymName = ID;
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
IntelExprStateMachine()
|
|
: State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0),
|
|
TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0),
|
|
MemExpr(false), OffsetOperator(false) {}
|
|
|
|
void addImm(int64_t imm) { Imm += imm; }
|
|
short getBracCount() const { return BracCount; }
|
|
bool isMemExpr() const { return MemExpr; }
|
|
bool isOffsetOperator() const { return OffsetOperator; }
|
|
SMLoc getOffsetLoc() const { return OffsetOperatorLoc; }
|
|
unsigned getBaseReg() const { return BaseReg; }
|
|
unsigned getIndexReg() const { return IndexReg; }
|
|
unsigned getScale() const { return Scale; }
|
|
const MCExpr *getSym() const { return Sym; }
|
|
StringRef getSymName() const { return SymName; }
|
|
StringRef getType() const { return CurType.Name; }
|
|
unsigned getSize() const { return CurType.Size; }
|
|
unsigned getElementSize() const { return CurType.ElementSize; }
|
|
unsigned getLength() const { return CurType.Length; }
|
|
int64_t getImm() { return Imm + IC.execute(); }
|
|
bool isValidEndState() const {
|
|
return State == IES_RBRAC || State == IES_INTEGER;
|
|
}
|
|
bool hadError() const { return State == IES_ERROR; }
|
|
const InlineAsmIdentifierInfo &getIdentifierInfo() const { return Info; }
|
|
|
|
void onOr() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_OR;
|
|
IC.pushOperator(IC_OR);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onXor() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_XOR;
|
|
IC.pushOperator(IC_XOR);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onAnd() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_AND;
|
|
IC.pushOperator(IC_AND);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onEq() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_EQ;
|
|
IC.pushOperator(IC_EQ);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onNE() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_NE;
|
|
IC.pushOperator(IC_NE);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onLT() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_LT;
|
|
IC.pushOperator(IC_LT);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onLE() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_LE;
|
|
IC.pushOperator(IC_LE);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onGT() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_GT;
|
|
IC.pushOperator(IC_GT);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onGE() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_GE;
|
|
IC.pushOperator(IC_GE);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onLShift() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_LSHIFT;
|
|
IC.pushOperator(IC_LSHIFT);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onRShift() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
State = IES_RSHIFT;
|
|
IC.pushOperator(IC_RSHIFT);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
bool onPlus(StringRef &ErrMsg) {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
case IES_REGISTER:
|
|
case IES_OFFSET:
|
|
State = IES_PLUS;
|
|
IC.pushOperator(IC_PLUS);
|
|
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
|
|
// If we already have a BaseReg, then assume this is the IndexReg with
|
|
// no explicit scale.
|
|
if (!BaseReg) {
|
|
BaseReg = TmpReg;
|
|
} else {
|
|
if (IndexReg) {
|
|
ErrMsg = "BaseReg/IndexReg already set!";
|
|
return true;
|
|
}
|
|
IndexReg = TmpReg;
|
|
Scale = 0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
return false;
|
|
}
|
|
bool onMinus(StringRef &ErrMsg) {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_OR:
|
|
case IES_XOR:
|
|
case IES_AND:
|
|
case IES_EQ:
|
|
case IES_NE:
|
|
case IES_LT:
|
|
case IES_LE:
|
|
case IES_GT:
|
|
case IES_GE:
|
|
case IES_LSHIFT:
|
|
case IES_RSHIFT:
|
|
case IES_PLUS:
|
|
case IES_NOT:
|
|
case IES_MULTIPLY:
|
|
case IES_DIVIDE:
|
|
case IES_MOD:
|
|
case IES_LPAREN:
|
|
case IES_RPAREN:
|
|
case IES_LBRAC:
|
|
case IES_RBRAC:
|
|
case IES_INTEGER:
|
|
case IES_REGISTER:
|
|
case IES_INIT:
|
|
case IES_OFFSET:
|
|
State = IES_MINUS;
|
|
// push minus operator if it is not a negate operator
|
|
if (CurrState == IES_REGISTER || CurrState == IES_RPAREN ||
|
|
CurrState == IES_INTEGER || CurrState == IES_RBRAC ||
|
|
CurrState == IES_OFFSET)
|
|
IC.pushOperator(IC_MINUS);
|
|
else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
|
|
// We have negate operator for Scale: it's illegal
|
|
ErrMsg = "Scale can't be negative";
|
|
return true;
|
|
} else
|
|
IC.pushOperator(IC_NEG);
|
|
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
|
|
// If we already have a BaseReg, then assume this is the IndexReg with
|
|
// no explicit scale.
|
|
if (!BaseReg) {
|
|
BaseReg = TmpReg;
|
|
} else {
|
|
if (IndexReg) {
|
|
ErrMsg = "BaseReg/IndexReg already set!";
|
|
return true;
|
|
}
|
|
IndexReg = TmpReg;
|
|
Scale = 0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
return false;
|
|
}
|
|
void onNot() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_OR:
|
|
case IES_XOR:
|
|
case IES_AND:
|
|
case IES_EQ:
|
|
case IES_NE:
|
|
case IES_LT:
|
|
case IES_LE:
|
|
case IES_GT:
|
|
case IES_GE:
|
|
case IES_LSHIFT:
|
|
case IES_RSHIFT:
|
|
case IES_PLUS:
|
|
case IES_MINUS:
|
|
case IES_NOT:
|
|
case IES_MULTIPLY:
|
|
case IES_DIVIDE:
|
|
case IES_MOD:
|
|
case IES_LPAREN:
|
|
case IES_LBRAC:
|
|
case IES_INIT:
|
|
State = IES_NOT;
|
|
IC.pushOperator(IC_NOT);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
bool onRegister(unsigned Reg, StringRef &ErrMsg) {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_LPAREN:
|
|
case IES_LBRAC:
|
|
State = IES_REGISTER;
|
|
TmpReg = Reg;
|
|
IC.pushOperand(IC_REGISTER);
|
|
break;
|
|
case IES_MULTIPLY:
|
|
// Index Register - Scale * Register
|
|
if (PrevState == IES_INTEGER) {
|
|
if (IndexReg) {
|
|
ErrMsg = "BaseReg/IndexReg already set!";
|
|
return true;
|
|
}
|
|
State = IES_REGISTER;
|
|
IndexReg = Reg;
|
|
// Get the scale and replace the 'Scale * Register' with '0'.
|
|
Scale = IC.popOperand();
|
|
if (checkScale(Scale, ErrMsg))
|
|
return true;
|
|
IC.pushOperand(IC_IMM);
|
|
IC.popOperator();
|
|
} else {
|
|
State = IES_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
return false;
|
|
}
|
|
bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName,
|
|
const InlineAsmIdentifierInfo &IDInfo,
|
|
const AsmTypeInfo &Type, bool ParsingMSInlineAsm,
|
|
StringRef &ErrMsg) {
|
|
// InlineAsm: Treat an enum value as an integer
|
|
if (ParsingMSInlineAsm)
|
|
if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
|
|
return onInteger(IDInfo.Enum.EnumVal, ErrMsg);
|
|
// Treat a symbolic constant like an integer
|
|
if (auto *CE = dyn_cast<MCConstantExpr>(SymRef))
|
|
return onInteger(CE->getValue(), ErrMsg);
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_CAST:
|
|
case IES_PLUS:
|
|
case IES_MINUS:
|
|
case IES_NOT:
|
|
case IES_INIT:
|
|
case IES_LBRAC:
|
|
case IES_LPAREN:
|
|
if (setSymRef(SymRef, SymRefName, ErrMsg))
|
|
return true;
|
|
MemExpr = true;
|
|
State = IES_INTEGER;
|
|
IC.pushOperand(IC_IMM);
|
|
if (ParsingMSInlineAsm)
|
|
Info = IDInfo;
|
|
setTypeInfo(Type);
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_MINUS:
|
|
case IES_NOT:
|
|
case IES_OR:
|
|
case IES_XOR:
|
|
case IES_AND:
|
|
case IES_EQ:
|
|
case IES_NE:
|
|
case IES_LT:
|
|
case IES_LE:
|
|
case IES_GT:
|
|
case IES_GE:
|
|
case IES_LSHIFT:
|
|
case IES_RSHIFT:
|
|
case IES_DIVIDE:
|
|
case IES_MOD:
|
|
case IES_MULTIPLY:
|
|
case IES_LPAREN:
|
|
case IES_INIT:
|
|
case IES_LBRAC:
|
|
State = IES_INTEGER;
|
|
if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
|
|
// Index Register - Register * Scale
|
|
if (IndexReg) {
|
|
ErrMsg = "BaseReg/IndexReg already set!";
|
|
return true;
|
|
}
|
|
IndexReg = TmpReg;
|
|
Scale = TmpInt;
|
|
if (checkScale(Scale, ErrMsg))
|
|
return true;
|
|
// Get the scale and replace the 'Register * Scale' with '0'.
|
|
IC.popOperator();
|
|
} else {
|
|
IC.pushOperand(IC_IMM, TmpInt);
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
return false;
|
|
}
|
|
void onStar() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_REGISTER:
|
|
case IES_RPAREN:
|
|
State = IES_MULTIPLY;
|
|
IC.pushOperator(IC_MULTIPLY);
|
|
break;
|
|
}
|
|
}
|
|
void onDivide() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
State = IES_DIVIDE;
|
|
IC.pushOperator(IC_DIVIDE);
|
|
break;
|
|
}
|
|
}
|
|
void onMod() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
State = IES_MOD;
|
|
IC.pushOperator(IC_MOD);
|
|
break;
|
|
}
|
|
}
|
|
bool onLBrac() {
|
|
if (BracCount)
|
|
return true;
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_RBRAC:
|
|
case IES_INTEGER:
|
|
case IES_RPAREN:
|
|
State = IES_PLUS;
|
|
IC.pushOperator(IC_PLUS);
|
|
CurType.Length = 1;
|
|
CurType.Size = CurType.ElementSize;
|
|
break;
|
|
case IES_INIT:
|
|
case IES_CAST:
|
|
assert(!BracCount && "BracCount should be zero on parsing's start");
|
|
State = IES_LBRAC;
|
|
break;
|
|
}
|
|
MemExpr = true;
|
|
BracCount++;
|
|
return false;
|
|
}
|
|
bool onRBrac() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_OFFSET:
|
|
case IES_REGISTER:
|
|
case IES_RPAREN:
|
|
if (BracCount-- != 1)
|
|
return true;
|
|
State = IES_RBRAC;
|
|
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
|
|
// If we already have a BaseReg, then assume this is the IndexReg with
|
|
// no explicit scale.
|
|
if (!BaseReg) {
|
|
BaseReg = TmpReg;
|
|
} else {
|
|
assert (!IndexReg && "BaseReg/IndexReg already set!");
|
|
IndexReg = TmpReg;
|
|
Scale = 0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
return false;
|
|
}
|
|
void onLParen() {
|
|
IntelExprState CurrState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_PLUS:
|
|
case IES_MINUS:
|
|
case IES_NOT:
|
|
case IES_OR:
|
|
case IES_XOR:
|
|
case IES_AND:
|
|
case IES_EQ:
|
|
case IES_NE:
|
|
case IES_LT:
|
|
case IES_LE:
|
|
case IES_GT:
|
|
case IES_GE:
|
|
case IES_LSHIFT:
|
|
case IES_RSHIFT:
|
|
case IES_MULTIPLY:
|
|
case IES_DIVIDE:
|
|
case IES_MOD:
|
|
case IES_LPAREN:
|
|
case IES_INIT:
|
|
case IES_LBRAC:
|
|
State = IES_LPAREN;
|
|
IC.pushOperator(IC_LPAREN);
|
|
break;
|
|
}
|
|
PrevState = CurrState;
|
|
}
|
|
void onRParen() {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_INTEGER:
|
|
case IES_OFFSET:
|
|
case IES_REGISTER:
|
|
case IES_RBRAC:
|
|
case IES_RPAREN:
|
|
State = IES_RPAREN;
|
|
IC.pushOperator(IC_RPAREN);
|
|
break;
|
|
}
|
|
}
|
|
bool onOffset(const MCExpr *Val, SMLoc OffsetLoc, StringRef ID,
|
|
const InlineAsmIdentifierInfo &IDInfo,
|
|
bool ParsingMSInlineAsm, StringRef &ErrMsg) {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
ErrMsg = "unexpected offset operator expression";
|
|
return true;
|
|
case IES_PLUS:
|
|
case IES_INIT:
|
|
case IES_LBRAC:
|
|
if (setSymRef(Val, ID, ErrMsg))
|
|
return true;
|
|
OffsetOperator = true;
|
|
OffsetOperatorLoc = OffsetLoc;
|
|
State = IES_OFFSET;
|
|
// As we cannot yet resolve the actual value (offset), we retain
|
|
// the requested semantics by pushing a '0' to the operands stack
|
|
IC.pushOperand(IC_IMM);
|
|
if (ParsingMSInlineAsm) {
|
|
Info = IDInfo;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
void onCast(AsmTypeInfo Info) {
|
|
PrevState = State;
|
|
switch (State) {
|
|
default:
|
|
State = IES_ERROR;
|
|
break;
|
|
case IES_LPAREN:
|
|
setTypeInfo(Info);
|
|
State = IES_CAST;
|
|
break;
|
|
}
|
|
}
|
|
void setTypeInfo(AsmTypeInfo Type) { CurType = Type; }
|
|
};
|
|
|
|
bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
|
|
bool MatchingInlineAsm = false) {
|
|
MCAsmParser &Parser = getParser();
|
|
if (MatchingInlineAsm) {
|
|
if (!getLexer().isAtStartOfStatement())
|
|
Parser.eatToEndOfStatement();
|
|
return false;
|
|
}
|
|
return Parser.Error(L, Msg, Range);
|
|
}
|
|
|
|
bool MatchRegisterByName(unsigned &RegNo, StringRef RegName, SMLoc StartLoc,
|
|
SMLoc EndLoc);
|
|
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
|
|
bool RestoreOnFailure);
|
|
|
|
std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
|
|
std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
|
|
bool IsSIReg(unsigned Reg);
|
|
unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
|
|
void
|
|
AddDefaultSrcDestOperands(OperandVector &Operands,
|
|
std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
|
|
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
|
|
bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
|
|
OperandVector &FinalOperands);
|
|
bool ParseOperand(OperandVector &Operands);
|
|
bool ParseATTOperand(OperandVector &Operands);
|
|
bool ParseIntelOperand(OperandVector &Operands);
|
|
bool ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
|
|
InlineAsmIdentifierInfo &Info, SMLoc &End);
|
|
bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End);
|
|
unsigned IdentifyIntelInlineAsmOperator(StringRef Name);
|
|
unsigned ParseIntelInlineAsmOperator(unsigned OpKind);
|
|
unsigned IdentifyMasmOperator(StringRef Name);
|
|
bool ParseMasmOperator(unsigned OpKind, int64_t &Val);
|
|
bool ParseRoundingModeOp(SMLoc Start, OperandVector &Operands);
|
|
bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM,
|
|
bool &ParseError, SMLoc &End);
|
|
bool ParseMasmNamedOperator(StringRef Name, IntelExprStateMachine &SM,
|
|
bool &ParseError, SMLoc &End);
|
|
void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start,
|
|
SMLoc End);
|
|
bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
|
|
bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier,
|
|
InlineAsmIdentifierInfo &Info,
|
|
bool IsUnevaluatedOperand, SMLoc &End,
|
|
bool IsParsingOffsetOperator = false);
|
|
|
|
bool ParseMemOperand(unsigned SegReg, const MCExpr *Disp, SMLoc StartLoc,
|
|
SMLoc EndLoc, OperandVector &Operands);
|
|
|
|
X86::CondCode ParseConditionCode(StringRef CCode);
|
|
|
|
bool ParseIntelMemoryOperandSize(unsigned &Size);
|
|
bool CreateMemForMSInlineAsm(unsigned SegReg, const MCExpr *Disp,
|
|
unsigned BaseReg, unsigned IndexReg,
|
|
unsigned Scale, SMLoc Start, SMLoc End,
|
|
unsigned Size, StringRef Identifier,
|
|
const InlineAsmIdentifierInfo &Info,
|
|
OperandVector &Operands);
|
|
|
|
bool parseDirectiveArch();
|
|
bool parseDirectiveNops(SMLoc L);
|
|
bool parseDirectiveEven(SMLoc L);
|
|
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
|
|
|
|
/// CodeView FPO data directives.
|
|
bool parseDirectiveFPOProc(SMLoc L);
|
|
bool parseDirectiveFPOSetFrame(SMLoc L);
|
|
bool parseDirectiveFPOPushReg(SMLoc L);
|
|
bool parseDirectiveFPOStackAlloc(SMLoc L);
|
|
bool parseDirectiveFPOStackAlign(SMLoc L);
|
|
bool parseDirectiveFPOEndPrologue(SMLoc L);
|
|
bool parseDirectiveFPOEndProc(SMLoc L);
|
|
|
|
/// SEH directives.
|
|
bool parseSEHRegisterNumber(unsigned RegClassID, unsigned &RegNo);
|
|
bool parseDirectiveSEHPushReg(SMLoc);
|
|
bool parseDirectiveSEHSetFrame(SMLoc);
|
|
bool parseDirectiveSEHSaveReg(SMLoc);
|
|
bool parseDirectiveSEHSaveXMM(SMLoc);
|
|
bool parseDirectiveSEHPushFrame(SMLoc);
|
|
|
|
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
|
|
|
|
bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
|
|
bool processInstruction(MCInst &Inst, const OperandVector &Ops);
|
|
|
|
// Load Value Injection (LVI) Mitigations for machine code
|
|
void emitWarningForSpecialLVIInstruction(SMLoc Loc);
|
|
void applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out);
|
|
void applyLVILoadHardeningMitigation(MCInst &Inst, MCStreamer &Out);
|
|
|
|
/// Wrapper around MCStreamer::emitInstruction(). Possibly adds
|
|
/// instrumentation around Inst.
|
|
void emitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
|
|
|
|
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands, MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) override;
|
|
|
|
void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
|
|
MCStreamer &Out, bool MatchingInlineAsm);
|
|
|
|
bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures,
|
|
bool MatchingInlineAsm);
|
|
|
|
bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands, MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm);
|
|
|
|
bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands, MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm);
|
|
|
|
bool OmitRegisterFromClobberLists(unsigned RegNo) override;
|
|
|
|
/// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
|
|
/// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
|
|
/// return false if no parsing errors occurred, true otherwise.
|
|
bool HandleAVX512Operand(OperandVector &Operands);
|
|
|
|
bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);
|
|
|
|
bool is64BitMode() const {
|
|
// FIXME: Can tablegen auto-generate this?
|
|
return getSTI().getFeatureBits()[X86::Mode64Bit];
|
|
}
|
|
bool is32BitMode() const {
|
|
// FIXME: Can tablegen auto-generate this?
|
|
return getSTI().getFeatureBits()[X86::Mode32Bit];
|
|
}
|
|
bool is16BitMode() const {
|
|
// FIXME: Can tablegen auto-generate this?
|
|
return getSTI().getFeatureBits()[X86::Mode16Bit];
|
|
}
|
|
void SwitchMode(unsigned mode) {
|
|
MCSubtargetInfo &STI = copySTI();
|
|
FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
|
|
FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
|
|
FeatureBitset FB = ComputeAvailableFeatures(
|
|
STI.ToggleFeature(OldMode.flip(mode)));
|
|
setAvailableFeatures(FB);
|
|
|
|
assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
|
|
}
|
|
|
|
unsigned getPointerWidth() {
|
|
if (is16BitMode()) return 16;
|
|
if (is32BitMode()) return 32;
|
|
if (is64BitMode()) return 64;
|
|
llvm_unreachable("invalid mode");
|
|
}
|
|
|
|
bool isParsingIntelSyntax() {
|
|
return getParser().getAssemblerDialect();
|
|
}
|
|
|
|
/// @name Auto-generated Matcher Functions
|
|
/// {
|
|
|
|
#define GET_ASSEMBLER_HEADER
|
|
#include "X86GenAsmMatcher.inc"
|
|
|
|
/// }
|
|
|
|
public:
|
|
enum X86MatchResultTy {
|
|
Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY,
|
|
#define GET_OPERAND_DIAGNOSTIC_TYPES
|
|
#include "X86GenAsmMatcher.inc"
|
|
};
|
|
|
|
X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
|
|
const MCInstrInfo &mii, const MCTargetOptions &Options)
|
|
: MCTargetAsmParser(Options, sti, mii), InstInfo(nullptr),
|
|
Code16GCC(false) {
|
|
|
|
Parser.addAliasForDirective(".word", ".2byte");
|
|
|
|
// Initialize the set of available features.
|
|
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
|
|
}
|
|
|
|
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
|
|
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
|
|
SMLoc &EndLoc) override;
|
|
|
|
bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;
|
|
|
|
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc, OperandVector &Operands) override;
|
|
|
|
bool ParseDirective(AsmToken DirectiveID) override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// @name Auto-generated Match Functions
|
|
/// {
|
|
|
|
static unsigned MatchRegisterName(StringRef Name);
|
|
|
|
/// }
|
|
|
|
static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg,
|
|
unsigned Scale, bool Is64BitMode,
|
|
StringRef &ErrMsg) {
|
|
// If we have both a base register and an index register make sure they are
|
|
// both 64-bit or 32-bit registers.
|
|
// To support VSIB, IndexReg can be 128-bit or 256-bit registers.
|
|
|
|
if (BaseReg != 0 &&
|
|
!(BaseReg == X86::RIP || BaseReg == X86::EIP ||
|
|
X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) ||
|
|
X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) {
|
|
ErrMsg = "invalid base+index expression";
|
|
return true;
|
|
}
|
|
|
|
if (IndexReg != 0 &&
|
|
!(IndexReg == X86::EIZ || IndexReg == X86::RIZ ||
|
|
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) {
|
|
ErrMsg = "invalid base+index expression";
|
|
return true;
|
|
}
|
|
|
|
if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) ||
|
|
IndexReg == X86::EIP || IndexReg == X86::RIP ||
|
|
IndexReg == X86::ESP || IndexReg == X86::RSP) {
|
|
ErrMsg = "invalid base+index expression";
|
|
return true;
|
|
}
|
|
|
|
// Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
|
|
// and then only in non-64-bit modes.
|
|
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
|
|
(Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP &&
|
|
BaseReg != X86::SI && BaseReg != X86::DI))) {
|
|
ErrMsg = "invalid 16-bit base register";
|
|
return true;
|
|
}
|
|
|
|
if (BaseReg == 0 &&
|
|
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
|
|
ErrMsg = "16-bit memory operand may not include only index register";
|
|
return true;
|
|
}
|
|
|
|
if (BaseReg != 0 && IndexReg != 0) {
|
|
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
|
|
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
|
|
IndexReg == X86::EIZ)) {
|
|
ErrMsg = "base register is 64-bit, but index register is not";
|
|
return true;
|
|
}
|
|
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
|
|
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
|
|
IndexReg == X86::RIZ)) {
|
|
ErrMsg = "base register is 32-bit, but index register is not";
|
|
return true;
|
|
}
|
|
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
|
|
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
|
|
ErrMsg = "base register is 16-bit, but index register is not";
|
|
return true;
|
|
}
|
|
if ((BaseReg != X86::BX && BaseReg != X86::BP) ||
|
|
(IndexReg != X86::SI && IndexReg != X86::DI)) {
|
|
ErrMsg = "invalid 16-bit base/index register combination";
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// RIP/EIP-relative addressing is only supported in 64-bit mode.
|
|
if (!Is64BitMode && BaseReg != 0 &&
|
|
(BaseReg == X86::RIP || BaseReg == X86::EIP)) {
|
|
ErrMsg = "IP-relative addressing requires 64-bit mode";
|
|
return true;
|
|
}
|
|
|
|
return checkScale(Scale, ErrMsg);
|
|
}
|
|
|
|
bool X86AsmParser::MatchRegisterByName(unsigned &RegNo, StringRef RegName,
|
|
SMLoc StartLoc, SMLoc EndLoc) {
|
|
// If we encounter a %, ignore it. This code handles registers with and
|
|
// without the prefix, unprefixed registers can occur in cfi directives.
|
|
RegName.consume_front("%");
|
|
|
|
RegNo = MatchRegisterName(RegName);
|
|
|
|
// If the match failed, try the register name as lowercase.
|
|
if (RegNo == 0)
|
|
RegNo = MatchRegisterName(RegName.lower());
|
|
|
|
// The "flags" and "mxcsr" registers cannot be referenced directly.
|
|
// Treat it as an identifier instead.
|
|
if (isParsingMSInlineAsm() && isParsingIntelSyntax() &&
|
|
(RegNo == X86::EFLAGS || RegNo == X86::MXCSR))
|
|
RegNo = 0;
|
|
|
|
if (!is64BitMode()) {
|
|
// FIXME: This should be done using Requires<Not64BitMode> and
|
|
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
|
|
// checked.
|
|
if (RegNo == X86::RIZ || RegNo == X86::RIP ||
|
|
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
|
|
X86II::isX86_64NonExtLowByteReg(RegNo) ||
|
|
X86II::isX86_64ExtendedReg(RegNo)) {
|
|
return Error(StartLoc,
|
|
"register %" + RegName + " is only available in 64-bit mode",
|
|
SMRange(StartLoc, EndLoc));
|
|
}
|
|
}
|
|
|
|
// If this is "db[0-15]", match it as an alias
|
|
// for dr[0-15].
|
|
if (RegNo == 0 && RegName.startswith("db")) {
|
|
if (RegName.size() == 3) {
|
|
switch (RegName[2]) {
|
|
case '0':
|
|
RegNo = X86::DR0;
|
|
break;
|
|
case '1':
|
|
RegNo = X86::DR1;
|
|
break;
|
|
case '2':
|
|
RegNo = X86::DR2;
|
|
break;
|
|
case '3':
|
|
RegNo = X86::DR3;
|
|
break;
|
|
case '4':
|
|
RegNo = X86::DR4;
|
|
break;
|
|
case '5':
|
|
RegNo = X86::DR5;
|
|
break;
|
|
case '6':
|
|
RegNo = X86::DR6;
|
|
break;
|
|
case '7':
|
|
RegNo = X86::DR7;
|
|
break;
|
|
case '8':
|
|
RegNo = X86::DR8;
|
|
break;
|
|
case '9':
|
|
RegNo = X86::DR9;
|
|
break;
|
|
}
|
|
} else if (RegName.size() == 4 && RegName[2] == '1') {
|
|
switch (RegName[3]) {
|
|
case '0':
|
|
RegNo = X86::DR10;
|
|
break;
|
|
case '1':
|
|
RegNo = X86::DR11;
|
|
break;
|
|
case '2':
|
|
RegNo = X86::DR12;
|
|
break;
|
|
case '3':
|
|
RegNo = X86::DR13;
|
|
break;
|
|
case '4':
|
|
RegNo = X86::DR14;
|
|
break;
|
|
case '5':
|
|
RegNo = X86::DR15;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (RegNo == 0) {
|
|
if (isParsingIntelSyntax())
|
|
return true;
|
|
return Error(StartLoc, "invalid register name", SMRange(StartLoc, EndLoc));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
|
|
SMLoc &EndLoc, bool RestoreOnFailure) {
|
|
MCAsmParser &Parser = getParser();
|
|
MCAsmLexer &Lexer = getLexer();
|
|
RegNo = 0;
|
|
|
|
SmallVector<AsmToken, 5> Tokens;
|
|
auto OnFailure = [RestoreOnFailure, &Lexer, &Tokens]() {
|
|
if (RestoreOnFailure) {
|
|
while (!Tokens.empty()) {
|
|
Lexer.UnLex(Tokens.pop_back_val());
|
|
}
|
|
}
|
|
};
|
|
|
|
const AsmToken &PercentTok = Parser.getTok();
|
|
StartLoc = PercentTok.getLoc();
|
|
|
|
// If we encounter a %, ignore it. This code handles registers with and
|
|
// without the prefix, unprefixed registers can occur in cfi directives.
|
|
if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) {
|
|
Tokens.push_back(PercentTok);
|
|
Parser.Lex(); // Eat percent token.
|
|
}
|
|
|
|
const AsmToken &Tok = Parser.getTok();
|
|
EndLoc = Tok.getEndLoc();
|
|
|
|
if (Tok.isNot(AsmToken::Identifier)) {
|
|
OnFailure();
|
|
if (isParsingIntelSyntax()) return true;
|
|
return Error(StartLoc, "invalid register name",
|
|
SMRange(StartLoc, EndLoc));
|
|
}
|
|
|
|
if (MatchRegisterByName(RegNo, Tok.getString(), StartLoc, EndLoc)) {
|
|
OnFailure();
|
|
return true;
|
|
}
|
|
|
|
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
|
|
if (RegNo == X86::ST0) {
|
|
Tokens.push_back(Tok);
|
|
Parser.Lex(); // Eat 'st'
|
|
|
|
// Check to see if we have '(4)' after %st.
|
|
if (Lexer.isNot(AsmToken::LParen))
|
|
return false;
|
|
// Lex the paren.
|
|
Tokens.push_back(Parser.getTok());
|
|
Parser.Lex();
|
|
|
|
const AsmToken &IntTok = Parser.getTok();
|
|
if (IntTok.isNot(AsmToken::Integer)) {
|
|
OnFailure();
|
|
return Error(IntTok.getLoc(), "expected stack index");
|
|
}
|
|
switch (IntTok.getIntVal()) {
|
|
case 0: RegNo = X86::ST0; break;
|
|
case 1: RegNo = X86::ST1; break;
|
|
case 2: RegNo = X86::ST2; break;
|
|
case 3: RegNo = X86::ST3; break;
|
|
case 4: RegNo = X86::ST4; break;
|
|
case 5: RegNo = X86::ST5; break;
|
|
case 6: RegNo = X86::ST6; break;
|
|
case 7: RegNo = X86::ST7; break;
|
|
default:
|
|
OnFailure();
|
|
return Error(IntTok.getLoc(), "invalid stack index");
|
|
}
|
|
|
|
// Lex IntTok
|
|
Tokens.push_back(IntTok);
|
|
Parser.Lex();
|
|
if (Lexer.isNot(AsmToken::RParen)) {
|
|
OnFailure();
|
|
return Error(Parser.getTok().getLoc(), "expected ')'");
|
|
}
|
|
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat ')'
|
|
return false;
|
|
}
|
|
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
|
|
if (RegNo == 0) {
|
|
OnFailure();
|
|
if (isParsingIntelSyntax()) return true;
|
|
return Error(StartLoc, "invalid register name",
|
|
SMRange(StartLoc, EndLoc));
|
|
}
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
|
|
SMLoc &EndLoc) {
|
|
return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
|
|
}
|
|
|
|
OperandMatchResultTy X86AsmParser::tryParseRegister(unsigned &RegNo,
|
|
SMLoc &StartLoc,
|
|
SMLoc &EndLoc) {
|
|
bool Result =
|
|
ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
|
|
bool PendingErrors = getParser().hasPendingError();
|
|
getParser().clearPendingErrors();
|
|
if (PendingErrors)
|
|
return MatchOperand_ParseFail;
|
|
if (Result)
|
|
return MatchOperand_NoMatch;
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
|
|
bool Parse32 = is32BitMode() || Code16GCC;
|
|
unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
|
|
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
|
|
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
|
|
/*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
|
|
Loc, Loc, 0);
|
|
}
|
|
|
|
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
|
|
bool Parse32 = is32BitMode() || Code16GCC;
|
|
unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
|
|
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
|
|
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
|
|
/*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
|
|
Loc, Loc, 0);
|
|
}
|
|
|
|
bool X86AsmParser::IsSIReg(unsigned Reg) {
|
|
switch (Reg) {
|
|
default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
|
|
case X86::RSI:
|
|
case X86::ESI:
|
|
case X86::SI:
|
|
return true;
|
|
case X86::RDI:
|
|
case X86::EDI:
|
|
case X86::DI:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
|
|
bool IsSIReg) {
|
|
switch (RegClassID) {
|
|
default: llvm_unreachable("Unexpected register class");
|
|
case X86::GR64RegClassID:
|
|
return IsSIReg ? X86::RSI : X86::RDI;
|
|
case X86::GR32RegClassID:
|
|
return IsSIReg ? X86::ESI : X86::EDI;
|
|
case X86::GR16RegClassID:
|
|
return IsSIReg ? X86::SI : X86::DI;
|
|
}
|
|
}
|
|
|
|
void X86AsmParser::AddDefaultSrcDestOperands(
|
|
OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
|
|
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
|
|
if (isParsingIntelSyntax()) {
|
|
Operands.push_back(std::move(Dst));
|
|
Operands.push_back(std::move(Src));
|
|
}
|
|
else {
|
|
Operands.push_back(std::move(Src));
|
|
Operands.push_back(std::move(Dst));
|
|
}
|
|
}
|
|
|
|
bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
|
|
OperandVector &FinalOperands) {
|
|
|
|
if (OrigOperands.size() > 1) {
|
|
// Check if sizes match, OrigOperands also contains the instruction name
|
|
assert(OrigOperands.size() == FinalOperands.size() + 1 &&
|
|
"Operand size mismatch");
|
|
|
|
SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
|
|
// Verify types match
|
|
int RegClassID = -1;
|
|
for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
|
|
X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
|
|
X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);
|
|
|
|
if (FinalOp.isReg() &&
|
|
(!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
|
|
// Return false and let a normal complaint about bogus operands happen
|
|
return false;
|
|
|
|
if (FinalOp.isMem()) {
|
|
|
|
if (!OrigOp.isMem())
|
|
// Return false and let a normal complaint about bogus operands happen
|
|
return false;
|
|
|
|
unsigned OrigReg = OrigOp.Mem.BaseReg;
|
|
unsigned FinalReg = FinalOp.Mem.BaseReg;
|
|
|
|
// If we've already encounterd a register class, make sure all register
|
|
// bases are of the same register class
|
|
if (RegClassID != -1 &&
|
|
!X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
|
|
return Error(OrigOp.getStartLoc(),
|
|
"mismatching source and destination index registers");
|
|
}
|
|
|
|
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
|
|
RegClassID = X86::GR64RegClassID;
|
|
else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
|
|
RegClassID = X86::GR32RegClassID;
|
|
else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
|
|
RegClassID = X86::GR16RegClassID;
|
|
else
|
|
// Unexpected register class type
|
|
// Return false and let a normal complaint about bogus operands happen
|
|
return false;
|
|
|
|
bool IsSI = IsSIReg(FinalReg);
|
|
FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);
|
|
|
|
if (FinalReg != OrigReg) {
|
|
std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
|
|
Warnings.push_back(std::make_pair(
|
|
OrigOp.getStartLoc(),
|
|
"memory operand is only for determining the size, " + RegName +
|
|
" will be used for the location"));
|
|
}
|
|
|
|
FinalOp.Mem.Size = OrigOp.Mem.Size;
|
|
FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
|
|
FinalOp.Mem.BaseReg = FinalReg;
|
|
}
|
|
}
|
|
|
|
// Produce warnings only if all the operands passed the adjustment - prevent
|
|
// legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
|
|
for (auto &WarningMsg : Warnings) {
|
|
Warning(WarningMsg.first, WarningMsg.second);
|
|
}
|
|
|
|
// Remove old operands
|
|
for (unsigned int i = 0; i < FinalOperands.size(); ++i)
|
|
OrigOperands.pop_back();
|
|
}
|
|
// OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
|
|
for (unsigned int i = 0; i < FinalOperands.size(); ++i)
|
|
OrigOperands.push_back(std::move(FinalOperands[i]));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::ParseOperand(OperandVector &Operands) {
|
|
if (isParsingIntelSyntax())
|
|
return ParseIntelOperand(Operands);
|
|
|
|
return ParseATTOperand(Operands);
|
|
}
|
|
|
|
bool X86AsmParser::CreateMemForMSInlineAsm(
|
|
unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
|
|
unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
|
|
const InlineAsmIdentifierInfo &Info, OperandVector &Operands) {
|
|
// If we found a decl other than a VarDecl, then assume it is a FuncDecl or
|
|
// some other label reference.
|
|
if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) {
|
|
// Insert an explicit size if the user didn't have one.
|
|
if (!Size) {
|
|
Size = getPointerWidth();
|
|
InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
|
|
/*Len=*/0, Size);
|
|
}
|
|
// Create an absolute memory reference in order to match against
|
|
// instructions taking a PC relative operand.
|
|
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), Disp, Start,
|
|
End, Size, Identifier,
|
|
Info.Label.Decl));
|
|
return false;
|
|
}
|
|
// We either have a direct symbol reference, or an offset from a symbol. The
|
|
// parser always puts the symbol on the LHS, so look there for size
|
|
// calculation purposes.
|
|
unsigned FrontendSize = 0;
|
|
void *Decl = nullptr;
|
|
bool IsGlobalLV = false;
|
|
if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
|
|
// Size is in terms of bits in this context.
|
|
FrontendSize = Info.Var.Type * 8;
|
|
Decl = Info.Var.Decl;
|
|
IsGlobalLV = Info.Var.IsGlobalLV;
|
|
}
|
|
// It is widely common for MS InlineAsm to use a global variable and one/two
|
|
// registers in a mmory expression, and though unaccessible via rip/eip.
|
|
if (IsGlobalLV && (BaseReg || IndexReg)) {
|
|
Operands.push_back(
|
|
X86Operand::CreateMem(getPointerWidth(), Disp, Start, End));
|
|
return false;
|
|
}
|
|
// Otherwise, we set the base register to a non-zero value
|
|
// if we don't know the actual value at this time. This is necessary to
|
|
// get the matching correct in some cases.
|
|
BaseReg = BaseReg ? BaseReg : 1;
|
|
Operands.push_back(X86Operand::CreateMem(
|
|
getPointerWidth(), SegReg, Disp, BaseReg, IndexReg, Scale, Start, End,
|
|
Size,
|
|
/*DefaultBaseReg=*/X86::RIP, Identifier, Decl, FrontendSize));
|
|
return false;
|
|
}
|
|
|
|
// Some binary bitwise operators have a named synonymous
|
|
// Query a candidate string for being such a named operator
|
|
// and if so - invoke the appropriate handler
|
|
bool X86AsmParser::ParseIntelNamedOperator(StringRef Name,
|
|
IntelExprStateMachine &SM,
|
|
bool &ParseError, SMLoc &End) {
|
|
// A named operator should be either lower or upper case, but not a mix...
|
|
// except in MASM, which uses full case-insensitivity.
|
|
if (Name.compare(Name.lower()) && Name.compare(Name.upper()) &&
|
|
!getParser().isParsingMasm())
|
|
return false;
|
|
if (Name.equals_lower("not")) {
|
|
SM.onNot();
|
|
} else if (Name.equals_lower("or")) {
|
|
SM.onOr();
|
|
} else if (Name.equals_lower("shl")) {
|
|
SM.onLShift();
|
|
} else if (Name.equals_lower("shr")) {
|
|
SM.onRShift();
|
|
} else if (Name.equals_lower("xor")) {
|
|
SM.onXor();
|
|
} else if (Name.equals_lower("and")) {
|
|
SM.onAnd();
|
|
} else if (Name.equals_lower("mod")) {
|
|
SM.onMod();
|
|
} else if (Name.equals_lower("offset")) {
|
|
SMLoc OffsetLoc = getTok().getLoc();
|
|
const MCExpr *Val = nullptr;
|
|
StringRef ID;
|
|
InlineAsmIdentifierInfo Info;
|
|
ParseError = ParseIntelOffsetOperator(Val, ID, Info, End);
|
|
if (ParseError)
|
|
return true;
|
|
StringRef ErrMsg;
|
|
ParseError =
|
|
SM.onOffset(Val, OffsetLoc, ID, Info, isParsingMSInlineAsm(), ErrMsg);
|
|
if (ParseError)
|
|
return Error(SMLoc::getFromPointer(Name.data()), ErrMsg);
|
|
} else {
|
|
return false;
|
|
}
|
|
if (!Name.equals_lower("offset"))
|
|
End = consumeToken();
|
|
return true;
|
|
}
|
|
bool X86AsmParser::ParseMasmNamedOperator(StringRef Name,
|
|
IntelExprStateMachine &SM,
|
|
bool &ParseError, SMLoc &End) {
|
|
if (Name.equals_lower("eq")) {
|
|
SM.onEq();
|
|
} else if (Name.equals_lower("ne")) {
|
|
SM.onNE();
|
|
} else if (Name.equals_lower("lt")) {
|
|
SM.onLT();
|
|
} else if (Name.equals_lower("le")) {
|
|
SM.onLE();
|
|
} else if (Name.equals_lower("gt")) {
|
|
SM.onGT();
|
|
} else if (Name.equals_lower("ge")) {
|
|
SM.onGE();
|
|
} else {
|
|
return false;
|
|
}
|
|
End = consumeToken();
|
|
return true;
|
|
}
|
|
|
|
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
|
|
MCAsmParser &Parser = getParser();
|
|
StringRef ErrMsg;
|
|
|
|
AsmToken::TokenKind PrevTK = AsmToken::Error;
|
|
bool Done = false;
|
|
while (!Done) {
|
|
// Get a fresh reference on each loop iteration in case the previous
|
|
// iteration moved the token storage during UnLex().
|
|
const AsmToken &Tok = Parser.getTok();
|
|
|
|
bool UpdateLocLex = true;
|
|
AsmToken::TokenKind TK = getLexer().getKind();
|
|
|
|
switch (TK) {
|
|
default:
|
|
if ((Done = SM.isValidEndState()))
|
|
break;
|
|
return Error(Tok.getLoc(), "unknown token in expression");
|
|
case AsmToken::Error:
|
|
return Error(getLexer().getErrLoc(), getLexer().getErr());
|
|
break;
|
|
case AsmToken::EndOfStatement:
|
|
Done = true;
|
|
break;
|
|
case AsmToken::Real:
|
|
// DotOperator: [ebx].0
|
|
UpdateLocLex = false;
|
|
if (ParseIntelDotOperator(SM, End))
|
|
return true;
|
|
break;
|
|
case AsmToken::Dot:
|
|
if (!Parser.isParsingMasm()) {
|
|
if ((Done = SM.isValidEndState()))
|
|
break;
|
|
return Error(Tok.getLoc(), "unknown token in expression");
|
|
}
|
|
// MASM allows spaces around the dot operator (e.g., "var . x")
|
|
Lex();
|
|
UpdateLocLex = false;
|
|
if (ParseIntelDotOperator(SM, End))
|
|
return true;
|
|
break;
|
|
case AsmToken::Dollar:
|
|
if (!Parser.isParsingMasm()) {
|
|
if ((Done = SM.isValidEndState()))
|
|
break;
|
|
return Error(Tok.getLoc(), "unknown token in expression");
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case AsmToken::String: {
|
|
if (Parser.isParsingMasm()) {
|
|
// MASM parsers handle strings in expressions as constants.
|
|
SMLoc ValueLoc = Tok.getLoc();
|
|
int64_t Res;
|
|
const MCExpr *Val;
|
|
if (Parser.parsePrimaryExpr(Val, End, nullptr))
|
|
return true;
|
|
UpdateLocLex = false;
|
|
if (!Val->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
|
|
return Error(ValueLoc, "expected absolute value");
|
|
if (SM.onInteger(Res, ErrMsg))
|
|
return Error(ValueLoc, ErrMsg);
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case AsmToken::At:
|
|
case AsmToken::Identifier: {
|
|
SMLoc IdentLoc = Tok.getLoc();
|
|
StringRef Identifier = Tok.getString();
|
|
UpdateLocLex = false;
|
|
if (Parser.isParsingMasm()) {
|
|
size_t DotOffset = Identifier.find_first_of('.');
|
|
if (DotOffset != StringRef::npos) {
|
|
consumeToken();
|
|
StringRef LHS = Identifier.slice(0, DotOffset);
|
|
StringRef Dot = Identifier.slice(DotOffset, DotOffset + 1);
|
|
StringRef RHS = Identifier.slice(DotOffset + 1, StringRef::npos);
|
|
if (!RHS.empty()) {
|
|
getLexer().UnLex(AsmToken(AsmToken::Identifier, RHS));
|
|
}
|
|
getLexer().UnLex(AsmToken(AsmToken::Dot, Dot));
|
|
if (!LHS.empty()) {
|
|
getLexer().UnLex(AsmToken(AsmToken::Identifier, LHS));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// (MASM only) <TYPE> PTR operator
|
|
if (Parser.isParsingMasm()) {
|
|
const AsmToken &NextTok = getLexer().peekTok();
|
|
if (NextTok.is(AsmToken::Identifier) &&
|
|
NextTok.getIdentifier().equals_lower("ptr")) {
|
|
AsmTypeInfo Info;
|
|
if (Parser.lookUpType(Identifier, Info))
|
|
return Error(Tok.getLoc(), "unknown type");
|
|
SM.onCast(Info);
|
|
// Eat type and PTR.
|
|
consumeToken();
|
|
End = consumeToken();
|
|
break;
|
|
}
|
|
}
|
|
// Register, or (MASM only) <register>.<field>
|
|
unsigned Reg;
|
|
if (Tok.is(AsmToken::Identifier)) {
|
|
if (!ParseRegister(Reg, IdentLoc, End, /*RestoreOnFailure=*/true)) {
|
|
if (SM.onRegister(Reg, ErrMsg))
|
|
return Error(IdentLoc, ErrMsg);
|
|
break;
|
|
}
|
|
if (Parser.isParsingMasm()) {
|
|
const std::pair<StringRef, StringRef> IDField =
|
|
Tok.getString().split('.');
|
|
const StringRef ID = IDField.first, Field = IDField.second;
|
|
SMLoc IDEndLoc = SMLoc::getFromPointer(ID.data() + ID.size());
|
|
if (!Field.empty() &&
|
|
!MatchRegisterByName(Reg, ID, IdentLoc, IDEndLoc)) {
|
|
if (SM.onRegister(Reg, ErrMsg))
|
|
return Error(IdentLoc, ErrMsg);
|
|
|
|
AsmFieldInfo Info;
|
|
SMLoc FieldStartLoc = SMLoc::getFromPointer(Field.data());
|
|
if (Parser.lookUpField(Field, Info))
|
|
return Error(FieldStartLoc, "unknown offset");
|
|
else if (SM.onPlus(ErrMsg))
|
|
return Error(getTok().getLoc(), ErrMsg);
|
|
else if (SM.onInteger(Info.Offset, ErrMsg))
|
|
return Error(IdentLoc, ErrMsg);
|
|
SM.setTypeInfo(Info.Type);
|
|
|
|
End = consumeToken();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Operator synonymous ("not", "or" etc.)
|
|
bool ParseError = false;
|
|
if (ParseIntelNamedOperator(Identifier, SM, ParseError, End)) {
|
|
if (ParseError)
|
|
return true;
|
|
break;
|
|
}
|
|
if (Parser.isParsingMasm() &&
|
|
ParseMasmNamedOperator(Identifier, SM, ParseError, End)) {
|
|
if (ParseError)
|
|
return true;
|
|
break;
|
|
}
|
|
// Symbol reference, when parsing assembly content
|
|
InlineAsmIdentifierInfo Info;
|
|
AsmFieldInfo FieldInfo;
|
|
const MCExpr *Val;
|
|
if (isParsingMSInlineAsm() || Parser.isParsingMasm()) {
|
|
// MS Dot Operator expression
|
|
if (Identifier.count('.') &&
|
|
(PrevTK == AsmToken::RBrac || PrevTK == AsmToken::RParen)) {
|
|
if (ParseIntelDotOperator(SM, End))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
if (isParsingMSInlineAsm()) {
|
|
// MS InlineAsm operators (TYPE/LENGTH/SIZE)
|
|
if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) {
|
|
if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) {
|
|
if (SM.onInteger(Val, ErrMsg))
|
|
return Error(IdentLoc, ErrMsg);
|
|
} else {
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
// MS InlineAsm identifier
|
|
// Call parseIdentifier() to combine @ with the identifier behind it.
|
|
if (TK == AsmToken::At && Parser.parseIdentifier(Identifier))
|
|
return Error(IdentLoc, "expected identifier");
|
|
if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End))
|
|
return true;
|
|
else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type,
|
|
true, ErrMsg))
|
|
return Error(IdentLoc, ErrMsg);
|
|
break;
|
|
}
|
|
if (Parser.isParsingMasm()) {
|
|
if (unsigned OpKind = IdentifyMasmOperator(Identifier)) {
|
|
int64_t Val;
|
|
if (ParseMasmOperator(OpKind, Val))
|
|
return true;
|
|
if (SM.onInteger(Val, ErrMsg))
|
|
return Error(IdentLoc, ErrMsg);
|
|
break;
|
|
}
|
|
if (!getParser().lookUpType(Identifier, FieldInfo.Type)) {
|
|
// Field offset immediate; <TYPE>.<field specification>
|
|
Lex(); // eat type
|
|
bool EndDot = parseOptionalToken(AsmToken::Dot);
|
|
while (EndDot || (getTok().is(AsmToken::Identifier) &&
|
|
getTok().getString().startswith("."))) {
|
|
getParser().parseIdentifier(Identifier);
|
|
if (!EndDot)
|
|
Identifier.consume_front(".");
|
|
EndDot = Identifier.consume_back(".");
|
|
if (getParser().lookUpField(FieldInfo.Type.Name, Identifier,
|
|
FieldInfo)) {
|
|
SMLoc IDEnd =
|
|
SMLoc::getFromPointer(Identifier.data() + Identifier.size());
|
|
return Error(IdentLoc, "Unable to lookup field reference!",
|
|
SMRange(IdentLoc, IDEnd));
|
|
}
|
|
if (!EndDot)
|
|
EndDot = parseOptionalToken(AsmToken::Dot);
|
|
}
|
|
if (SM.onInteger(FieldInfo.Offset, ErrMsg))
|
|
return Error(IdentLoc, ErrMsg);
|
|
break;
|
|
}
|
|
}
|
|
if (getParser().parsePrimaryExpr(Val, End, &FieldInfo.Type)) {
|
|
return Error(Tok.getLoc(), "Unexpected identifier!");
|
|
} else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type,
|
|
false, ErrMsg)) {
|
|
return Error(IdentLoc, ErrMsg);
|
|
}
|
|
break;
|
|
}
|
|
case AsmToken::Integer: {
|
|
// Look for 'b' or 'f' following an Integer as a directional label
|
|
SMLoc Loc = getTok().getLoc();
|
|
int64_t IntVal = getTok().getIntVal();
|
|
End = consumeToken();
|
|
UpdateLocLex = false;
|
|
if (getLexer().getKind() == AsmToken::Identifier) {
|
|
StringRef IDVal = getTok().getString();
|
|
if (IDVal == "f" || IDVal == "b") {
|
|
MCSymbol *Sym =
|
|
getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
|
|
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
|
|
const MCExpr *Val =
|
|
MCSymbolRefExpr::create(Sym, Variant, getContext());
|
|
if (IDVal == "b" && Sym->isUndefined())
|
|
return Error(Loc, "invalid reference to undefined symbol");
|
|
StringRef Identifier = Sym->getName();
|
|
InlineAsmIdentifierInfo Info;
|
|
AsmTypeInfo Type;
|
|
if (SM.onIdentifierExpr(Val, Identifier, Info, Type,
|
|
isParsingMSInlineAsm(), ErrMsg))
|
|
return Error(Loc, ErrMsg);
|
|
End = consumeToken();
|
|
} else {
|
|
if (SM.onInteger(IntVal, ErrMsg))
|
|
return Error(Loc, ErrMsg);
|
|
}
|
|
} else {
|
|
if (SM.onInteger(IntVal, ErrMsg))
|
|
return Error(Loc, ErrMsg);
|
|
}
|
|
break;
|
|
}
|
|
case AsmToken::Plus:
|
|
if (SM.onPlus(ErrMsg))
|
|
return Error(getTok().getLoc(), ErrMsg);
|
|
break;
|
|
case AsmToken::Minus:
|
|
if (SM.onMinus(ErrMsg))
|
|
return Error(getTok().getLoc(), ErrMsg);
|
|
break;
|
|
case AsmToken::Tilde: SM.onNot(); break;
|
|
case AsmToken::Star: SM.onStar(); break;
|
|
case AsmToken::Slash: SM.onDivide(); break;
|
|
case AsmToken::Percent: SM.onMod(); break;
|
|
case AsmToken::Pipe: SM.onOr(); break;
|
|
case AsmToken::Caret: SM.onXor(); break;
|
|
case AsmToken::Amp: SM.onAnd(); break;
|
|
case AsmToken::LessLess:
|
|
SM.onLShift(); break;
|
|
case AsmToken::GreaterGreater:
|
|
SM.onRShift(); break;
|
|
case AsmToken::LBrac:
|
|
if (SM.onLBrac())
|
|
return Error(Tok.getLoc(), "unexpected bracket encountered");
|
|
break;
|
|
case AsmToken::RBrac:
|
|
if (SM.onRBrac())
|
|
return Error(Tok.getLoc(), "unexpected bracket encountered");
|
|
break;
|
|
case AsmToken::LParen: SM.onLParen(); break;
|
|
case AsmToken::RParen: SM.onRParen(); break;
|
|
}
|
|
if (SM.hadError())
|
|
return Error(Tok.getLoc(), "unknown token in expression");
|
|
|
|
if (!Done && UpdateLocLex)
|
|
End = consumeToken();
|
|
|
|
PrevTK = TK;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM,
|
|
SMLoc Start, SMLoc End) {
|
|
SMLoc Loc = Start;
|
|
unsigned ExprLen = End.getPointer() - Start.getPointer();
|
|
// Skip everything before a symbol displacement (if we have one)
|
|
if (SM.getSym() && !SM.isOffsetOperator()) {
|
|
StringRef SymName = SM.getSymName();
|
|
if (unsigned Len = SymName.data() - Start.getPointer())
|
|
InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len);
|
|
Loc = SMLoc::getFromPointer(SymName.data() + SymName.size());
|
|
ExprLen = End.getPointer() - (SymName.data() + SymName.size());
|
|
// If we have only a symbol than there's no need for complex rewrite,
|
|
// simply skip everything after it
|
|
if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) {
|
|
if (ExprLen)
|
|
InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen);
|
|
return;
|
|
}
|
|
}
|
|
// Build an Intel Expression rewrite
|
|
StringRef BaseRegStr;
|
|
StringRef IndexRegStr;
|
|
StringRef OffsetNameStr;
|
|
if (SM.getBaseReg())
|
|
BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg());
|
|
if (SM.getIndexReg())
|
|
IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg());
|
|
if (SM.isOffsetOperator())
|
|
OffsetNameStr = SM.getSymName();
|
|
// Emit it
|
|
IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), OffsetNameStr,
|
|
SM.getImm(), SM.isMemExpr());
|
|
InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr);
|
|
}
|
|
|
|
// Inline assembly may use variable names with namespace alias qualifiers.
|
|
bool X86AsmParser::ParseIntelInlineAsmIdentifier(
|
|
const MCExpr *&Val, StringRef &Identifier, InlineAsmIdentifierInfo &Info,
|
|
bool IsUnevaluatedOperand, SMLoc &End, bool IsParsingOffsetOperator) {
|
|
MCAsmParser &Parser = getParser();
|
|
assert(isParsingMSInlineAsm() && "Expected to be parsing inline assembly.");
|
|
Val = nullptr;
|
|
|
|
StringRef LineBuf(Identifier.data());
|
|
SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
|
|
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc Loc = Tok.getLoc();
|
|
|
|
// Advance the token stream until the end of the current token is
|
|
// after the end of what the frontend claimed.
|
|
const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
|
|
do {
|
|
End = Tok.getEndLoc();
|
|
getLexer().Lex();
|
|
} while (End.getPointer() < EndPtr);
|
|
Identifier = LineBuf;
|
|
|
|
// The frontend should end parsing on an assembler token boundary, unless it
|
|
// failed parsing.
|
|
assert((End.getPointer() == EndPtr ||
|
|
Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) &&
|
|
"frontend claimed part of a token?");
|
|
|
|
// If the identifier lookup was unsuccessful, assume that we are dealing with
|
|
// a label.
|
|
if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) {
|
|
StringRef InternalName =
|
|
SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
|
|
Loc, false);
|
|
assert(InternalName.size() && "We should have an internal name here.");
|
|
// Push a rewrite for replacing the identifier name with the internal name,
|
|
// unless we are parsing the operand of an offset operator
|
|
if (!IsParsingOffsetOperator)
|
|
InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
|
|
InternalName);
|
|
else
|
|
Identifier = InternalName;
|
|
} else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
|
|
return false;
|
|
// Create the symbol reference.
|
|
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
|
|
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
|
|
Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
|
|
return false;
|
|
}
|
|
|
|
//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
|
|
bool X86AsmParser::ParseRoundingModeOp(SMLoc Start, OperandVector &Operands) {
|
|
MCAsmParser &Parser = getParser();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
// Eat "{" and mark the current place.
|
|
const SMLoc consumedToken = consumeToken();
|
|
if (Tok.isNot(AsmToken::Identifier))
|
|
return Error(Tok.getLoc(), "Expected an identifier after {");
|
|
if (Tok.getIdentifier().startswith("r")){
|
|
int rndMode = StringSwitch<int>(Tok.getIdentifier())
|
|
.Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
|
|
.Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
|
|
.Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
|
|
.Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
|
|
.Default(-1);
|
|
if (-1 == rndMode)
|
|
return Error(Tok.getLoc(), "Invalid rounding mode.");
|
|
Parser.Lex(); // Eat "r*" of r*-sae
|
|
if (!getLexer().is(AsmToken::Minus))
|
|
return Error(Tok.getLoc(), "Expected - at this point");
|
|
Parser.Lex(); // Eat "-"
|
|
Parser.Lex(); // Eat the sae
|
|
if (!getLexer().is(AsmToken::RCurly))
|
|
return Error(Tok.getLoc(), "Expected } at this point");
|
|
SMLoc End = Tok.getEndLoc();
|
|
Parser.Lex(); // Eat "}"
|
|
const MCExpr *RndModeOp =
|
|
MCConstantExpr::create(rndMode, Parser.getContext());
|
|
Operands.push_back(X86Operand::CreateImm(RndModeOp, Start, End));
|
|
return false;
|
|
}
|
|
if(Tok.getIdentifier().equals("sae")){
|
|
Parser.Lex(); // Eat the sae
|
|
if (!getLexer().is(AsmToken::RCurly))
|
|
return Error(Tok.getLoc(), "Expected } at this point");
|
|
Parser.Lex(); // Eat "}"
|
|
Operands.push_back(X86Operand::CreateToken("{sae}", consumedToken));
|
|
return false;
|
|
}
|
|
return Error(Tok.getLoc(), "unknown token in expression");
|
|
}
|
|
|
|
/// Parse the '.' operator.
|
|
bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM,
|
|
SMLoc &End) {
|
|
const AsmToken &Tok = getTok();
|
|
AsmFieldInfo Info;
|
|
|
|
// Drop the optional '.'.
|
|
StringRef DotDispStr = Tok.getString();
|
|
if (DotDispStr.startswith("."))
|
|
DotDispStr = DotDispStr.drop_front(1);
|
|
StringRef TrailingDot;
|
|
|
|
// .Imm gets lexed as a real.
|
|
if (Tok.is(AsmToken::Real)) {
|
|
APInt DotDisp;
|
|
DotDispStr.getAsInteger(10, DotDisp);
|
|
Info.Offset = DotDisp.getZExtValue();
|
|
} else if ((isParsingMSInlineAsm() || getParser().isParsingMasm()) &&
|
|
Tok.is(AsmToken::Identifier)) {
|
|
if (DotDispStr.endswith(".")) {
|
|
TrailingDot = DotDispStr.substr(DotDispStr.size() - 1);
|
|
DotDispStr = DotDispStr.drop_back(1);
|
|
}
|
|
const std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
|
|
const StringRef Base = BaseMember.first, Member = BaseMember.second;
|
|
if (getParser().lookUpField(SM.getType(), DotDispStr, Info) &&
|
|
getParser().lookUpField(SM.getSymName(), DotDispStr, Info) &&
|
|
getParser().lookUpField(DotDispStr, Info) &&
|
|
(!SemaCallback ||
|
|
SemaCallback->LookupInlineAsmField(Base, Member, Info.Offset)))
|
|
return Error(Tok.getLoc(), "Unable to lookup field reference!");
|
|
} else {
|
|
return Error(Tok.getLoc(), "Unexpected token type!");
|
|
}
|
|
|
|
// Eat the DotExpression and update End
|
|
End = SMLoc::getFromPointer(DotDispStr.data());
|
|
const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size();
|
|
while (Tok.getLoc().getPointer() < DotExprEndLoc)
|
|
Lex();
|
|
if (!TrailingDot.empty())
|
|
getLexer().UnLex(AsmToken(AsmToken::Dot, TrailingDot));
|
|
SM.addImm(Info.Offset);
|
|
SM.setTypeInfo(Info.Type);
|
|
return false;
|
|
}
|
|
|
|
/// Parse the 'offset' operator.
|
|
/// This operator is used to specify the location of a given operand
|
|
bool X86AsmParser::ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
|
|
InlineAsmIdentifierInfo &Info,
|
|
SMLoc &End) {
|
|
// Eat offset, mark start of identifier.
|
|
SMLoc Start = Lex().getLoc();
|
|
ID = getTok().getString();
|
|
if (!isParsingMSInlineAsm()) {
|
|
if ((getTok().isNot(AsmToken::Identifier) &&
|
|
getTok().isNot(AsmToken::String)) ||
|
|
getParser().parsePrimaryExpr(Val, End, nullptr))
|
|
return Error(Start, "unexpected token!");
|
|
} else if (ParseIntelInlineAsmIdentifier(Val, ID, Info, false, End, true)) {
|
|
return Error(Start, "unable to lookup expression");
|
|
} else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) {
|
|
return Error(Start, "offset operator cannot yet handle constants");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Query a candidate string for being an Intel assembly operator
|
|
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
|
|
unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) {
|
|
return StringSwitch<unsigned>(Name)
|
|
.Cases("TYPE","type",IOK_TYPE)
|
|
.Cases("SIZE","size",IOK_SIZE)
|
|
.Cases("LENGTH","length",IOK_LENGTH)
|
|
.Default(IOK_INVALID);
|
|
}
|
|
|
|
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
|
|
/// returns the number of elements in an array. It returns the value 1 for
|
|
/// non-array variables. The SIZE operator returns the size of a C or C++
|
|
/// variable. A variable's size is the product of its LENGTH and TYPE. The
|
|
/// TYPE operator returns the size of a C or C++ type or variable. If the
|
|
/// variable is an array, TYPE returns the size of a single element.
|
|
unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) {
|
|
MCAsmParser &Parser = getParser();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
Parser.Lex(); // Eat operator.
|
|
|
|
const MCExpr *Val = nullptr;
|
|
InlineAsmIdentifierInfo Info;
|
|
SMLoc Start = Tok.getLoc(), End;
|
|
StringRef Identifier = Tok.getString();
|
|
if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
|
|
/*IsUnevaluatedOperand=*/true, End))
|
|
return 0;
|
|
|
|
if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
|
|
Error(Start, "unable to lookup expression");
|
|
return 0;
|
|
}
|
|
|
|
unsigned CVal = 0;
|
|
switch(OpKind) {
|
|
default: llvm_unreachable("Unexpected operand kind!");
|
|
case IOK_LENGTH: CVal = Info.Var.Length; break;
|
|
case IOK_SIZE: CVal = Info.Var.Size; break;
|
|
case IOK_TYPE: CVal = Info.Var.Type; break;
|
|
}
|
|
|
|
return CVal;
|
|
}
|
|
|
|
// Query a candidate string for being an Intel assembly operator
|
|
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
|
|
unsigned X86AsmParser::IdentifyMasmOperator(StringRef Name) {
|
|
return StringSwitch<unsigned>(Name.lower())
|
|
.Case("type", MOK_TYPE)
|
|
.Cases("size", "sizeof", MOK_SIZEOF)
|
|
.Cases("length", "lengthof", MOK_LENGTHOF)
|
|
.Default(MOK_INVALID);
|
|
}
|
|
|
|
/// Parse the 'LENGTHOF', 'SIZEOF', and 'TYPE' operators. The LENGTHOF operator
|
|
/// returns the number of elements in an array. It returns the value 1 for
|
|
/// non-array variables. The SIZEOF operator returns the size of a type or
|
|
/// variable in bytes. A variable's size is the product of its LENGTH and TYPE.
|
|
/// The TYPE operator returns the size of a variable. If the variable is an
|
|
/// array, TYPE returns the size of a single element.
|
|
bool X86AsmParser::ParseMasmOperator(unsigned OpKind, int64_t &Val) {
|
|
MCAsmParser &Parser = getParser();
|
|
SMLoc OpLoc = Parser.getTok().getLoc();
|
|
Parser.Lex(); // Eat operator.
|
|
|
|
Val = 0;
|
|
if (OpKind == MOK_SIZEOF || OpKind == MOK_TYPE) {
|
|
// Check for SIZEOF(<type>) and TYPE(<type>).
|
|
bool InParens = Parser.getTok().is(AsmToken::LParen);
|
|
const AsmToken &IDTok = InParens ? getLexer().peekTok() : Parser.getTok();
|
|
AsmTypeInfo Type;
|
|
if (IDTok.is(AsmToken::Identifier) &&
|
|
!Parser.lookUpType(IDTok.getIdentifier(), Type)) {
|
|
Val = Type.Size;
|
|
|
|
// Eat tokens.
|
|
if (InParens)
|
|
parseToken(AsmToken::LParen);
|
|
parseToken(AsmToken::Identifier);
|
|
if (InParens)
|
|
parseToken(AsmToken::RParen);
|
|
}
|
|
}
|
|
|
|
if (!Val) {
|
|
IntelExprStateMachine SM;
|
|
SMLoc End, Start = Parser.getTok().getLoc();
|
|
if (ParseIntelExpression(SM, End))
|
|
return true;
|
|
|
|
switch (OpKind) {
|
|
default:
|
|
llvm_unreachable("Unexpected operand kind!");
|
|
case MOK_SIZEOF:
|
|
Val = SM.getSize();
|
|
break;
|
|
case MOK_LENGTHOF:
|
|
Val = SM.getLength();
|
|
break;
|
|
case MOK_TYPE:
|
|
Val = SM.getElementSize();
|
|
break;
|
|
}
|
|
|
|
if (!Val)
|
|
return Error(OpLoc, "expression has unknown type", SMRange(Start, End));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) {
|
|
Size = StringSwitch<unsigned>(getTok().getString())
|
|
.Cases("BYTE", "byte", 8)
|
|
.Cases("WORD", "word", 16)
|
|
.Cases("DWORD", "dword", 32)
|
|
.Cases("FLOAT", "float", 32)
|
|
.Cases("LONG", "long", 32)
|
|
.Cases("FWORD", "fword", 48)
|
|
.Cases("DOUBLE", "double", 64)
|
|
.Cases("QWORD", "qword", 64)
|
|
.Cases("MMWORD","mmword", 64)
|
|
.Cases("XWORD", "xword", 80)
|
|
.Cases("TBYTE", "tbyte", 80)
|
|
.Cases("XMMWORD", "xmmword", 128)
|
|
.Cases("YMMWORD", "ymmword", 256)
|
|
.Cases("ZMMWORD", "zmmword", 512)
|
|
.Default(0);
|
|
if (Size) {
|
|
const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word).
|
|
if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr")))
|
|
return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
|
|
Lex(); // Eat ptr.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::ParseIntelOperand(OperandVector &Operands) {
|
|
MCAsmParser &Parser = getParser();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc Start, End;
|
|
|
|
// Parse optional Size directive.
|
|
unsigned Size;
|
|
if (ParseIntelMemoryOperandSize(Size))
|
|
return true;
|
|
bool PtrInOperand = bool(Size);
|
|
|
|
Start = Tok.getLoc();
|
|
|
|
// Rounding mode operand.
|
|
if (getLexer().is(AsmToken::LCurly))
|
|
return ParseRoundingModeOp(Start, Operands);
|
|
|
|
// Register operand.
|
|
unsigned RegNo = 0;
|
|
if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) {
|
|
if (RegNo == X86::RIP)
|
|
return Error(Start, "rip can only be used as a base register");
|
|
// A Register followed by ':' is considered a segment override
|
|
if (Tok.isNot(AsmToken::Colon)) {
|
|
if (PtrInOperand)
|
|
return Error(Start, "expected memory operand after 'ptr', "
|
|
"found register operand instead");
|
|
Operands.push_back(X86Operand::CreateReg(RegNo, Start, End));
|
|
return false;
|
|
}
|
|
// An alleged segment override. check if we have a valid segment register
|
|
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
|
|
return Error(Start, "invalid segment register");
|
|
// Eat ':' and update Start location
|
|
Start = Lex().getLoc();
|
|
}
|
|
|
|
// Immediates and Memory
|
|
IntelExprStateMachine SM;
|
|
if (ParseIntelExpression(SM, End))
|
|
return true;
|
|
|
|
if (isParsingMSInlineAsm())
|
|
RewriteIntelExpression(SM, Start, Tok.getLoc());
|
|
|
|
int64_t Imm = SM.getImm();
|
|
const MCExpr *Disp = SM.getSym();
|
|
const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext());
|
|
if (Disp && Imm)
|
|
Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext());
|
|
if (!Disp)
|
|
Disp = ImmDisp;
|
|
|
|
// RegNo != 0 specifies a valid segment register,
|
|
// and we are parsing a segment override
|
|
if (!SM.isMemExpr() && !RegNo) {
|
|
if (isParsingMSInlineAsm() && SM.isOffsetOperator()) {
|
|
const InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
|
|
if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
|
|
// Disp includes the address of a variable; make sure this is recorded
|
|
// for later handling.
|
|
Operands.push_back(X86Operand::CreateImm(Disp, Start, End,
|
|
SM.getSymName(), Info.Var.Decl,
|
|
Info.Var.IsGlobalLV));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Operands.push_back(X86Operand::CreateImm(Disp, Start, End));
|
|
return false;
|
|
}
|
|
|
|
StringRef ErrMsg;
|
|
unsigned BaseReg = SM.getBaseReg();
|
|
unsigned IndexReg = SM.getIndexReg();
|
|
unsigned Scale = SM.getScale();
|
|
if (!PtrInOperand)
|
|
Size = SM.getElementSize() << 3;
|
|
|
|
if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP &&
|
|
(IndexReg == X86::ESP || IndexReg == X86::RSP))
|
|
std::swap(BaseReg, IndexReg);
|
|
|
|
// If BaseReg is a vector register and IndexReg is not, swap them unless
|
|
// Scale was specified in which case it would be an error.
|
|
if (Scale == 0 &&
|
|
!(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
|
|
X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) &&
|
|
(X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) ||
|
|
X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) ||
|
|
X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg)))
|
|
std::swap(BaseReg, IndexReg);
|
|
|
|
if (Scale != 0 &&
|
|
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))
|
|
return Error(Start, "16-bit addresses cannot have a scale");
|
|
|
|
// If there was no explicit scale specified, change it to 1.
|
|
if (Scale == 0)
|
|
Scale = 1;
|
|
|
|
// If this is a 16-bit addressing mode with the base and index in the wrong
|
|
// order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is
|
|
// shared with att syntax where order matters.
|
|
if ((BaseReg == X86::SI || BaseReg == X86::DI) &&
|
|
(IndexReg == X86::BX || IndexReg == X86::BP))
|
|
std::swap(BaseReg, IndexReg);
|
|
|
|
if ((BaseReg || IndexReg) &&
|
|
CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
|
|
ErrMsg))
|
|
return Error(Start, ErrMsg);
|
|
if (isParsingMSInlineAsm())
|
|
return CreateMemForMSInlineAsm(RegNo, Disp, BaseReg, IndexReg, Scale, Start,
|
|
End, Size, SM.getSymName(),
|
|
SM.getIdentifierInfo(), Operands);
|
|
|
|
// When parsing x64 MS-style assembly, all memory operands default to
|
|
// RIP-relative when interpreted as non-absolute references.
|
|
if (Parser.isParsingMasm() && is64BitMode()) {
|
|
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
|
|
BaseReg, IndexReg, Scale, Start,
|
|
End, Size,
|
|
/*DefaultBaseReg=*/X86::RIP));
|
|
return false;
|
|
}
|
|
|
|
if ((BaseReg || IndexReg || RegNo))
|
|
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
|
|
BaseReg, IndexReg, Scale, Start,
|
|
End, Size));
|
|
else
|
|
Operands.push_back(
|
|
X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size));
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::ParseATTOperand(OperandVector &Operands) {
|
|
MCAsmParser &Parser = getParser();
|
|
switch (getLexer().getKind()) {
|
|
case AsmToken::Dollar: {
|
|
// $42 or $ID -> immediate.
|
|
SMLoc Start = Parser.getTok().getLoc(), End;
|
|
Parser.Lex();
|
|
const MCExpr *Val;
|
|
// This is an immediate, so we should not parse a register. Do a precheck
|
|
// for '%' to supercede intra-register parse errors.
|
|
SMLoc L = Parser.getTok().getLoc();
|
|
if (check(getLexer().is(AsmToken::Percent), L,
|
|
"expected immediate expression") ||
|
|
getParser().parseExpression(Val, End) ||
|
|
check(isa<X86MCExpr>(Val), L, "expected immediate expression"))
|
|
return true;
|
|
Operands.push_back(X86Operand::CreateImm(Val, Start, End));
|
|
return false;
|
|
}
|
|
case AsmToken::LCurly: {
|
|
SMLoc Start = Parser.getTok().getLoc();
|
|
return ParseRoundingModeOp(Start, Operands);
|
|
}
|
|
default: {
|
|
// This a memory operand or a register. We have some parsing complications
|
|
// as a '(' may be part of an immediate expression or the addressing mode
|
|
// block. This is complicated by the fact that an assembler-level variable
|
|
// may refer either to a register or an immediate expression.
|
|
|
|
SMLoc Loc = Parser.getTok().getLoc(), EndLoc;
|
|
const MCExpr *Expr = nullptr;
|
|
unsigned Reg = 0;
|
|
if (getLexer().isNot(AsmToken::LParen)) {
|
|
// No '(' so this is either a displacement expression or a register.
|
|
if (Parser.parseExpression(Expr, EndLoc))
|
|
return true;
|
|
if (auto *RE = dyn_cast<X86MCExpr>(Expr)) {
|
|
// Segment Register. Reset Expr and copy value to register.
|
|
Expr = nullptr;
|
|
Reg = RE->getRegNo();
|
|
|
|
// Sanity check register.
|
|
if (Reg == X86::EIZ || Reg == X86::RIZ)
|
|
return Error(
|
|
Loc, "%eiz and %riz can only be used as index registers",
|
|
SMRange(Loc, EndLoc));
|
|
if (Reg == X86::RIP)
|
|
return Error(Loc, "%rip can only be used as a base register",
|
|
SMRange(Loc, EndLoc));
|
|
// Return register that are not segment prefixes immediately.
|
|
if (!Parser.parseOptionalToken(AsmToken::Colon)) {
|
|
Operands.push_back(X86Operand::CreateReg(Reg, Loc, EndLoc));
|
|
return false;
|
|
}
|
|
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg))
|
|
return Error(Loc, "invalid segment register");
|
|
// Accept a '*' absolute memory reference after the segment. Place it
|
|
// before the full memory operand.
|
|
if (getLexer().is(AsmToken::Star))
|
|
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
|
|
}
|
|
}
|
|
// This is a Memory operand.
|
|
return ParseMemOperand(Reg, Expr, Loc, EndLoc, Operands);
|
|
}
|
|
}
|
|
}
|
|
|
|
// X86::COND_INVALID if not a recognized condition code or alternate mnemonic,
|
|
// otherwise the EFLAGS Condition Code enumerator.
|
|
X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) {
|
|
return StringSwitch<X86::CondCode>(CC)
|
|
.Case("o", X86::COND_O) // Overflow
|
|
.Case("no", X86::COND_NO) // No Overflow
|
|
.Cases("b", "nae", X86::COND_B) // Below/Neither Above nor Equal
|
|
.Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below
|
|
.Cases("e", "z", X86::COND_E) // Equal/Zero
|
|
.Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero
|
|
.Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above
|
|
.Cases("a", "nbe", X86::COND_A) // Above/Neither Below nor Equal
|
|
.Case("s", X86::COND_S) // Sign
|
|
.Case("ns", X86::COND_NS) // No Sign
|
|
.Cases("p", "pe", X86::COND_P) // Parity/Parity Even
|
|
.Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd
|
|
.Cases("l", "nge", X86::COND_L) // Less/Neither Greater nor Equal
|
|
.Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less
|
|
.Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater
|
|
.Cases("g", "nle", X86::COND_G) // Greater/Neither Less nor Equal
|
|
.Default(X86::COND_INVALID);
|
|
}
|
|
|
|
// true on failure, false otherwise
|
|
// If no {z} mark was found - Parser doesn't advance
|
|
bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
|
|
const SMLoc &StartLoc) {
|
|
MCAsmParser &Parser = getParser();
|
|
// Assuming we are just pass the '{' mark, quering the next token
|
|
// Searched for {z}, but none was found. Return false, as no parsing error was
|
|
// encountered
|
|
if (!(getLexer().is(AsmToken::Identifier) &&
|
|
(getLexer().getTok().getIdentifier() == "z")))
|
|
return false;
|
|
Parser.Lex(); // Eat z
|
|
// Query and eat the '}' mark
|
|
if (!getLexer().is(AsmToken::RCurly))
|
|
return Error(getLexer().getLoc(), "Expected } at this point");
|
|
Parser.Lex(); // Eat '}'
|
|
// Assign Z with the {z} mark opernad
|
|
Z = X86Operand::CreateToken("{z}", StartLoc);
|
|
return false;
|
|
}
|
|
|
|
// true on failure, false otherwise
|
|
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands) {
|
|
MCAsmParser &Parser = getParser();
|
|
if (getLexer().is(AsmToken::LCurly)) {
|
|
// Eat "{" and mark the current place.
|
|
const SMLoc consumedToken = consumeToken();
|
|
// Distinguish {1to<NUM>} from {%k<NUM>}.
|
|
if(getLexer().is(AsmToken::Integer)) {
|
|
// Parse memory broadcasting ({1to<NUM>}).
|
|
if (getLexer().getTok().getIntVal() != 1)
|
|
return TokError("Expected 1to<NUM> at this point");
|
|
StringRef Prefix = getLexer().getTok().getString();
|
|
Parser.Lex(); // Eat first token of 1to8
|
|
if (!getLexer().is(AsmToken::Identifier))
|
|
return TokError("Expected 1to<NUM> at this point");
|
|
// Recognize only reasonable suffixes.
|
|
SmallVector<char, 5> BroadcastVector;
|
|
StringRef BroadcastString = (Prefix + getLexer().getTok().getIdentifier())
|
|
.toStringRef(BroadcastVector);
|
|
if (!BroadcastString.startswith("1to"))
|
|
return TokError("Expected 1to<NUM> at this point");
|
|
const char *BroadcastPrimitive =
|
|
StringSwitch<const char *>(BroadcastString)
|
|
.Case("1to2", "{1to2}")
|
|
.Case("1to4", "{1to4}")
|
|
.Case("1to8", "{1to8}")
|
|
.Case("1to16", "{1to16}")
|
|
.Default(nullptr);
|
|
if (!BroadcastPrimitive)
|
|
return TokError("Invalid memory broadcast primitive.");
|
|
Parser.Lex(); // Eat trailing token of 1toN
|
|
if (!getLexer().is(AsmToken::RCurly))
|
|
return TokError("Expected } at this point");
|
|
Parser.Lex(); // Eat "}"
|
|
Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
|
|
consumedToken));
|
|
// No AVX512 specific primitives can pass
|
|
// after memory broadcasting, so return.
|
|
return false;
|
|
} else {
|
|
// Parse either {k}{z}, {z}{k}, {k} or {z}
|
|
// last one have no meaning, but GCC accepts it
|
|
// Currently, we're just pass a '{' mark
|
|
std::unique_ptr<X86Operand> Z;
|
|
if (ParseZ(Z, consumedToken))
|
|
return true;
|
|
// Reaching here means that parsing of the allegadly '{z}' mark yielded
|
|
// no errors.
|
|
// Query for the need of further parsing for a {%k<NUM>} mark
|
|
if (!Z || getLexer().is(AsmToken::LCurly)) {
|
|
SMLoc StartLoc = Z ? consumeToken() : consumedToken;
|
|
// Parse an op-mask register mark ({%k<NUM>}), which is now to be
|
|
// expected
|
|
unsigned RegNo;
|
|
SMLoc RegLoc;
|
|
if (!ParseRegister(RegNo, RegLoc, StartLoc) &&
|
|
X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) {
|
|
if (RegNo == X86::K0)
|
|
return Error(RegLoc, "Register k0 can't be used as write mask");
|
|
if (!getLexer().is(AsmToken::RCurly))
|
|
return Error(getLexer().getLoc(), "Expected } at this point");
|
|
Operands.push_back(X86Operand::CreateToken("{", StartLoc));
|
|
Operands.push_back(
|
|
X86Operand::CreateReg(RegNo, StartLoc, StartLoc));
|
|
Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
|
|
} else
|
|
return Error(getLexer().getLoc(),
|
|
"Expected an op-mask register at this point");
|
|
// {%k<NUM>} mark is found, inquire for {z}
|
|
if (getLexer().is(AsmToken::LCurly) && !Z) {
|
|
// Have we've found a parsing error, or found no (expected) {z} mark
|
|
// - report an error
|
|
if (ParseZ(Z, consumeToken()) || !Z)
|
|
return Error(getLexer().getLoc(),
|
|
"Expected a {z} mark at this point");
|
|
|
|
}
|
|
// '{z}' on its own is meaningless, hence should be ignored.
|
|
// on the contrary - have it been accompanied by a K register,
|
|
// allow it.
|
|
if (Z)
|
|
Operands.push_back(std::move(Z));
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'. The '%ds:' prefix
|
|
/// has already been parsed if present. disp may be provided as well.
|
|
bool X86AsmParser::ParseMemOperand(unsigned SegReg, const MCExpr *Disp,
|
|
SMLoc StartLoc, SMLoc EndLoc,
|
|
OperandVector &Operands) {
|
|
MCAsmParser &Parser = getParser();
|
|
SMLoc Loc;
|
|
// Based on the initial passed values, we may be in any of these cases, we are
|
|
// in one of these cases (with current position (*)):
|
|
|
|
// 1. seg : * disp (base-index-scale-expr)
|
|
// 2. seg : *(disp) (base-index-scale-expr)
|
|
// 3. seg : *(base-index-scale-expr)
|
|
// 4. disp *(base-index-scale-expr)
|
|
// 5. *(disp) (base-index-scale-expr)
|
|
// 6. *(base-index-scale-expr)
|
|
// 7. disp *
|
|
// 8. *(disp)
|
|
|
|
// If we do not have an displacement yet, check if we're in cases 4 or 6 by
|
|
// checking if the first object after the parenthesis is a register (or an
|
|
// identifier referring to a register) and parse the displacement or default
|
|
// to 0 as appropriate.
|
|
auto isAtMemOperand = [this]() {
|
|
if (this->getLexer().isNot(AsmToken::LParen))
|
|
return false;
|
|
AsmToken Buf[2];
|
|
StringRef Id;
|
|
auto TokCount = this->getLexer().peekTokens(Buf, true);
|
|
if (TokCount == 0)
|
|
return false;
|
|
switch (Buf[0].getKind()) {
|
|
case AsmToken::Percent:
|
|
case AsmToken::Comma:
|
|
return true;
|
|
// These lower cases are doing a peekIdentifier.
|
|
case AsmToken::At:
|
|
case AsmToken::Dollar:
|
|
if ((TokCount > 1) &&
|
|
(Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) &&
|
|
(Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer()))
|
|
Id = StringRef(Buf[0].getLoc().getPointer(),
|
|
Buf[1].getIdentifier().size() + 1);
|
|
break;
|
|
case AsmToken::Identifier:
|
|
case AsmToken::String:
|
|
Id = Buf[0].getIdentifier();
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
// We have an ID. Check if it is bound to a register.
|
|
if (!Id.empty()) {
|
|
MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id);
|
|
if (Sym->isVariable()) {
|
|
auto V = Sym->getVariableValue(/*SetUsed*/ false);
|
|
return isa<X86MCExpr>(V);
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (!Disp) {
|
|
// Parse immediate if we're not at a mem operand yet.
|
|
if (!isAtMemOperand()) {
|
|
if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc))
|
|
return true;
|
|
assert(!isa<X86MCExpr>(Disp) && "Expected non-register here.");
|
|
} else {
|
|
// Disp is implicitly zero if we haven't parsed it yet.
|
|
Disp = MCConstantExpr::create(0, Parser.getContext());
|
|
}
|
|
}
|
|
|
|
// We are now either at the end of the operand or at the '(' at the start of a
|
|
// base-index-scale-expr.
|
|
|
|
if (!parseOptionalToken(AsmToken::LParen)) {
|
|
if (SegReg == 0)
|
|
Operands.push_back(
|
|
X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc));
|
|
else
|
|
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
|
|
0, 0, 1, StartLoc, EndLoc));
|
|
return false;
|
|
}
|
|
|
|
// If we reached here, then eat the '(' and Process
|
|
// the rest of the memory operand.
|
|
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
|
|
SMLoc BaseLoc = getLexer().getLoc();
|
|
const MCExpr *E;
|
|
StringRef ErrMsg;
|
|
|
|
// Parse BaseReg if one is provided.
|
|
if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) {
|
|
if (Parser.parseExpression(E, EndLoc) ||
|
|
check(!isa<X86MCExpr>(E), BaseLoc, "expected register here"))
|
|
return true;
|
|
|
|
// Sanity check register.
|
|
BaseReg = cast<X86MCExpr>(E)->getRegNo();
|
|
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ)
|
|
return Error(BaseLoc, "eiz and riz can only be used as index registers",
|
|
SMRange(BaseLoc, EndLoc));
|
|
}
|
|
|
|
if (parseOptionalToken(AsmToken::Comma)) {
|
|
// Following the comma we should have either an index register, or a scale
|
|
// value. We don't support the later form, but we want to parse it
|
|
// correctly.
|
|
//
|
|
// Even though it would be completely consistent to support syntax like
|
|
// "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc))
|
|
return true;
|
|
|
|
if (!isa<X86MCExpr>(E)) {
|
|
// We've parsed an unexpected Scale Value instead of an index
|
|
// register. Interpret it as an absolute.
|
|
int64_t ScaleVal;
|
|
if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr()))
|
|
return Error(Loc, "expected absolute expression");
|
|
if (ScaleVal != 1)
|
|
Warning(Loc, "scale factor without index register is ignored");
|
|
Scale = 1;
|
|
} else { // IndexReg Found.
|
|
IndexReg = cast<X86MCExpr>(E)->getRegNo();
|
|
|
|
if (BaseReg == X86::RIP)
|
|
return Error(Loc,
|
|
"%rip as base register can not have an index register");
|
|
if (IndexReg == X86::RIP)
|
|
return Error(Loc, "%rip is not allowed as an index register");
|
|
|
|
if (parseOptionalToken(AsmToken::Comma)) {
|
|
// Parse the scale amount:
|
|
// ::= ',' [scale-expression]
|
|
|
|
// A scale amount without an index is ignored.
|
|
if (getLexer().isNot(AsmToken::RParen)) {
|
|
int64_t ScaleVal;
|
|
if (Parser.parseTokenLoc(Loc) ||
|
|
Parser.parseAbsoluteExpression(ScaleVal))
|
|
return Error(Loc, "expected scale expression");
|
|
Scale = (unsigned)ScaleVal;
|
|
// Validate the scale amount.
|
|
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
|
|
Scale != 1)
|
|
return Error(Loc, "scale factor in 16-bit address must be 1");
|
|
if (checkScale(Scale, ErrMsg))
|
|
return Error(Loc, ErrMsg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
|
|
if (parseToken(AsmToken::RParen, "unexpected token in memory operand"))
|
|
return true;
|
|
|
|
// This is to support otherwise illegal operand (%dx) found in various
|
|
// unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now
|
|
// be supported. Mark such DX variants separately fix only in special cases.
|
|
if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 &&
|
|
isa<MCConstantExpr>(Disp) &&
|
|
cast<MCConstantExpr>(Disp)->getValue() == 0) {
|
|
Operands.push_back(X86Operand::CreateDXReg(BaseLoc, BaseLoc));
|
|
return false;
|
|
}
|
|
|
|
if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
|
|
ErrMsg))
|
|
return Error(BaseLoc, ErrMsg);
|
|
|
|
if (SegReg || BaseReg || IndexReg)
|
|
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
|
|
BaseReg, IndexReg, Scale, StartLoc,
|
|
EndLoc));
|
|
else
|
|
Operands.push_back(
|
|
X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc));
|
|
return false;
|
|
}
|
|
|
|
// Parse either a standard primary expression or a register.
|
|
bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
|
|
MCAsmParser &Parser = getParser();
|
|
// See if this is a register first.
|
|
if (getTok().is(AsmToken::Percent) ||
|
|
(isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) &&
|
|
MatchRegisterName(Parser.getTok().getString()))) {
|
|
SMLoc StartLoc = Parser.getTok().getLoc();
|
|
unsigned RegNo;
|
|
if (ParseRegister(RegNo, StartLoc, EndLoc))
|
|
return true;
|
|
Res = X86MCExpr::create(RegNo, Parser.getContext());
|
|
return false;
|
|
}
|
|
return Parser.parsePrimaryExpr(Res, EndLoc, nullptr);
|
|
}
|
|
|
|
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc, OperandVector &Operands) {
|
|
MCAsmParser &Parser = getParser();
|
|
InstInfo = &Info;
|
|
|
|
// Reset the forced VEX encoding.
|
|
ForcedVEXEncoding = VEXEncoding_Default;
|
|
ForcedDispEncoding = DispEncoding_Default;
|
|
|
|
// Parse pseudo prefixes.
|
|
while (1) {
|
|
if (Name == "{") {
|
|
if (getLexer().isNot(AsmToken::Identifier))
|
|
return Error(Parser.getTok().getLoc(), "Unexpected token after '{'");
|
|
std::string Prefix = Parser.getTok().getString().lower();
|
|
Parser.Lex(); // Eat identifier.
|
|
if (getLexer().isNot(AsmToken::RCurly))
|
|
return Error(Parser.getTok().getLoc(), "Expected '}'");
|
|
Parser.Lex(); // Eat curly.
|
|
|
|
if (Prefix == "vex")
|
|
ForcedVEXEncoding = VEXEncoding_VEX;
|
|
else if (Prefix == "vex2")
|
|
ForcedVEXEncoding = VEXEncoding_VEX2;
|
|
else if (Prefix == "vex3")
|
|
ForcedVEXEncoding = VEXEncoding_VEX3;
|
|
else if (Prefix == "evex")
|
|
ForcedVEXEncoding = VEXEncoding_EVEX;
|
|
else if (Prefix == "disp8")
|
|
ForcedDispEncoding = DispEncoding_Disp8;
|
|
else if (Prefix == "disp32")
|
|
ForcedDispEncoding = DispEncoding_Disp32;
|
|
else
|
|
return Error(NameLoc, "unknown prefix");
|
|
|
|
NameLoc = Parser.getTok().getLoc();
|
|
if (getLexer().is(AsmToken::LCurly)) {
|
|
Parser.Lex();
|
|
Name = "{";
|
|
} else {
|
|
if (getLexer().isNot(AsmToken::Identifier))
|
|
return Error(Parser.getTok().getLoc(), "Expected identifier");
|
|
// FIXME: The mnemonic won't match correctly if its not in lower case.
|
|
Name = Parser.getTok().getString();
|
|
Parser.Lex();
|
|
}
|
|
continue;
|
|
}
|
|
// Parse MASM style pseudo prefixes.
|
|
if (isParsingMSInlineAsm()) {
|
|
if (Name.equals_lower("vex"))
|
|
ForcedVEXEncoding = VEXEncoding_VEX;
|
|
else if (Name.equals_lower("vex2"))
|
|
ForcedVEXEncoding = VEXEncoding_VEX2;
|
|
else if (Name.equals_lower("vex3"))
|
|
ForcedVEXEncoding = VEXEncoding_VEX3;
|
|
else if (Name.equals_lower("evex"))
|
|
ForcedVEXEncoding = VEXEncoding_EVEX;
|
|
|
|
if (ForcedVEXEncoding != VEXEncoding_Default) {
|
|
if (getLexer().isNot(AsmToken::Identifier))
|
|
return Error(Parser.getTok().getLoc(), "Expected identifier");
|
|
// FIXME: The mnemonic won't match correctly if its not in lower case.
|
|
Name = Parser.getTok().getString();
|
|
NameLoc = Parser.getTok().getLoc();
|
|
Parser.Lex();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Support the suffix syntax for overriding displacement size as well.
|
|
if (Name.consume_back(".d32")) {
|
|
ForcedDispEncoding = DispEncoding_Disp32;
|
|
} else if (Name.consume_back(".d8")) {
|
|
ForcedDispEncoding = DispEncoding_Disp8;
|
|
}
|
|
|
|
StringRef PatchedName = Name;
|
|
|
|
// Hack to skip "short" following Jcc.
|
|
if (isParsingIntelSyntax() &&
|
|
(PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" ||
|
|
PatchedName == "jcxz" || PatchedName == "jexcz" ||
|
|
(PatchedName.startswith("j") &&
|
|
ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) {
|
|
StringRef NextTok = Parser.getTok().getString();
|
|
if (NextTok == "short") {
|
|
SMLoc NameEndLoc =
|
|
NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
|
|
// Eat the short keyword.
|
|
Parser.Lex();
|
|
// MS and GAS ignore the short keyword; they both determine the jmp type
|
|
// based on the distance of the label. (NASM does emit different code with
|
|
// and without "short," though.)
|
|
InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
|
|
NextTok.size() + 1);
|
|
}
|
|
}
|
|
|
|
// FIXME: Hack to recognize setneb as setne.
|
|
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
|
|
PatchedName != "setb" && PatchedName != "setnb")
|
|
PatchedName = PatchedName.substr(0, Name.size()-1);
|
|
|
|
unsigned ComparisonPredicate = ~0U;
|
|
|
|
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
|
|
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
|
|
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
|
|
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
|
|
bool IsVCMP = PatchedName[0] == 'v';
|
|
unsigned CCIdx = IsVCMP ? 4 : 3;
|
|
unsigned CC = StringSwitch<unsigned>(
|
|
PatchedName.slice(CCIdx, PatchedName.size() - 2))
|
|
.Case("eq", 0x00)
|
|
.Case("eq_oq", 0x00)
|
|
.Case("lt", 0x01)
|
|
.Case("lt_os", 0x01)
|
|
.Case("le", 0x02)
|
|
.Case("le_os", 0x02)
|
|
.Case("unord", 0x03)
|
|
.Case("unord_q", 0x03)
|
|
.Case("neq", 0x04)
|
|
.Case("neq_uq", 0x04)
|
|
.Case("nlt", 0x05)
|
|
.Case("nlt_us", 0x05)
|
|
.Case("nle", 0x06)
|
|
.Case("nle_us", 0x06)
|
|
.Case("ord", 0x07)
|
|
.Case("ord_q", 0x07)
|
|
/* AVX only from here */
|
|
.Case("eq_uq", 0x08)
|
|
.Case("nge", 0x09)
|
|
.Case("nge_us", 0x09)
|
|
.Case("ngt", 0x0A)
|
|
.Case("ngt_us", 0x0A)
|
|
.Case("false", 0x0B)
|
|
.Case("false_oq", 0x0B)
|
|
.Case("neq_oq", 0x0C)
|
|
.Case("ge", 0x0D)
|
|
.Case("ge_os", 0x0D)
|
|
.Case("gt", 0x0E)
|
|
.Case("gt_os", 0x0E)
|
|
.Case("true", 0x0F)
|
|
.Case("true_uq", 0x0F)
|
|
.Case("eq_os", 0x10)
|
|
.Case("lt_oq", 0x11)
|
|
.Case("le_oq", 0x12)
|
|
.Case("unord_s", 0x13)
|
|
.Case("neq_us", 0x14)
|
|
.Case("nlt_uq", 0x15)
|
|
.Case("nle_uq", 0x16)
|
|
.Case("ord_s", 0x17)
|
|
.Case("eq_us", 0x18)
|
|
.Case("nge_uq", 0x19)
|
|
.Case("ngt_uq", 0x1A)
|
|
.Case("false_os", 0x1B)
|
|
.Case("neq_os", 0x1C)
|
|
.Case("ge_oq", 0x1D)
|
|
.Case("gt_oq", 0x1E)
|
|
.Case("true_us", 0x1F)
|
|
.Default(~0U);
|
|
if (CC != ~0U && (IsVCMP || CC < 8)) {
|
|
if (PatchedName.endswith("ss"))
|
|
PatchedName = IsVCMP ? "vcmpss" : "cmpss";
|
|
else if (PatchedName.endswith("sd"))
|
|
PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
|
|
else if (PatchedName.endswith("ps"))
|
|
PatchedName = IsVCMP ? "vcmpps" : "cmpps";
|
|
else if (PatchedName.endswith("pd"))
|
|
PatchedName = IsVCMP ? "vcmppd" : "cmppd";
|
|
else
|
|
llvm_unreachable("Unexpected suffix!");
|
|
|
|
ComparisonPredicate = CC;
|
|
}
|
|
}
|
|
|
|
// FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
|
|
if (PatchedName.startswith("vpcmp") &&
|
|
(PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
|
|
PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
|
|
unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
|
|
unsigned CC = StringSwitch<unsigned>(
|
|
PatchedName.slice(5, PatchedName.size() - SuffixSize))
|
|
.Case("eq", 0x0) // Only allowed on unsigned. Checked below.
|
|
.Case("lt", 0x1)
|
|
.Case("le", 0x2)
|
|
//.Case("false", 0x3) // Not a documented alias.
|
|
.Case("neq", 0x4)
|
|
.Case("nlt", 0x5)
|
|
.Case("nle", 0x6)
|
|
//.Case("true", 0x7) // Not a documented alias.
|
|
.Default(~0U);
|
|
if (CC != ~0U && (CC != 0 || SuffixSize == 2)) {
|
|
switch (PatchedName.back()) {
|
|
default: llvm_unreachable("Unexpected character!");
|
|
case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break;
|
|
case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break;
|
|
case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break;
|
|
case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break;
|
|
}
|
|
// Set up the immediate to push into the operands later.
|
|
ComparisonPredicate = CC;
|
|
}
|
|
}
|
|
|
|
// FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
|
|
if (PatchedName.startswith("vpcom") &&
|
|
(PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
|
|
PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
|
|
unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
|
|
unsigned CC = StringSwitch<unsigned>(
|
|
PatchedName.slice(5, PatchedName.size() - SuffixSize))
|
|
.Case("lt", 0x0)
|
|
.Case("le", 0x1)
|
|
.Case("gt", 0x2)
|
|
.Case("ge", 0x3)
|
|
.Case("eq", 0x4)
|
|
.Case("neq", 0x5)
|
|
.Case("false", 0x6)
|
|
.Case("true", 0x7)
|
|
.Default(~0U);
|
|
if (CC != ~0U) {
|
|
switch (PatchedName.back()) {
|
|
default: llvm_unreachable("Unexpected character!");
|
|
case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break;
|
|
case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break;
|
|
case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break;
|
|
case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break;
|
|
}
|
|
// Set up the immediate to push into the operands later.
|
|
ComparisonPredicate = CC;
|
|
}
|
|
}
|
|
|
|
|
|
// Determine whether this is an instruction prefix.
|
|
// FIXME:
|
|
// Enhance prefixes integrity robustness. for example, following forms
|
|
// are currently tolerated:
|
|
// repz repnz <insn> ; GAS errors for the use of two similar prefixes
|
|
// lock addq %rax, %rbx ; Destination operand must be of memory type
|
|
// xacquire <insn> ; xacquire must be accompanied by 'lock'
|
|
bool IsPrefix =
|
|
StringSwitch<bool>(Name)
|
|
.Cases("cs", "ds", "es", "fs", "gs", "ss", true)
|
|
.Cases("rex64", "data32", "data16", "addr32", "addr16", true)
|
|
.Cases("xacquire", "xrelease", true)
|
|
.Cases("acquire", "release", isParsingIntelSyntax())
|
|
.Default(false);
|
|
|
|
auto isLockRepeatNtPrefix = [](StringRef N) {
|
|
return StringSwitch<bool>(N)
|
|
.Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true)
|
|
.Default(false);
|
|
};
|
|
|
|
bool CurlyAsEndOfStatement = false;
|
|
|
|
unsigned Flags = X86::IP_NO_PREFIX;
|
|
while (isLockRepeatNtPrefix(Name.lower())) {
|
|
unsigned Prefix =
|
|
StringSwitch<unsigned>(Name)
|
|
.Cases("lock", "lock", X86::IP_HAS_LOCK)
|
|
.Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT)
|
|
.Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE)
|
|
.Cases("notrack", "notrack", X86::IP_HAS_NOTRACK)
|
|
.Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible)
|
|
Flags |= Prefix;
|
|
if (getLexer().is(AsmToken::EndOfStatement)) {
|
|
// We don't have real instr with the given prefix
|
|
// let's use the prefix as the instr.
|
|
// TODO: there could be several prefixes one after another
|
|
Flags = X86::IP_NO_PREFIX;
|
|
break;
|
|
}
|
|
// FIXME: The mnemonic won't match correctly if its not in lower case.
|
|
Name = Parser.getTok().getString();
|
|
Parser.Lex(); // eat the prefix
|
|
// Hack: we could have something like "rep # some comment" or
|
|
// "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl"
|
|
while (Name.startswith(";") || Name.startswith("\n") ||
|
|
Name.startswith("#") || Name.startswith("\t") ||
|
|
Name.startswith("/")) {
|
|
// FIXME: The mnemonic won't match correctly if its not in lower case.
|
|
Name = Parser.getTok().getString();
|
|
Parser.Lex(); // go to next prefix or instr
|
|
}
|
|
}
|
|
|
|
if (Flags)
|
|
PatchedName = Name;
|
|
|
|
// Hacks to handle 'data16' and 'data32'
|
|
if (PatchedName == "data16" && is16BitMode()) {
|
|
return Error(NameLoc, "redundant data16 prefix");
|
|
}
|
|
if (PatchedName == "data32") {
|
|
if (is32BitMode())
|
|
return Error(NameLoc, "redundant data32 prefix");
|
|
if (is64BitMode())
|
|
return Error(NameLoc, "'data32' is not supported in 64-bit mode");
|
|
// Hack to 'data16' for the table lookup.
|
|
PatchedName = "data16";
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
StringRef Next = Parser.getTok().getString();
|
|
getLexer().Lex();
|
|
// data32 effectively changes the instruction suffix.
|
|
// TODO Generalize.
|
|
if (Next == "callw")
|
|
Next = "calll";
|
|
if (Next == "ljmpw")
|
|
Next = "ljmpl";
|
|
|
|
Name = Next;
|
|
PatchedName = Name;
|
|
ForcedDataPrefix = X86::Mode32Bit;
|
|
IsPrefix = false;
|
|
}
|
|
}
|
|
|
|
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
|
|
|
|
// Push the immediate if we extracted one from the mnemonic.
|
|
if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) {
|
|
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
|
|
getParser().getContext());
|
|
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
|
|
}
|
|
|
|
// This does the actual operand parsing. Don't parse any more if we have a
|
|
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
|
|
// just want to parse the "lock" as the first instruction and the "incl" as
|
|
// the next one.
|
|
if (getLexer().isNot(AsmToken::EndOfStatement) && !IsPrefix) {
|
|
// Parse '*' modifier.
|
|
if (getLexer().is(AsmToken::Star))
|
|
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
|
|
|
|
// Read the operands.
|
|
while(1) {
|
|
if (ParseOperand(Operands))
|
|
return true;
|
|
if (HandleAVX512Operand(Operands))
|
|
return true;
|
|
|
|
// check for comma and eat it
|
|
if (getLexer().is(AsmToken::Comma))
|
|
Parser.Lex();
|
|
else
|
|
break;
|
|
}
|
|
|
|
// In MS inline asm curly braces mark the beginning/end of a block,
|
|
// therefore they should be interepreted as end of statement
|
|
CurlyAsEndOfStatement =
|
|
isParsingIntelSyntax() && isParsingMSInlineAsm() &&
|
|
(getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
|
|
if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
|
|
return TokError("unexpected token in argument list");
|
|
}
|
|
|
|
// Push the immediate if we extracted one from the mnemonic.
|
|
if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) {
|
|
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
|
|
getParser().getContext());
|
|
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
|
|
}
|
|
|
|
// Consume the EndOfStatement or the prefix separator Slash
|
|
if (getLexer().is(AsmToken::EndOfStatement) ||
|
|
(IsPrefix && getLexer().is(AsmToken::Slash)))
|
|
Parser.Lex();
|
|
else if (CurlyAsEndOfStatement)
|
|
// Add an actual EndOfStatement before the curly brace
|
|
Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
|
|
getLexer().getTok().getLoc(), 0);
|
|
|
|
// This is for gas compatibility and cannot be done in td.
|
|
// Adding "p" for some floating point with no argument.
|
|
// For example: fsub --> fsubp
|
|
bool IsFp =
|
|
Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
|
|
if (IsFp && Operands.size() == 1) {
|
|
const char *Repl = StringSwitch<const char *>(Name)
|
|
.Case("fsub", "fsubp")
|
|
.Case("fdiv", "fdivp")
|
|
.Case("fsubr", "fsubrp")
|
|
.Case("fdivr", "fdivrp");
|
|
static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
|
|
}
|
|
|
|
if ((Name == "mov" || Name == "movw" || Name == "movl") &&
|
|
(Operands.size() == 3)) {
|
|
X86Operand &Op1 = (X86Operand &)*Operands[1];
|
|
X86Operand &Op2 = (X86Operand &)*Operands[2];
|
|
SMLoc Loc = Op1.getEndLoc();
|
|
// Moving a 32 or 16 bit value into a segment register has the same
|
|
// behavior. Modify such instructions to always take shorter form.
|
|
if (Op1.isReg() && Op2.isReg() &&
|
|
X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
|
|
Op2.getReg()) &&
|
|
(X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
|
|
X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
|
|
// Change instruction name to match new instruction.
|
|
if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
|
|
Name = is16BitMode() ? "movw" : "movl";
|
|
Operands[0] = X86Operand::CreateToken(Name, NameLoc);
|
|
}
|
|
// Select the correct equivalent 16-/32-bit source register.
|
|
unsigned Reg =
|
|
getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
|
|
Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
|
|
}
|
|
}
|
|
|
|
// This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
|
|
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
|
|
// documented form in various unofficial manuals, so a lot of code uses it.
|
|
if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
|
|
Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
|
|
Operands.size() == 3) {
|
|
X86Operand &Op = (X86Operand &)*Operands.back();
|
|
if (Op.isDXReg())
|
|
Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
|
|
Op.getEndLoc());
|
|
}
|
|
// Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
|
|
if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
|
|
Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
|
|
Operands.size() == 3) {
|
|
X86Operand &Op = (X86Operand &)*Operands[1];
|
|
if (Op.isDXReg())
|
|
Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
|
|
Op.getEndLoc());
|
|
}
|
|
|
|
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
|
|
bool HadVerifyError = false;
|
|
|
|
// Append default arguments to "ins[bwld]"
|
|
if (Name.startswith("ins") &&
|
|
(Operands.size() == 1 || Operands.size() == 3) &&
|
|
(Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
|
|
Name == "ins")) {
|
|
|
|
AddDefaultSrcDestOperands(TmpOperands,
|
|
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
|
|
DefaultMemDIOperand(NameLoc));
|
|
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
|
|
}
|
|
|
|
// Append default arguments to "outs[bwld]"
|
|
if (Name.startswith("outs") &&
|
|
(Operands.size() == 1 || Operands.size() == 3) &&
|
|
(Name == "outsb" || Name == "outsw" || Name == "outsl" ||
|
|
Name == "outsd" || Name == "outs")) {
|
|
AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
|
|
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
|
|
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
|
|
}
|
|
|
|
// Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
|
|
// values of $SIREG according to the mode. It would be nice if this
|
|
// could be achieved with InstAlias in the tables.
|
|
if (Name.startswith("lods") &&
|
|
(Operands.size() == 1 || Operands.size() == 2) &&
|
|
(Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
|
|
Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
|
|
TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
|
|
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
|
|
}
|
|
|
|
// Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
|
|
// values of $DIREG according to the mode. It would be nice if this
|
|
// could be achieved with InstAlias in the tables.
|
|
if (Name.startswith("stos") &&
|
|
(Operands.size() == 1 || Operands.size() == 2) &&
|
|
(Name == "stos" || Name == "stosb" || Name == "stosw" ||
|
|
Name == "stosl" || Name == "stosd" || Name == "stosq")) {
|
|
TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
|
|
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
|
|
}
|
|
|
|
// Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
|
|
// values of $DIREG according to the mode. It would be nice if this
|
|
// could be achieved with InstAlias in the tables.
|
|
if (Name.startswith("scas") &&
|
|
(Operands.size() == 1 || Operands.size() == 2) &&
|
|
(Name == "scas" || Name == "scasb" || Name == "scasw" ||
|
|
Name == "scasl" || Name == "scasd" || Name == "scasq")) {
|
|
TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
|
|
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
|
|
}
|
|
|
|
// Add default SI and DI operands to "cmps[bwlq]".
|
|
if (Name.startswith("cmps") &&
|
|
(Operands.size() == 1 || Operands.size() == 3) &&
|
|
(Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
|
|
Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
|
|
AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
|
|
DefaultMemSIOperand(NameLoc));
|
|
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
|
|
}
|
|
|
|
// Add default SI and DI operands to "movs[bwlq]".
|
|
if (((Name.startswith("movs") &&
|
|
(Name == "movs" || Name == "movsb" || Name == "movsw" ||
|
|
Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
|
|
(Name.startswith("smov") &&
|
|
(Name == "smov" || Name == "smovb" || Name == "smovw" ||
|
|
Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
|
|
(Operands.size() == 1 || Operands.size() == 3)) {
|
|
if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
|
|
Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
|
|
AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
|
|
DefaultMemDIOperand(NameLoc));
|
|
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
|
|
}
|
|
|
|
// Check if we encountered an error for one the string insturctions
|
|
if (HadVerifyError) {
|
|
return HadVerifyError;
|
|
}
|
|
|
|
// Transforms "xlat mem8" into "xlatb"
|
|
if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
|
|
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
|
|
if (Op1.isMem8()) {
|
|
Warning(Op1.getStartLoc(), "memory operand is only for determining the "
|
|
"size, (R|E)BX will be used for the location");
|
|
Operands.pop_back();
|
|
static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
|
|
}
|
|
}
|
|
|
|
if (Flags)
|
|
Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc));
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
|
|
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
|
|
|
|
switch (Inst.getOpcode()) {
|
|
default: return false;
|
|
case X86::JMP_1:
|
|
// {disp32} forces a larger displacement as if the instruction was relaxed.
|
|
// NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}.
|
|
// This matches GNU assembler.
|
|
if (ForcedDispEncoding == DispEncoding_Disp32) {
|
|
Inst.setOpcode(is16BitMode() ? X86::JMP_2 : X86::JMP_4);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
case X86::JCC_1:
|
|
// {disp32} forces a larger displacement as if the instruction was relaxed.
|
|
// NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}.
|
|
// This matches GNU assembler.
|
|
if (ForcedDispEncoding == DispEncoding_Disp32) {
|
|
Inst.setOpcode(is16BitMode() ? X86::JCC_2 : X86::JCC_4);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
case X86::VMOVZPQILo2PQIrr:
|
|
case X86::VMOVAPDrr:
|
|
case X86::VMOVAPDYrr:
|
|
case X86::VMOVAPSrr:
|
|
case X86::VMOVAPSYrr:
|
|
case X86::VMOVDQArr:
|
|
case X86::VMOVDQAYrr:
|
|
case X86::VMOVDQUrr:
|
|
case X86::VMOVDQUYrr:
|
|
case X86::VMOVUPDrr:
|
|
case X86::VMOVUPDYrr:
|
|
case X86::VMOVUPSrr:
|
|
case X86::VMOVUPSYrr: {
|
|
// We can get a smaller encoding by using VEX.R instead of VEX.B if one of
|
|
// the registers is extended, but other isn't.
|
|
if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
|
|
MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
|
|
MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8)
|
|
return false;
|
|
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
|
|
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
|
|
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
|
|
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
|
|
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
|
|
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
|
|
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
|
|
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
|
|
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
|
|
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
|
|
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
|
|
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
|
|
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
|
|
}
|
|
Inst.setOpcode(NewOpc);
|
|
return true;
|
|
}
|
|
case X86::VMOVSDrr:
|
|
case X86::VMOVSSrr: {
|
|
// We can get a smaller encoding by using VEX.R instead of VEX.B if one of
|
|
// the registers is extended, but other isn't.
|
|
if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
|
|
MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
|
|
MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8)
|
|
return false;
|
|
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
|
|
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
|
|
}
|
|
Inst.setOpcode(NewOpc);
|
|
return true;
|
|
}
|
|
case X86::RCR8ri: case X86::RCR16ri: case X86::RCR32ri: case X86::RCR64ri:
|
|
case X86::RCL8ri: case X86::RCL16ri: case X86::RCL32ri: case X86::RCL64ri:
|
|
case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri:
|
|
case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri:
|
|
case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri:
|
|
case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri:
|
|
case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri: {
|
|
// Optimize s{hr,ar,hl} $1, <op> to "shift <op>". Similar for rotate.
|
|
// FIXME: It would be great if we could just do this with an InstAlias.
|
|
if (!Inst.getOperand(2).isImm() || Inst.getOperand(2).getImm() != 1)
|
|
return false;
|
|
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::RCR8ri: NewOpc = X86::RCR8r1; break;
|
|
case X86::RCR16ri: NewOpc = X86::RCR16r1; break;
|
|
case X86::RCR32ri: NewOpc = X86::RCR32r1; break;
|
|
case X86::RCR64ri: NewOpc = X86::RCR64r1; break;
|
|
case X86::RCL8ri: NewOpc = X86::RCL8r1; break;
|
|
case X86::RCL16ri: NewOpc = X86::RCL16r1; break;
|
|
case X86::RCL32ri: NewOpc = X86::RCL32r1; break;
|
|
case X86::RCL64ri: NewOpc = X86::RCL64r1; break;
|
|
case X86::ROR8ri: NewOpc = X86::ROR8r1; break;
|
|
case X86::ROR16ri: NewOpc = X86::ROR16r1; break;
|
|
case X86::ROR32ri: NewOpc = X86::ROR32r1; break;
|
|
case X86::ROR64ri: NewOpc = X86::ROR64r1; break;
|
|
case X86::ROL8ri: NewOpc = X86::ROL8r1; break;
|
|
case X86::ROL16ri: NewOpc = X86::ROL16r1; break;
|
|
case X86::ROL32ri: NewOpc = X86::ROL32r1; break;
|
|
case X86::ROL64ri: NewOpc = X86::ROL64r1; break;
|
|
case X86::SAR8ri: NewOpc = X86::SAR8r1; break;
|
|
case X86::SAR16ri: NewOpc = X86::SAR16r1; break;
|
|
case X86::SAR32ri: NewOpc = X86::SAR32r1; break;
|
|
case X86::SAR64ri: NewOpc = X86::SAR64r1; break;
|
|
case X86::SHR8ri: NewOpc = X86::SHR8r1; break;
|
|
case X86::SHR16ri: NewOpc = X86::SHR16r1; break;
|
|
case X86::SHR32ri: NewOpc = X86::SHR32r1; break;
|
|
case X86::SHR64ri: NewOpc = X86::SHR64r1; break;
|
|
case X86::SHL8ri: NewOpc = X86::SHL8r1; break;
|
|
case X86::SHL16ri: NewOpc = X86::SHL16r1; break;
|
|
case X86::SHL32ri: NewOpc = X86::SHL32r1; break;
|
|
case X86::SHL64ri: NewOpc = X86::SHL64r1; break;
|
|
}
|
|
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(NewOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case X86::RCR8mi: case X86::RCR16mi: case X86::RCR32mi: case X86::RCR64mi:
|
|
case X86::RCL8mi: case X86::RCL16mi: case X86::RCL32mi: case X86::RCL64mi:
|
|
case X86::ROR8mi: case X86::ROR16mi: case X86::ROR32mi: case X86::ROR64mi:
|
|
case X86::ROL8mi: case X86::ROL16mi: case X86::ROL32mi: case X86::ROL64mi:
|
|
case X86::SAR8mi: case X86::SAR16mi: case X86::SAR32mi: case X86::SAR64mi:
|
|
case X86::SHR8mi: case X86::SHR16mi: case X86::SHR32mi: case X86::SHR64mi:
|
|
case X86::SHL8mi: case X86::SHL16mi: case X86::SHL32mi: case X86::SHL64mi: {
|
|
// Optimize s{hr,ar,hl} $1, <op> to "shift <op>". Similar for rotate.
|
|
// FIXME: It would be great if we could just do this with an InstAlias.
|
|
if (!Inst.getOperand(X86::AddrNumOperands).isImm() ||
|
|
Inst.getOperand(X86::AddrNumOperands).getImm() != 1)
|
|
return false;
|
|
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode");
|
|
case X86::RCR8mi: NewOpc = X86::RCR8m1; break;
|
|
case X86::RCR16mi: NewOpc = X86::RCR16m1; break;
|
|
case X86::RCR32mi: NewOpc = X86::RCR32m1; break;
|
|
case X86::RCR64mi: NewOpc = X86::RCR64m1; break;
|
|
case X86::RCL8mi: NewOpc = X86::RCL8m1; break;
|
|
case X86::RCL16mi: NewOpc = X86::RCL16m1; break;
|
|
case X86::RCL32mi: NewOpc = X86::RCL32m1; break;
|
|
case X86::RCL64mi: NewOpc = X86::RCL64m1; break;
|
|
case X86::ROR8mi: NewOpc = X86::ROR8m1; break;
|
|
case X86::ROR16mi: NewOpc = X86::ROR16m1; break;
|
|
case X86::ROR32mi: NewOpc = X86::ROR32m1; break;
|
|
case X86::ROR64mi: NewOpc = X86::ROR64m1; break;
|
|
case X86::ROL8mi: NewOpc = X86::ROL8m1; break;
|
|
case X86::ROL16mi: NewOpc = X86::ROL16m1; break;
|
|
case X86::ROL32mi: NewOpc = X86::ROL32m1; break;
|
|
case X86::ROL64mi: NewOpc = X86::ROL64m1; break;
|
|
case X86::SAR8mi: NewOpc = X86::SAR8m1; break;
|
|
case X86::SAR16mi: NewOpc = X86::SAR16m1; break;
|
|
case X86::SAR32mi: NewOpc = X86::SAR32m1; break;
|
|
case X86::SAR64mi: NewOpc = X86::SAR64m1; break;
|
|
case X86::SHR8mi: NewOpc = X86::SHR8m1; break;
|
|
case X86::SHR16mi: NewOpc = X86::SHR16m1; break;
|
|
case X86::SHR32mi: NewOpc = X86::SHR32m1; break;
|
|
case X86::SHR64mi: NewOpc = X86::SHR64m1; break;
|
|
case X86::SHL8mi: NewOpc = X86::SHL8m1; break;
|
|
case X86::SHL16mi: NewOpc = X86::SHL16m1; break;
|
|
case X86::SHL32mi: NewOpc = X86::SHL32m1; break;
|
|
case X86::SHL64mi: NewOpc = X86::SHL64m1; break;
|
|
}
|
|
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(NewOpc);
|
|
for (int i = 0; i != X86::AddrNumOperands; ++i)
|
|
TmpInst.addOperand(Inst.getOperand(i));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case X86::INT: {
|
|
// Transforms "int $3" into "int3" as a size optimization. We can't write an
|
|
// instalias with an immediate operand yet.
|
|
if (!Inst.getOperand(0).isImm() || Inst.getOperand(0).getImm() != 3)
|
|
return false;
|
|
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(X86::INT3);
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
|
|
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
|
|
|
|
switch (Inst.getOpcode()) {
|
|
case X86::VGATHERDPDYrm:
|
|
case X86::VGATHERDPDrm:
|
|
case X86::VGATHERDPSYrm:
|
|
case X86::VGATHERDPSrm:
|
|
case X86::VGATHERQPDYrm:
|
|
case X86::VGATHERQPDrm:
|
|
case X86::VGATHERQPSYrm:
|
|
case X86::VGATHERQPSrm:
|
|
case X86::VPGATHERDDYrm:
|
|
case X86::VPGATHERDDrm:
|
|
case X86::VPGATHERDQYrm:
|
|
case X86::VPGATHERDQrm:
|
|
case X86::VPGATHERQDYrm:
|
|
case X86::VPGATHERQDrm:
|
|
case X86::VPGATHERQQYrm:
|
|
case X86::VPGATHERQQrm: {
|
|
unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
|
|
unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg());
|
|
unsigned Index =
|
|
MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg());
|
|
if (Dest == Mask || Dest == Index || Mask == Index)
|
|
return Warning(Ops[0]->getStartLoc(), "mask, index, and destination "
|
|
"registers should be distinct");
|
|
break;
|
|
}
|
|
case X86::VGATHERDPDZ128rm:
|
|
case X86::VGATHERDPDZ256rm:
|
|
case X86::VGATHERDPDZrm:
|
|
case X86::VGATHERDPSZ128rm:
|
|
case X86::VGATHERDPSZ256rm:
|
|
case X86::VGATHERDPSZrm:
|
|
case X86::VGATHERQPDZ128rm:
|
|
case X86::VGATHERQPDZ256rm:
|
|
case X86::VGATHERQPDZrm:
|
|
case X86::VGATHERQPSZ128rm:
|
|
case X86::VGATHERQPSZ256rm:
|
|
case X86::VGATHERQPSZrm:
|
|
case X86::VPGATHERDDZ128rm:
|
|
case X86::VPGATHERDDZ256rm:
|
|
case X86::VPGATHERDDZrm:
|
|
case X86::VPGATHERDQZ128rm:
|
|
case X86::VPGATHERDQZ256rm:
|
|
case X86::VPGATHERDQZrm:
|
|
case X86::VPGATHERQDZ128rm:
|
|
case X86::VPGATHERQDZ256rm:
|
|
case X86::VPGATHERQDZrm:
|
|
case X86::VPGATHERQQZ128rm:
|
|
case X86::VPGATHERQQZ256rm:
|
|
case X86::VPGATHERQQZrm: {
|
|
unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
|
|
unsigned Index =
|
|
MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg());
|
|
if (Dest == Index)
|
|
return Warning(Ops[0]->getStartLoc(), "index and destination registers "
|
|
"should be distinct");
|
|
break;
|
|
}
|
|
case X86::V4FMADDPSrm:
|
|
case X86::V4FMADDPSrmk:
|
|
case X86::V4FMADDPSrmkz:
|
|
case X86::V4FMADDSSrm:
|
|
case X86::V4FMADDSSrmk:
|
|
case X86::V4FMADDSSrmkz:
|
|
case X86::V4FNMADDPSrm:
|
|
case X86::V4FNMADDPSrmk:
|
|
case X86::V4FNMADDPSrmkz:
|
|
case X86::V4FNMADDSSrm:
|
|
case X86::V4FNMADDSSrmk:
|
|
case X86::V4FNMADDSSrmkz:
|
|
case X86::VP4DPWSSDSrm:
|
|
case X86::VP4DPWSSDSrmk:
|
|
case X86::VP4DPWSSDSrmkz:
|
|
case X86::VP4DPWSSDrm:
|
|
case X86::VP4DPWSSDrmk:
|
|
case X86::VP4DPWSSDrmkz: {
|
|
unsigned Src2 = Inst.getOperand(Inst.getNumOperands() -
|
|
X86::AddrNumOperands - 1).getReg();
|
|
unsigned Src2Enc = MRI->getEncodingValue(Src2);
|
|
if (Src2Enc % 4 != 0) {
|
|
StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2);
|
|
unsigned GroupStart = (Src2Enc / 4) * 4;
|
|
unsigned GroupEnd = GroupStart + 3;
|
|
return Warning(Ops[0]->getStartLoc(),
|
|
"source register '" + RegName + "' implicitly denotes '" +
|
|
RegName.take_front(3) + Twine(GroupStart) + "' to '" +
|
|
RegName.take_front(3) + Twine(GroupEnd) +
|
|
"' source group");
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
|
|
// Check that we aren't mixing AH/BH/CH/DH with REX prefix. We only need to
|
|
// check this with the legacy encoding, VEX/EVEX/XOP don't use REX.
|
|
if ((MCID.TSFlags & X86II::EncodingMask) == 0) {
|
|
MCPhysReg HReg = X86::NoRegister;
|
|
bool UsesRex = MCID.TSFlags & X86II::REX_W;
|
|
unsigned NumOps = Inst.getNumOperands();
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
const MCOperand &MO = Inst.getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
|
|
HReg = Reg;
|
|
if (X86II::isX86_64NonExtLowByteReg(Reg) ||
|
|
X86II::isX86_64ExtendedReg(Reg))
|
|
UsesRex = true;
|
|
}
|
|
|
|
if (UsesRex && HReg != X86::NoRegister) {
|
|
StringRef RegName = X86IntelInstPrinter::getRegisterName(HReg);
|
|
return Error(Ops[0]->getStartLoc(),
|
|
"can't encode '" + RegName + "' in an instruction requiring "
|
|
"REX prefix");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const char *getSubtargetFeatureName(uint64_t Val);
|
|
|
|
void X86AsmParser::emitWarningForSpecialLVIInstruction(SMLoc Loc) {
|
|
Warning(Loc, "Instruction may be vulnerable to LVI and "
|
|
"requires manual mitigation");
|
|
Note(SMLoc(), "See https://software.intel.com/"
|
|
"security-software-guidance/insights/"
|
|
"deep-dive-load-value-injection#specialinstructions"
|
|
" for more information");
|
|
}
|
|
|
|
/// RET instructions and also instructions that indirect calls/jumps from memory
|
|
/// combine a load and a branch within a single instruction. To mitigate these
|
|
/// instructions against LVI, they must be decomposed into separate load and
|
|
/// branch instructions, with an LFENCE in between. For more details, see:
|
|
/// - X86LoadValueInjectionRetHardening.cpp
|
|
/// - X86LoadValueInjectionIndirectThunks.cpp
|
|
/// - https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
|
|
///
|
|
/// Returns `true` if a mitigation was applied or warning was emitted.
|
|
void X86AsmParser::applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out) {
|
|
// Information on control-flow instructions that require manual mitigation can
|
|
// be found here:
|
|
// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
|
|
switch (Inst.getOpcode()) {
|
|
case X86::RETW:
|
|
case X86::RETL:
|
|
case X86::RETQ:
|
|
case X86::RETIL:
|
|
case X86::RETIQ:
|
|
case X86::RETIW: {
|
|
MCInst ShlInst, FenceInst;
|
|
bool Parse32 = is32BitMode() || Code16GCC;
|
|
unsigned Basereg =
|
|
is64BitMode() ? X86::RSP : (Parse32 ? X86::ESP : X86::SP);
|
|
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
|
|
auto ShlMemOp = X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
|
|
/*BaseReg=*/Basereg, /*IndexReg=*/0,
|
|
/*Scale=*/1, SMLoc{}, SMLoc{}, 0);
|
|
ShlInst.setOpcode(X86::SHL64mi);
|
|
ShlMemOp->addMemOperands(ShlInst, 5);
|
|
ShlInst.addOperand(MCOperand::createImm(0));
|
|
FenceInst.setOpcode(X86::LFENCE);
|
|
Out.emitInstruction(ShlInst, getSTI());
|
|
Out.emitInstruction(FenceInst, getSTI());
|
|
return;
|
|
}
|
|
case X86::JMP16m:
|
|
case X86::JMP32m:
|
|
case X86::JMP64m:
|
|
case X86::CALL16m:
|
|
case X86::CALL32m:
|
|
case X86::CALL64m:
|
|
emitWarningForSpecialLVIInstruction(Inst.getLoc());
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// To mitigate LVI, every instruction that performs a load can be followed by
|
|
/// an LFENCE instruction to squash any potential mis-speculation. There are
|
|
/// some instructions that require additional considerations, and may requre
|
|
/// manual mitigation. For more details, see:
|
|
/// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
|
|
///
|
|
/// Returns `true` if a mitigation was applied or warning was emitted.
|
|
void X86AsmParser::applyLVILoadHardeningMitigation(MCInst &Inst,
|
|
MCStreamer &Out) {
|
|
auto Opcode = Inst.getOpcode();
|
|
auto Flags = Inst.getFlags();
|
|
if ((Flags & X86::IP_HAS_REPEAT) || (Flags & X86::IP_HAS_REPEAT_NE)) {
|
|
// Information on REP string instructions that require manual mitigation can
|
|
// be found here:
|
|
// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
|
|
switch (Opcode) {
|
|
case X86::CMPSB:
|
|
case X86::CMPSW:
|
|
case X86::CMPSL:
|
|
case X86::CMPSQ:
|
|
case X86::SCASB:
|
|
case X86::SCASW:
|
|
case X86::SCASL:
|
|
case X86::SCASQ:
|
|
emitWarningForSpecialLVIInstruction(Inst.getLoc());
|
|
return;
|
|
}
|
|
} else if (Opcode == X86::REP_PREFIX || Opcode == X86::REPNE_PREFIX) {
|
|
// If a REP instruction is found on its own line, it may or may not be
|
|
// followed by a vulnerable instruction. Emit a warning just in case.
|
|
emitWarningForSpecialLVIInstruction(Inst.getLoc());
|
|
return;
|
|
}
|
|
|
|
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
|
|
|
|
// Can't mitigate after terminators or calls. A control flow change may have
|
|
// already occurred.
|
|
if (MCID.isTerminator() || MCID.isCall())
|
|
return;
|
|
|
|
// LFENCE has the mayLoad property, don't double fence.
|
|
if (MCID.mayLoad() && Inst.getOpcode() != X86::LFENCE) {
|
|
MCInst FenceInst;
|
|
FenceInst.setOpcode(X86::LFENCE);
|
|
Out.emitInstruction(FenceInst, getSTI());
|
|
}
|
|
}
|
|
|
|
void X86AsmParser::emitInstruction(MCInst &Inst, OperandVector &Operands,
|
|
MCStreamer &Out) {
|
|
if (LVIInlineAsmHardening &&
|
|
getSTI().getFeatureBits()[X86::FeatureLVIControlFlowIntegrity])
|
|
applyLVICFIMitigation(Inst, Out);
|
|
|
|
Out.emitInstruction(Inst, getSTI());
|
|
|
|
if (LVIInlineAsmHardening &&
|
|
getSTI().getFeatureBits()[X86::FeatureLVILoadHardening])
|
|
applyLVILoadHardeningMitigation(Inst, Out);
|
|
}
|
|
|
|
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands,
|
|
MCStreamer &Out, uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
if (isParsingIntelSyntax())
|
|
return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
|
|
MatchingInlineAsm);
|
|
return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
|
|
OperandVector &Operands, MCStreamer &Out,
|
|
bool MatchingInlineAsm) {
|
|
// FIXME: This should be replaced with a real .td file alias mechanism.
|
|
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
|
|
// call.
|
|
const char *Repl = StringSwitch<const char *>(Op.getToken())
|
|
.Case("finit", "fninit")
|
|
.Case("fsave", "fnsave")
|
|
.Case("fstcw", "fnstcw")
|
|
.Case("fstcww", "fnstcw")
|
|
.Case("fstenv", "fnstenv")
|
|
.Case("fstsw", "fnstsw")
|
|
.Case("fstsww", "fnstsw")
|
|
.Case("fclex", "fnclex")
|
|
.Default(nullptr);
|
|
if (Repl) {
|
|
MCInst Inst;
|
|
Inst.setOpcode(X86::WAIT);
|
|
Inst.setLoc(IDLoc);
|
|
if (!MatchingInlineAsm)
|
|
emitInstruction(Inst, Operands, Out);
|
|
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
|
|
}
|
|
}
|
|
|
|
bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc,
|
|
const FeatureBitset &MissingFeatures,
|
|
bool MatchingInlineAsm) {
|
|
assert(MissingFeatures.any() && "Unknown missing feature!");
|
|
SmallString<126> Msg;
|
|
raw_svector_ostream OS(Msg);
|
|
OS << "instruction requires:";
|
|
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
|
|
if (MissingFeatures[i])
|
|
OS << ' ' << getSubtargetFeatureName(i);
|
|
}
|
|
return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
|
|
}
|
|
|
|
static unsigned getPrefixes(OperandVector &Operands) {
|
|
unsigned Result = 0;
|
|
X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back());
|
|
if (Prefix.isPrefix()) {
|
|
Result = Prefix.getPrefix();
|
|
Operands.pop_back();
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) {
|
|
unsigned Opc = Inst.getOpcode();
|
|
const MCInstrDesc &MCID = MII.get(Opc);
|
|
|
|
if (ForcedVEXEncoding == VEXEncoding_EVEX &&
|
|
(MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX)
|
|
return Match_Unsupported;
|
|
|
|
if ((ForcedVEXEncoding == VEXEncoding_VEX ||
|
|
ForcedVEXEncoding == VEXEncoding_VEX2 ||
|
|
ForcedVEXEncoding == VEXEncoding_VEX3) &&
|
|
(MCID.TSFlags & X86II::EncodingMask) != X86II::VEX)
|
|
return Match_Unsupported;
|
|
|
|
// These instructions are only available with {vex}, {vex2} or {vex3} prefix
|
|
if (MCID.TSFlags & X86II::ExplicitVEXPrefix &&
|
|
(ForcedVEXEncoding != VEXEncoding_VEX &&
|
|
ForcedVEXEncoding != VEXEncoding_VEX2 &&
|
|
ForcedVEXEncoding != VEXEncoding_VEX3))
|
|
return Match_Unsupported;
|
|
|
|
// These instructions match ambiguously with their VEX encoded counterparts
|
|
// and appear first in the matching table. Reject them unless we're forcing
|
|
// EVEX encoding.
|
|
// FIXME: We really need a way to break the ambiguity.
|
|
switch (Opc) {
|
|
case X86::VCVTSD2SIZrm_Int:
|
|
case X86::VCVTSD2SI64Zrm_Int:
|
|
case X86::VCVTSS2SIZrm_Int:
|
|
case X86::VCVTSS2SI64Zrm_Int:
|
|
case X86::VCVTTSD2SIZrm: case X86::VCVTTSD2SIZrm_Int:
|
|
case X86::VCVTTSD2SI64Zrm: case X86::VCVTTSD2SI64Zrm_Int:
|
|
case X86::VCVTTSS2SIZrm: case X86::VCVTTSS2SIZrm_Int:
|
|
case X86::VCVTTSS2SI64Zrm: case X86::VCVTTSS2SI64Zrm_Int:
|
|
if (ForcedVEXEncoding != VEXEncoding_EVEX)
|
|
return Match_Unsupported;
|
|
break;
|
|
}
|
|
|
|
return Match_Success;
|
|
}
|
|
|
|
bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands,
|
|
MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
assert(!Operands.empty() && "Unexpect empty operand list!");
|
|
assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
|
|
SMRange EmptyRange = None;
|
|
|
|
// First, handle aliases that expand to multiple instructions.
|
|
MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands,
|
|
Out, MatchingInlineAsm);
|
|
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
|
|
unsigned Prefixes = getPrefixes(Operands);
|
|
|
|
MCInst Inst;
|
|
|
|
// If VEX/EVEX encoding is forced, we need to pass the USE_* flag to the
|
|
// encoder and printer.
|
|
if (ForcedVEXEncoding == VEXEncoding_VEX)
|
|
Prefixes |= X86::IP_USE_VEX;
|
|
else if (ForcedVEXEncoding == VEXEncoding_VEX2)
|
|
Prefixes |= X86::IP_USE_VEX2;
|
|
else if (ForcedVEXEncoding == VEXEncoding_VEX3)
|
|
Prefixes |= X86::IP_USE_VEX3;
|
|
else if (ForcedVEXEncoding == VEXEncoding_EVEX)
|
|
Prefixes |= X86::IP_USE_EVEX;
|
|
|
|
// Set encoded flags for {disp8} and {disp32}.
|
|
if (ForcedDispEncoding == DispEncoding_Disp8)
|
|
Prefixes |= X86::IP_USE_DISP8;
|
|
else if (ForcedDispEncoding == DispEncoding_Disp32)
|
|
Prefixes |= X86::IP_USE_DISP32;
|
|
|
|
if (Prefixes)
|
|
Inst.setFlags(Prefixes);
|
|
|
|
// In 16-bit mode, if data32 is specified, temporarily switch to 32-bit mode
|
|
// when matching the instruction.
|
|
if (ForcedDataPrefix == X86::Mode32Bit)
|
|
SwitchMode(X86::Mode32Bit);
|
|
// First, try a direct match.
|
|
FeatureBitset MissingFeatures;
|
|
unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo,
|
|
MissingFeatures, MatchingInlineAsm,
|
|
isParsingIntelSyntax());
|
|
if (ForcedDataPrefix == X86::Mode32Bit) {
|
|
SwitchMode(X86::Mode16Bit);
|
|
ForcedDataPrefix = 0;
|
|
}
|
|
switch (OriginalError) {
|
|
default: llvm_unreachable("Unexpected match result!");
|
|
case Match_Success:
|
|
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
|
|
return true;
|
|
// Some instructions need post-processing to, for example, tweak which
|
|
// encoding is selected. Loop on it while changes happen so the
|
|
// individual transformations can chain off each other.
|
|
if (!MatchingInlineAsm)
|
|
while (processInstruction(Inst, Operands))
|
|
;
|
|
|
|
Inst.setLoc(IDLoc);
|
|
if (!MatchingInlineAsm)
|
|
emitInstruction(Inst, Operands, Out);
|
|
Opcode = Inst.getOpcode();
|
|
return false;
|
|
case Match_InvalidImmUnsignedi4: {
|
|
SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
|
|
if (ErrorLoc == SMLoc())
|
|
ErrorLoc = IDLoc;
|
|
return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
|
|
EmptyRange, MatchingInlineAsm);
|
|
}
|
|
case Match_MissingFeature:
|
|
return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm);
|
|
case Match_InvalidOperand:
|
|
case Match_MnemonicFail:
|
|
case Match_Unsupported:
|
|
break;
|
|
}
|
|
if (Op.getToken().empty()) {
|
|
Error(IDLoc, "instruction must have size higher than 0", EmptyRange,
|
|
MatchingInlineAsm);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Ideally, we would only attempt suffix matches for things which are
|
|
// valid prefixes, and we could just infer the right unambiguous
|
|
// type. However, that requires substantially more matcher support than the
|
|
// following hack.
|
|
|
|
// Change the operand to point to a temporary token.
|
|
StringRef Base = Op.getToken();
|
|
SmallString<16> Tmp;
|
|
Tmp += Base;
|
|
Tmp += ' ';
|
|
Op.setTokenValue(Tmp);
|
|
|
|
// If this instruction starts with an 'f', then it is a floating point stack
|
|
// instruction. These come in up to three forms for 32-bit, 64-bit, and
|
|
// 80-bit floating point, which use the suffixes s,l,t respectively.
|
|
//
|
|
// Otherwise, we assume that this may be an integer instruction, which comes
|
|
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
|
|
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
|
|
// MemSize corresponding to Suffixes. { 8, 16, 32, 64 } { 32, 64, 80, 0 }
|
|
const char *MemSize = Base[0] != 'f' ? "\x08\x10\x20\x40" : "\x20\x40\x50\0";
|
|
|
|
// Check for the various suffix matches.
|
|
uint64_t ErrorInfoIgnore;
|
|
FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings.
|
|
unsigned Match[4];
|
|
|
|
// Some instruction like VPMULDQ is NOT the variant of VPMULD but a new one.
|
|
// So we should make sure the suffix matcher only works for memory variant
|
|
// that has the same size with the suffix.
|
|
// FIXME: This flag is a workaround for legacy instructions that didn't
|
|
// declare non suffix variant assembly.
|
|
bool HasVectorReg = false;
|
|
X86Operand *MemOp = nullptr;
|
|
for (const auto &Op : Operands) {
|
|
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
|
|
if (X86Op->isVectorReg())
|
|
HasVectorReg = true;
|
|
else if (X86Op->isMem()) {
|
|
MemOp = X86Op;
|
|
assert(MemOp->Mem.Size == 0 && "Memory size always 0 under ATT syntax");
|
|
// Have we found an unqualified memory operand,
|
|
// break. IA allows only one memory operand.
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
|
|
Tmp.back() = Suffixes[I];
|
|
if (MemOp && HasVectorReg)
|
|
MemOp->Mem.Size = MemSize[I];
|
|
Match[I] = Match_MnemonicFail;
|
|
if (MemOp || !HasVectorReg) {
|
|
Match[I] =
|
|
MatchInstruction(Operands, Inst, ErrorInfoIgnore, MissingFeatures,
|
|
MatchingInlineAsm, isParsingIntelSyntax());
|
|
// If this returned as a missing feature failure, remember that.
|
|
if (Match[I] == Match_MissingFeature)
|
|
ErrorInfoMissingFeatures = MissingFeatures;
|
|
}
|
|
}
|
|
|
|
// Restore the old token.
|
|
Op.setTokenValue(Base);
|
|
|
|
// If exactly one matched, then we treat that as a successful match (and the
|
|
// instruction will already have been filled in correctly, since the failing
|
|
// matches won't have modified it).
|
|
unsigned NumSuccessfulMatches =
|
|
std::count(std::begin(Match), std::end(Match), Match_Success);
|
|
if (NumSuccessfulMatches == 1) {
|
|
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
|
|
return true;
|
|
// Some instructions need post-processing to, for example, tweak which
|
|
// encoding is selected. Loop on it while changes happen so the
|
|
// individual transformations can chain off each other.
|
|
if (!MatchingInlineAsm)
|
|
while (processInstruction(Inst, Operands))
|
|
;
|
|
|
|
Inst.setLoc(IDLoc);
|
|
if (!MatchingInlineAsm)
|
|
emitInstruction(Inst, Operands, Out);
|
|
Opcode = Inst.getOpcode();
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, the match failed, try to produce a decent error message.
|
|
|
|
// If we had multiple suffix matches, then identify this as an ambiguous
|
|
// match.
|
|
if (NumSuccessfulMatches > 1) {
|
|
char MatchChars[4];
|
|
unsigned NumMatches = 0;
|
|
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
|
|
if (Match[I] == Match_Success)
|
|
MatchChars[NumMatches++] = Suffixes[I];
|
|
|
|
SmallString<126> Msg;
|
|
raw_svector_ostream OS(Msg);
|
|
OS << "ambiguous instructions require an explicit suffix (could be ";
|
|
for (unsigned i = 0; i != NumMatches; ++i) {
|
|
if (i != 0)
|
|
OS << ", ";
|
|
if (i + 1 == NumMatches)
|
|
OS << "or ";
|
|
OS << "'" << Base << MatchChars[i] << "'";
|
|
}
|
|
OS << ")";
|
|
Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
|
|
return true;
|
|
}
|
|
|
|
// Okay, we know that none of the variants matched successfully.
|
|
|
|
// If all of the instructions reported an invalid mnemonic, then the original
|
|
// mnemonic was invalid.
|
|
if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
|
|
if (OriginalError == Match_MnemonicFail)
|
|
return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
|
|
Op.getLocRange(), MatchingInlineAsm);
|
|
|
|
if (OriginalError == Match_Unsupported)
|
|
return Error(IDLoc, "unsupported instruction", EmptyRange,
|
|
MatchingInlineAsm);
|
|
|
|
assert(OriginalError == Match_InvalidOperand && "Unexpected error");
|
|
// Recover location info for the operand if we know which was the problem.
|
|
if (ErrorInfo != ~0ULL) {
|
|
if (ErrorInfo >= Operands.size())
|
|
return Error(IDLoc, "too few operands for instruction", EmptyRange,
|
|
MatchingInlineAsm);
|
|
|
|
X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
|
|
if (Operand.getStartLoc().isValid()) {
|
|
SMRange OperandRange = Operand.getLocRange();
|
|
return Error(Operand.getStartLoc(), "invalid operand for instruction",
|
|
OperandRange, MatchingInlineAsm);
|
|
}
|
|
}
|
|
|
|
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
// If one instruction matched as unsupported, report this as unsupported.
|
|
if (std::count(std::begin(Match), std::end(Match),
|
|
Match_Unsupported) == 1) {
|
|
return Error(IDLoc, "unsupported instruction", EmptyRange,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
// If one instruction matched with a missing feature, report this as a
|
|
// missing feature.
|
|
if (std::count(std::begin(Match), std::end(Match),
|
|
Match_MissingFeature) == 1) {
|
|
ErrorInfo = Match_MissingFeature;
|
|
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
// If one instruction matched with an invalid operand, report this as an
|
|
// operand failure.
|
|
if (std::count(std::begin(Match), std::end(Match),
|
|
Match_InvalidOperand) == 1) {
|
|
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
// If all of these were an outright failure, report it in a useless way.
|
|
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
|
|
EmptyRange, MatchingInlineAsm);
|
|
return true;
|
|
}
|
|
|
|
bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands,
|
|
MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
assert(!Operands.empty() && "Unexpect empty operand list!");
|
|
assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
|
|
StringRef Mnemonic = (static_cast<X86Operand &>(*Operands[0])).getToken();
|
|
SMRange EmptyRange = None;
|
|
StringRef Base = (static_cast<X86Operand &>(*Operands[0])).getToken();
|
|
unsigned Prefixes = getPrefixes(Operands);
|
|
|
|
// First, handle aliases that expand to multiple instructions.
|
|
MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, Out, MatchingInlineAsm);
|
|
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
|
|
|
|
MCInst Inst;
|
|
|
|
// If VEX/EVEX encoding is forced, we need to pass the USE_* flag to the
|
|
// encoder and printer.
|
|
if (ForcedVEXEncoding == VEXEncoding_VEX)
|
|
Prefixes |= X86::IP_USE_VEX;
|
|
else if (ForcedVEXEncoding == VEXEncoding_VEX2)
|
|
Prefixes |= X86::IP_USE_VEX2;
|
|
else if (ForcedVEXEncoding == VEXEncoding_VEX3)
|
|
Prefixes |= X86::IP_USE_VEX3;
|
|
else if (ForcedVEXEncoding == VEXEncoding_EVEX)
|
|
Prefixes |= X86::IP_USE_EVEX;
|
|
|
|
// Set encoded flags for {disp8} and {disp32}.
|
|
if (ForcedDispEncoding == DispEncoding_Disp8)
|
|
Prefixes |= X86::IP_USE_DISP8;
|
|
else if (ForcedDispEncoding == DispEncoding_Disp32)
|
|
Prefixes |= X86::IP_USE_DISP32;
|
|
|
|
if (Prefixes)
|
|
Inst.setFlags(Prefixes);
|
|
|
|
// Find one unsized memory operand, if present.
|
|
X86Operand *UnsizedMemOp = nullptr;
|
|
for (const auto &Op : Operands) {
|
|
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
|
|
if (X86Op->isMemUnsized()) {
|
|
UnsizedMemOp = X86Op;
|
|
// Have we found an unqualified memory operand,
|
|
// break. IA allows only one memory operand.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Allow some instructions to have implicitly pointer-sized operands. This is
|
|
// compatible with gas.
|
|
if (UnsizedMemOp) {
|
|
static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
|
|
for (const char *Instr : PtrSizedInstrs) {
|
|
if (Mnemonic == Instr) {
|
|
UnsizedMemOp->Mem.Size = getPointerWidth();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
SmallVector<unsigned, 8> Match;
|
|
FeatureBitset ErrorInfoMissingFeatures;
|
|
FeatureBitset MissingFeatures;
|
|
|
|
// If unsized push has immediate operand we should default the default pointer
|
|
// size for the size.
|
|
if (Mnemonic == "push" && Operands.size() == 2) {
|
|
auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
|
|
if (X86Op->isImm()) {
|
|
// If it's not a constant fall through and let remainder take care of it.
|
|
const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
|
|
unsigned Size = getPointerWidth();
|
|
if (CE &&
|
|
(isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
|
|
SmallString<16> Tmp;
|
|
Tmp += Base;
|
|
Tmp += (is64BitMode())
|
|
? "q"
|
|
: (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
|
|
Op.setTokenValue(Tmp);
|
|
// Do match in ATT mode to allow explicit suffix usage.
|
|
Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
|
|
MissingFeatures, MatchingInlineAsm,
|
|
false /*isParsingIntelSyntax()*/));
|
|
Op.setTokenValue(Base);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If an unsized memory operand is present, try to match with each memory
|
|
// operand size. In Intel assembly, the size is not part of the instruction
|
|
// mnemonic.
|
|
if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
|
|
static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
|
|
for (unsigned Size : MopSizes) {
|
|
UnsizedMemOp->Mem.Size = Size;
|
|
uint64_t ErrorInfoIgnore;
|
|
unsigned LastOpcode = Inst.getOpcode();
|
|
unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
|
|
MissingFeatures, MatchingInlineAsm,
|
|
isParsingIntelSyntax());
|
|
if (Match.empty() || LastOpcode != Inst.getOpcode())
|
|
Match.push_back(M);
|
|
|
|
// If this returned as a missing feature failure, remember that.
|
|
if (Match.back() == Match_MissingFeature)
|
|
ErrorInfoMissingFeatures = MissingFeatures;
|
|
}
|
|
|
|
// Restore the size of the unsized memory operand if we modified it.
|
|
UnsizedMemOp->Mem.Size = 0;
|
|
}
|
|
|
|
// If we haven't matched anything yet, this is not a basic integer or FPU
|
|
// operation. There shouldn't be any ambiguity in our mnemonic table, so try
|
|
// matching with the unsized operand.
|
|
if (Match.empty()) {
|
|
Match.push_back(MatchInstruction(
|
|
Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
|
|
isParsingIntelSyntax()));
|
|
// If this returned as a missing feature failure, remember that.
|
|
if (Match.back() == Match_MissingFeature)
|
|
ErrorInfoMissingFeatures = MissingFeatures;
|
|
}
|
|
|
|
// Restore the size of the unsized memory operand if we modified it.
|
|
if (UnsizedMemOp)
|
|
UnsizedMemOp->Mem.Size = 0;
|
|
|
|
// If it's a bad mnemonic, all results will be the same.
|
|
if (Match.back() == Match_MnemonicFail) {
|
|
return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
|
|
Op.getLocRange(), MatchingInlineAsm);
|
|
}
|
|
|
|
unsigned NumSuccessfulMatches =
|
|
std::count(std::begin(Match), std::end(Match), Match_Success);
|
|
|
|
// If matching was ambiguous and we had size information from the frontend,
|
|
// try again with that. This handles cases like "movxz eax, m8/m16".
|
|
if (UnsizedMemOp && NumSuccessfulMatches > 1 &&
|
|
UnsizedMemOp->getMemFrontendSize()) {
|
|
UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize();
|
|
unsigned M = MatchInstruction(
|
|
Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
|
|
isParsingIntelSyntax());
|
|
if (M == Match_Success)
|
|
NumSuccessfulMatches = 1;
|
|
|
|
// Add a rewrite that encodes the size information we used from the
|
|
// frontend.
|
|
InstInfo->AsmRewrites->emplace_back(
|
|
AOK_SizeDirective, UnsizedMemOp->getStartLoc(),
|
|
/*Len=*/0, UnsizedMemOp->getMemFrontendSize());
|
|
}
|
|
|
|
// If exactly one matched, then we treat that as a successful match (and the
|
|
// instruction will already have been filled in correctly, since the failing
|
|
// matches won't have modified it).
|
|
if (NumSuccessfulMatches == 1) {
|
|
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
|
|
return true;
|
|
// Some instructions need post-processing to, for example, tweak which
|
|
// encoding is selected. Loop on it while changes happen so the individual
|
|
// transformations can chain off each other.
|
|
if (!MatchingInlineAsm)
|
|
while (processInstruction(Inst, Operands))
|
|
;
|
|
Inst.setLoc(IDLoc);
|
|
if (!MatchingInlineAsm)
|
|
emitInstruction(Inst, Operands, Out);
|
|
Opcode = Inst.getOpcode();
|
|
return false;
|
|
} else if (NumSuccessfulMatches > 1) {
|
|
assert(UnsizedMemOp &&
|
|
"multiple matches only possible with unsized memory operands");
|
|
return Error(UnsizedMemOp->getStartLoc(),
|
|
"ambiguous operand size for instruction '" + Mnemonic + "\'",
|
|
UnsizedMemOp->getLocRange());
|
|
}
|
|
|
|
// If one instruction matched as unsupported, report this as unsupported.
|
|
if (std::count(std::begin(Match), std::end(Match),
|
|
Match_Unsupported) == 1) {
|
|
return Error(IDLoc, "unsupported instruction", EmptyRange,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
// If one instruction matched with a missing feature, report this as a
|
|
// missing feature.
|
|
if (std::count(std::begin(Match), std::end(Match),
|
|
Match_MissingFeature) == 1) {
|
|
ErrorInfo = Match_MissingFeature;
|
|
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
// If one instruction matched with an invalid operand, report this as an
|
|
// operand failure.
|
|
if (std::count(std::begin(Match), std::end(Match),
|
|
Match_InvalidOperand) == 1) {
|
|
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
if (std::count(std::begin(Match), std::end(Match),
|
|
Match_InvalidImmUnsignedi4) == 1) {
|
|
SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
|
|
if (ErrorLoc == SMLoc())
|
|
ErrorLoc = IDLoc;
|
|
return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
|
|
EmptyRange, MatchingInlineAsm);
|
|
}
|
|
|
|
// If all of these were an outright failure, report it in a useless way.
|
|
return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
|
|
MatchingInlineAsm);
|
|
}
|
|
|
|
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
|
|
return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
|
|
}
|
|
|
|
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
|
|
MCAsmParser &Parser = getParser();
|
|
StringRef IDVal = DirectiveID.getIdentifier();
|
|
if (IDVal.startswith(".arch"))
|
|
return parseDirectiveArch();
|
|
if (IDVal.startswith(".code"))
|
|
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
|
|
else if (IDVal.startswith(".att_syntax")) {
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
if (Parser.getTok().getString() == "prefix")
|
|
Parser.Lex();
|
|
else if (Parser.getTok().getString() == "noprefix")
|
|
return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
|
|
"supported: registers must have a "
|
|
"'%' prefix in .att_syntax");
|
|
}
|
|
getParser().setAssemblerDialect(0);
|
|
return false;
|
|
} else if (IDVal.startswith(".intel_syntax")) {
|
|
getParser().setAssemblerDialect(1);
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
if (Parser.getTok().getString() == "noprefix")
|
|
Parser.Lex();
|
|
else if (Parser.getTok().getString() == "prefix")
|
|
return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
|
|
"supported: registers must not have "
|
|
"a '%' prefix in .intel_syntax");
|
|
}
|
|
return false;
|
|
} else if (IDVal == ".nops")
|
|
return parseDirectiveNops(DirectiveID.getLoc());
|
|
else if (IDVal == ".even")
|
|
return parseDirectiveEven(DirectiveID.getLoc());
|
|
else if (IDVal == ".cv_fpo_proc")
|
|
return parseDirectiveFPOProc(DirectiveID.getLoc());
|
|
else if (IDVal == ".cv_fpo_setframe")
|
|
return parseDirectiveFPOSetFrame(DirectiveID.getLoc());
|
|
else if (IDVal == ".cv_fpo_pushreg")
|
|
return parseDirectiveFPOPushReg(DirectiveID.getLoc());
|
|
else if (IDVal == ".cv_fpo_stackalloc")
|
|
return parseDirectiveFPOStackAlloc(DirectiveID.getLoc());
|
|
else if (IDVal == ".cv_fpo_stackalign")
|
|
return parseDirectiveFPOStackAlign(DirectiveID.getLoc());
|
|
else if (IDVal == ".cv_fpo_endprologue")
|
|
return parseDirectiveFPOEndPrologue(DirectiveID.getLoc());
|
|
else if (IDVal == ".cv_fpo_endproc")
|
|
return parseDirectiveFPOEndProc(DirectiveID.getLoc());
|
|
else if (IDVal == ".seh_pushreg" ||
|
|
(Parser.isParsingMasm() && IDVal.equals_lower(".pushreg")))
|
|
return parseDirectiveSEHPushReg(DirectiveID.getLoc());
|
|
else if (IDVal == ".seh_setframe" ||
|
|
(Parser.isParsingMasm() && IDVal.equals_lower(".setframe")))
|
|
return parseDirectiveSEHSetFrame(DirectiveID.getLoc());
|
|
else if (IDVal == ".seh_savereg" ||
|
|
(Parser.isParsingMasm() && IDVal.equals_lower(".savereg")))
|
|
return parseDirectiveSEHSaveReg(DirectiveID.getLoc());
|
|
else if (IDVal == ".seh_savexmm" ||
|
|
(Parser.isParsingMasm() && IDVal.equals_lower(".savexmm128")))
|
|
return parseDirectiveSEHSaveXMM(DirectiveID.getLoc());
|
|
else if (IDVal == ".seh_pushframe" ||
|
|
(Parser.isParsingMasm() && IDVal.equals_lower(".pushframe")))
|
|
return parseDirectiveSEHPushFrame(DirectiveID.getLoc());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86AsmParser::parseDirectiveArch() {
|
|
// Ignore .arch for now.
|
|
getParser().parseStringToEndOfStatement();
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveNops
|
|
/// ::= .nops size[, control]
|
|
bool X86AsmParser::parseDirectiveNops(SMLoc L) {
|
|
int64_t NumBytes = 0, Control = 0;
|
|
SMLoc NumBytesLoc, ControlLoc;
|
|
const MCSubtargetInfo STI = getSTI();
|
|
NumBytesLoc = getTok().getLoc();
|
|
if (getParser().checkForValidSection() ||
|
|
getParser().parseAbsoluteExpression(NumBytes))
|
|
return true;
|
|
|
|
if (parseOptionalToken(AsmToken::Comma)) {
|
|
ControlLoc = getTok().getLoc();
|
|
if (getParser().parseAbsoluteExpression(Control))
|
|
return true;
|
|
}
|
|
if (getParser().parseToken(AsmToken::EndOfStatement,
|
|
"unexpected token in '.nops' directive"))
|
|
return true;
|
|
|
|
if (NumBytes <= 0) {
|
|
Error(NumBytesLoc, "'.nops' directive with non-positive size");
|
|
return false;
|
|
}
|
|
|
|
if (Control < 0) {
|
|
Error(ControlLoc, "'.nops' directive with negative NOP size");
|
|
return false;
|
|
}
|
|
|
|
/// Emit nops
|
|
getParser().getStreamer().emitNops(NumBytes, Control, L);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveEven
|
|
/// ::= .even
|
|
bool X86AsmParser::parseDirectiveEven(SMLoc L) {
|
|
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
|
|
return false;
|
|
|
|
const MCSection *Section = getStreamer().getCurrentSectionOnly();
|
|
if (!Section) {
|
|
getStreamer().InitSections(false);
|
|
Section = getStreamer().getCurrentSectionOnly();
|
|
}
|
|
if (Section->UseCodeAlign())
|
|
getStreamer().emitCodeAlignment(2, 0);
|
|
else
|
|
getStreamer().emitValueToAlignment(2, 0, 1, 0);
|
|
return false;
|
|
}
|
|
|
|
/// ParseDirectiveCode
|
|
/// ::= .code16 | .code32 | .code64
|
|
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
Code16GCC = false;
|
|
if (IDVal == ".code16") {
|
|
Parser.Lex();
|
|
if (!is16BitMode()) {
|
|
SwitchMode(X86::Mode16Bit);
|
|
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
|
|
}
|
|
} else if (IDVal == ".code16gcc") {
|
|
// .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
|
|
Parser.Lex();
|
|
Code16GCC = true;
|
|
if (!is16BitMode()) {
|
|
SwitchMode(X86::Mode16Bit);
|
|
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
|
|
}
|
|
} else if (IDVal == ".code32") {
|
|
Parser.Lex();
|
|
if (!is32BitMode()) {
|
|
SwitchMode(X86::Mode32Bit);
|
|
getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
|
|
}
|
|
} else if (IDVal == ".code64") {
|
|
Parser.Lex();
|
|
if (!is64BitMode()) {
|
|
SwitchMode(X86::Mode64Bit);
|
|
getParser().getStreamer().emitAssemblerFlag(MCAF_Code64);
|
|
}
|
|
} else {
|
|
Error(L, "unknown directive " + IDVal);
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// .cv_fpo_proc foo
|
|
bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
StringRef ProcName;
|
|
int64_t ParamsSize;
|
|
if (Parser.parseIdentifier(ProcName))
|
|
return Parser.TokError("expected symbol name");
|
|
if (Parser.parseIntToken(ParamsSize, "expected parameter byte count"))
|
|
return true;
|
|
if (!isUIntN(32, ParamsSize))
|
|
return Parser.TokError("parameters size out of range");
|
|
if (Parser.parseEOL("unexpected tokens"))
|
|
return addErrorSuffix(" in '.cv_fpo_proc' directive");
|
|
MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
|
|
return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L);
|
|
}
|
|
|
|
// .cv_fpo_setframe ebp
|
|
bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
unsigned Reg;
|
|
SMLoc DummyLoc;
|
|
if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
|
|
Parser.parseEOL("unexpected tokens"))
|
|
return addErrorSuffix(" in '.cv_fpo_setframe' directive");
|
|
return getTargetStreamer().emitFPOSetFrame(Reg, L);
|
|
}
|
|
|
|
// .cv_fpo_pushreg ebx
|
|
bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
unsigned Reg;
|
|
SMLoc DummyLoc;
|
|
if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
|
|
Parser.parseEOL("unexpected tokens"))
|
|
return addErrorSuffix(" in '.cv_fpo_pushreg' directive");
|
|
return getTargetStreamer().emitFPOPushReg(Reg, L);
|
|
}
|
|
|
|
// .cv_fpo_stackalloc 20
|
|
bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
int64_t Offset;
|
|
if (Parser.parseIntToken(Offset, "expected offset") ||
|
|
Parser.parseEOL("unexpected tokens"))
|
|
return addErrorSuffix(" in '.cv_fpo_stackalloc' directive");
|
|
return getTargetStreamer().emitFPOStackAlloc(Offset, L);
|
|
}
|
|
|
|
// .cv_fpo_stackalign 8
|
|
bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
int64_t Offset;
|
|
if (Parser.parseIntToken(Offset, "expected offset") ||
|
|
Parser.parseEOL("unexpected tokens"))
|
|
return addErrorSuffix(" in '.cv_fpo_stackalign' directive");
|
|
return getTargetStreamer().emitFPOStackAlign(Offset, L);
|
|
}
|
|
|
|
// .cv_fpo_endprologue
|
|
bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
if (Parser.parseEOL("unexpected tokens"))
|
|
return addErrorSuffix(" in '.cv_fpo_endprologue' directive");
|
|
return getTargetStreamer().emitFPOEndPrologue(L);
|
|
}
|
|
|
|
// .cv_fpo_endproc
|
|
bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
if (Parser.parseEOL("unexpected tokens"))
|
|
return addErrorSuffix(" in '.cv_fpo_endproc' directive");
|
|
return getTargetStreamer().emitFPOEndProc(L);
|
|
}
|
|
|
|
bool X86AsmParser::parseSEHRegisterNumber(unsigned RegClassID,
|
|
unsigned &RegNo) {
|
|
SMLoc startLoc = getLexer().getLoc();
|
|
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
|
|
|
|
// Try parsing the argument as a register first.
|
|
if (getLexer().getTok().isNot(AsmToken::Integer)) {
|
|
SMLoc endLoc;
|
|
if (ParseRegister(RegNo, startLoc, endLoc))
|
|
return true;
|
|
|
|
if (!X86MCRegisterClasses[RegClassID].contains(RegNo)) {
|
|
return Error(startLoc,
|
|
"register is not supported for use with this directive");
|
|
}
|
|
} else {
|
|
// Otherwise, an integer number matching the encoding of the desired
|
|
// register may appear.
|
|
int64_t EncodedReg;
|
|
if (getParser().parseAbsoluteExpression(EncodedReg))
|
|
return true;
|
|
|
|
// The SEH register number is the same as the encoding register number. Map
|
|
// from the encoding back to the LLVM register number.
|
|
RegNo = 0;
|
|
for (MCPhysReg Reg : X86MCRegisterClasses[RegClassID]) {
|
|
if (MRI->getEncodingValue(Reg) == EncodedReg) {
|
|
RegNo = Reg;
|
|
break;
|
|
}
|
|
}
|
|
if (RegNo == 0) {
|
|
return Error(startLoc,
|
|
"incorrect register number for use with this directive");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::parseDirectiveSEHPushReg(SMLoc Loc) {
|
|
unsigned Reg = 0;
|
|
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
|
|
return true;
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return TokError("unexpected token in directive");
|
|
|
|
getParser().Lex();
|
|
getStreamer().EmitWinCFIPushReg(Reg, Loc);
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::parseDirectiveSEHSetFrame(SMLoc Loc) {
|
|
unsigned Reg = 0;
|
|
int64_t Off;
|
|
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
|
|
return true;
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return TokError("you must specify a stack pointer offset");
|
|
|
|
getParser().Lex();
|
|
if (getParser().parseAbsoluteExpression(Off))
|
|
return true;
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return TokError("unexpected token in directive");
|
|
|
|
getParser().Lex();
|
|
getStreamer().EmitWinCFISetFrame(Reg, Off, Loc);
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::parseDirectiveSEHSaveReg(SMLoc Loc) {
|
|
unsigned Reg = 0;
|
|
int64_t Off;
|
|
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
|
|
return true;
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return TokError("you must specify an offset on the stack");
|
|
|
|
getParser().Lex();
|
|
if (getParser().parseAbsoluteExpression(Off))
|
|
return true;
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return TokError("unexpected token in directive");
|
|
|
|
getParser().Lex();
|
|
getStreamer().EmitWinCFISaveReg(Reg, Off, Loc);
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::parseDirectiveSEHSaveXMM(SMLoc Loc) {
|
|
unsigned Reg = 0;
|
|
int64_t Off;
|
|
if (parseSEHRegisterNumber(X86::VR128XRegClassID, Reg))
|
|
return true;
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return TokError("you must specify an offset on the stack");
|
|
|
|
getParser().Lex();
|
|
if (getParser().parseAbsoluteExpression(Off))
|
|
return true;
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return TokError("unexpected token in directive");
|
|
|
|
getParser().Lex();
|
|
getStreamer().EmitWinCFISaveXMM(Reg, Off, Loc);
|
|
return false;
|
|
}
|
|
|
|
bool X86AsmParser::parseDirectiveSEHPushFrame(SMLoc Loc) {
|
|
bool Code = false;
|
|
StringRef CodeID;
|
|
if (getLexer().is(AsmToken::At)) {
|
|
SMLoc startLoc = getLexer().getLoc();
|
|
getParser().Lex();
|
|
if (!getParser().parseIdentifier(CodeID)) {
|
|
if (CodeID != "code")
|
|
return Error(startLoc, "expected @code");
|
|
Code = true;
|
|
}
|
|
}
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return TokError("unexpected token in directive");
|
|
|
|
getParser().Lex();
|
|
getStreamer().EmitWinCFIPushFrame(Code, Loc);
|
|
return false;
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmParser() {
|
|
RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
|
|
RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#define GET_MATCHER_IMPLEMENTATION
|
|
#define GET_SUBTARGET_FEATURE_NAME
|
|
#include "X86GenAsmMatcher.inc"
|