324 lines
12 KiB
C++
324 lines
12 KiB
C++
//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZTargetMachine.h"
|
|
#include "MCTargetDesc/SystemZMCTargetDesc.h"
|
|
#include "SystemZ.h"
|
|
#include "SystemZMachineScheduler.h"
|
|
#include "SystemZTargetTransformInfo.h"
|
|
#include "TargetInfo/SystemZTargetInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
|
|
}
|
|
|
|
// Determine whether we use the vector ABI.
|
|
static bool UsesVectorABI(StringRef CPU, StringRef FS) {
|
|
// We use the vector ABI whenever the vector facility is avaiable.
|
|
// This is the case by default if CPU is z13 or later, and can be
|
|
// overridden via "[+-]vector" feature string elements.
|
|
bool VectorABI = true;
|
|
bool SoftFloat = false;
|
|
if (CPU.empty() || CPU == "generic" ||
|
|
CPU == "z10" || CPU == "z196" || CPU == "zEC12" ||
|
|
CPU == "arch8" || CPU == "arch9" || CPU == "arch10")
|
|
VectorABI = false;
|
|
|
|
SmallVector<StringRef, 3> Features;
|
|
FS.split(Features, ',', -1, false /* KeepEmpty */);
|
|
for (auto &Feature : Features) {
|
|
if (Feature == "vector" || Feature == "+vector")
|
|
VectorABI = true;
|
|
if (Feature == "-vector")
|
|
VectorABI = false;
|
|
if (Feature == "soft-float" || Feature == "+soft-float")
|
|
SoftFloat = true;
|
|
if (Feature == "-soft-float")
|
|
SoftFloat = false;
|
|
}
|
|
|
|
return VectorABI && !SoftFloat;
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
|
|
StringRef FS) {
|
|
bool VectorABI = UsesVectorABI(CPU, FS);
|
|
std::string Ret;
|
|
|
|
// Big endian.
|
|
Ret += "E";
|
|
|
|
// Data mangling.
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
|
|
// Make sure that global data has at least 16 bits of alignment by
|
|
// default, so that we can refer to it using LARL. We don't have any
|
|
// special requirements for stack variables though.
|
|
Ret += "-i1:8:16-i8:8:16";
|
|
|
|
// 64-bit integers are naturally aligned.
|
|
Ret += "-i64:64";
|
|
|
|
// 128-bit floats are aligned only to 64 bits.
|
|
Ret += "-f128:64";
|
|
|
|
// When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
|
|
if (VectorABI)
|
|
Ret += "-v128:64";
|
|
|
|
// We prefer 16 bits of aligned for all globals; see above.
|
|
Ret += "-a:8:16";
|
|
|
|
// Integer registers are 32 or 64 bits.
|
|
Ret += "-n32:64";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
|
|
// Static code is suitable for use in a dynamic executable; there is no
|
|
// separate DynamicNoPIC model.
|
|
if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
|
|
return Reloc::Static;
|
|
return *RM;
|
|
}
|
|
|
|
// For SystemZ we define the models as follows:
|
|
//
|
|
// Small: BRASL can call any function and will use a stub if necessary.
|
|
// Locally-binding symbols will always be in range of LARL.
|
|
//
|
|
// Medium: BRASL can call any function and will use a stub if necessary.
|
|
// GOT slots and locally-defined text will always be in range
|
|
// of LARL, but other symbols might not be.
|
|
//
|
|
// Large: Equivalent to Medium for now.
|
|
//
|
|
// Kernel: Equivalent to Medium for now.
|
|
//
|
|
// This means that any PIC module smaller than 4GB meets the
|
|
// requirements of Small, so Small seems like the best default there.
|
|
//
|
|
// All symbols bind locally in a non-PIC module, so the choice is less
|
|
// obvious. There are two cases:
|
|
//
|
|
// - When creating an executable, PLTs and copy relocations allow
|
|
// us to treat external symbols as part of the executable.
|
|
// Any executable smaller than 4GB meets the requirements of Small,
|
|
// so that seems like the best default.
|
|
//
|
|
// - When creating JIT code, stubs will be in range of BRASL if the
|
|
// image is less than 4GB in size. GOT entries will likewise be
|
|
// in range of LARL. However, the JIT environment has no equivalent
|
|
// of copy relocs, so locally-binding data symbols might not be in
|
|
// the range of LARL. We need the Medium model in that case.
|
|
static CodeModel::Model
|
|
getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
|
|
bool JIT) {
|
|
if (CM) {
|
|
if (*CM == CodeModel::Tiny)
|
|
report_fatal_error("Target does not support the tiny CodeModel", false);
|
|
if (*CM == CodeModel::Kernel)
|
|
report_fatal_error("Target does not support the kernel CodeModel", false);
|
|
return *CM;
|
|
}
|
|
if (JIT)
|
|
return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
|
|
return CodeModel::Small;
|
|
}
|
|
|
|
SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: LLVMTargetMachine(
|
|
T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
|
|
getEffectiveRelocModel(RM),
|
|
getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
|
|
OL),
|
|
TLOF(std::make_unique<TargetLoweringObjectFileELF>()) {
|
|
initAsmInfo();
|
|
}
|
|
|
|
SystemZTargetMachine::~SystemZTargetMachine() = default;
|
|
|
|
const SystemZSubtarget *
|
|
SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
|
|
Attribute CPUAttr = F.getFnAttribute("target-cpu");
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
std::string CPU =
|
|
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
|
|
std::string FS =
|
|
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
|
|
|
|
// FIXME: This is related to the code below to reset the target options,
|
|
// we need to know whether or not the soft float flag is set on the
|
|
// function, so we can enable it as a subtarget feature.
|
|
bool softFloat =
|
|
F.hasFnAttribute("use-soft-float") &&
|
|
F.getFnAttribute("use-soft-float").getValueAsString() == "true";
|
|
|
|
if (softFloat)
|
|
FS += FS.empty() ? "+soft-float" : ",+soft-float";
|
|
|
|
auto &I = SubtargetMap[CPU + FS];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, FS, *this);
|
|
}
|
|
|
|
return I.get();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// SystemZ Code Generator Pass Configuration Options.
|
|
class SystemZPassConfig : public TargetPassConfig {
|
|
public:
|
|
SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
SystemZTargetMachine &getSystemZTargetMachine() const {
|
|
return getTM<SystemZTargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createPostMachineScheduler(MachineSchedContext *C) const override {
|
|
return new ScheduleDAGMI(C,
|
|
std::make_unique<SystemZPostRASchedStrategy>(C),
|
|
/*RemoveKillFlags=*/true);
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
bool addInstSelector() override;
|
|
bool addILPOpts() override;
|
|
void addPreRegAlloc() override;
|
|
void addPostRewrite() override;
|
|
void addPostRegAlloc() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void SystemZPassConfig::addIRPasses() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createSystemZTDCPass());
|
|
addPass(createLoopDataPrefetchPass());
|
|
}
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
}
|
|
|
|
bool SystemZPassConfig::addInstSelector() {
|
|
addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
|
|
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SystemZPassConfig::addILPOpts() {
|
|
addPass(&EarlyIfConverterID);
|
|
return true;
|
|
}
|
|
|
|
void SystemZPassConfig::addPreRegAlloc() {
|
|
addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
|
|
}
|
|
|
|
void SystemZPassConfig::addPostRewrite() {
|
|
addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
|
|
}
|
|
|
|
void SystemZPassConfig::addPostRegAlloc() {
|
|
// PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
|
|
// is not called).
|
|
if (getOptLevel() == CodeGenOpt::None)
|
|
addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
|
|
}
|
|
|
|
void SystemZPassConfig::addPreSched2() {
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(&IfConverterID);
|
|
}
|
|
|
|
void SystemZPassConfig::addPreEmitPass() {
|
|
// Do instruction shortening before compare elimination because some
|
|
// vector instructions will be shortened into opcodes that compare
|
|
// elimination recognizes.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
|
|
|
|
// We eliminate comparisons here rather than earlier because some
|
|
// transformations can change the set of available CC values and we
|
|
// generally want those transformations to have priority. This is
|
|
// especially true in the commonest case where the result of the comparison
|
|
// is used by a single in-range branch instruction, since we will then
|
|
// be able to fuse the compare and the branch instead.
|
|
//
|
|
// For example, two-address NILF can sometimes be converted into
|
|
// three-address RISBLG. NILF produces a CC value that indicates whether
|
|
// the low word is zero, but RISBLG does not modify CC at all. On the
|
|
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
|
|
// The CC value produced by NILL isn't useful for our purposes, but the
|
|
// value produced by RISBG can be used for any comparison with zero
|
|
// (not just equality). So there are some transformations that lose
|
|
// CC values (while still being worthwhile) and others that happen to make
|
|
// the CC result more useful than it was originally.
|
|
//
|
|
// Another reason is that we only want to use BRANCH ON COUNT in cases
|
|
// where we know that the count register is not going to be spilled.
|
|
//
|
|
// Doing it so late makes it more likely that a register will be reused
|
|
// between the comparison and the branch, but it isn't clear whether
|
|
// preventing that would be a win or not.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
|
|
addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
|
|
|
|
// Do final scheduling after all other optimizations, to get an
|
|
// optimal input for the decoder (branch relaxation must happen
|
|
// after block placement).
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(&PostMachineSchedulerID);
|
|
}
|
|
|
|
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new SystemZPassConfig(*this, PM);
|
|
}
|
|
|
|
TargetTransformInfo
|
|
SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
|
|
return TargetTransformInfo(SystemZTTIImpl(this, F));
|
|
}
|