llvm-for-llvmta/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp

2630 lines
94 KiB
C++

//===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVAsmBackend.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "MCTargetDesc/RISCVInstPrinter.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "MCTargetDesc/RISCVTargetStreamer.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/RISCVAttributes.h"
#include "llvm/Support/TargetRegistry.h"
#include <limits>
using namespace llvm;
#define DEBUG_TYPE "riscv-asm-parser"
// Include the auto-generated portion of the compress emitter.
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
STATISTIC(RISCVNumInstrsCompressed,
"Number of RISC-V Compressed instructions emitted");
namespace {
struct RISCVOperand;
struct ParserOptionsSet {
bool IsPicEnabled;
};
class RISCVAsmParser : public MCTargetAsmParser {
SmallVector<FeatureBitset, 4> FeatureBitStack;
SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
ParserOptionsSet ParserOptions;
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
bool isRV32E() const { return getSTI().hasFeature(RISCV::FeatureRV32E); }
RISCVTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<RISCVTargetStreamer &>(TS);
}
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper, Twine Msg);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
// Helper to actually emit an instruction to the MCStreamer. Also, when
// possible, compression of the instruction is performed.
void emitToStreamer(MCStreamer &S, const MCInst &Inst);
// Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
// synthesize the desired immedate value into the destination register.
void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
// Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
// helpers such as emitLoadLocalAddress and emitLoadAddress.
void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "lla" used in PC-rel addressing.
void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
// addressing.
void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
// addressing.
void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo load/store instruction with a symbol.
void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
MCStreamer &Out, bool HasTmpReg);
// Helper to emit pseudo sign/zero extend instruction.
void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo vmsge{u}.vx instruction.
void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
// Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
// Enforcing this using a restricted register class for the second input
// operand of PseudoAddTPRel results in a poor diagnostic due to the fact
// 'add' is an overloaded mnemonic.
bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
// Check instruction constraints.
bool validateInstruction(MCInst &Inst, OperandVector &Operands);
/// Helper for processing MC instructions that have been successfully matched
/// by MatchAndEmitInstruction. Modifications to the emitted instructions,
/// like the expansion of pseudo instructions (e.g., "li"), can be performed
/// in this method.
bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
MCStreamer &Out);
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "RISCVGenAsmMatcher.inc"
OperandMatchResultTy parseCSRSystemRegister(OperandVector &Operands);
OperandMatchResultTy parseImmediate(OperandVector &Operands);
OperandMatchResultTy parseRegister(OperandVector &Operands,
bool AllowParens = false);
OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
OperandMatchResultTy parseAtomicMemOp(OperandVector &Operands);
OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
OperandMatchResultTy parseBareSymbol(OperandVector &Operands);
OperandMatchResultTy parseCallSymbol(OperandVector &Operands);
OperandMatchResultTy parsePseudoJumpSymbol(OperandVector &Operands);
OperandMatchResultTy parseJALOffset(OperandVector &Operands);
OperandMatchResultTy parseVTypeI(OperandVector &Operands);
OperandMatchResultTy parseMaskReg(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
bool parseDirectiveOption();
bool parseDirectiveAttribute();
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(getSTI().getFeatureBits()[Feature])) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
bool getFeatureBits(uint64_t Feature) {
return getSTI().getFeatureBits()[Feature];
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (getSTI().getFeatureBits()[Feature]) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void pushFeatureBits() {
assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
"These two stacks must be kept synchronized");
FeatureBitStack.push_back(getSTI().getFeatureBits());
ParserOptionsStack.push_back(ParserOptions);
}
bool popFeatureBits() {
assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
"These two stacks must be kept synchronized");
if (FeatureBitStack.empty())
return true;
FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
copySTI().setFeatureBits(FeatureBits);
setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
ParserOptions = ParserOptionsStack.pop_back_val();
return false;
}
std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
public:
enum RISCVMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "RISCVGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
static bool classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind);
RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
Parser.addAliasForDirective(".half", ".2byte");
Parser.addAliasForDirective(".hword", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".dword", ".8byte");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
auto ABIName = StringRef(Options.ABIName);
if (ABIName.endswith("f") &&
!getSTI().getFeatureBits()[RISCV::FeatureStdExtF]) {
errs() << "Hard-float 'f' ABI can't be used for a target that "
"doesn't support the F instruction set extension (ignoring "
"target-abi)\n";
} else if (ABIName.endswith("d") &&
!getSTI().getFeatureBits()[RISCV::FeatureStdExtD]) {
errs() << "Hard-float 'd' ABI can't be used for a target that "
"doesn't support the D instruction set extension (ignoring "
"target-abi)\n";
}
const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
}
};
/// RISCVOperand - Instances of this class represent a parsed machine
/// instruction
struct RISCVOperand : public MCParsedAsmOperand {
enum class KindTy {
Token,
Register,
Immediate,
SystemRegister,
VType,
} Kind;
bool IsRV64;
struct RegOp {
MCRegister RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
struct SysRegOp {
const char *Data;
unsigned Length;
unsigned Encoding;
// FIXME: Add the Encoding parsed fields as needed for checks,
// e.g.: read/write or user/supervisor/machine privileges.
};
struct VTypeOp {
unsigned Val;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
struct SysRegOp SysReg;
struct VTypeOp VType;
};
RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
IsRV64 = o.IsRV64;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case KindTy::Register:
Reg = o.Reg;
break;
case KindTy::Immediate:
Imm = o.Imm;
break;
case KindTy::Token:
Tok = o.Tok;
break;
case KindTy::SystemRegister:
SysReg = o.SysReg;
break;
case KindTy::VType:
VType = o.VType;
break;
}
}
bool isToken() const override { return Kind == KindTy::Token; }
bool isReg() const override { return Kind == KindTy::Register; }
bool isV0Reg() const {
return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
}
bool isImm() const override { return Kind == KindTy::Immediate; }
bool isMem() const override { return false; }
bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
bool isVType() const { return Kind == KindTy::VType; }
bool isGPR() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
}
static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
RISCVMCExpr::VariantKind &VK) {
if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
VK = RE->getKind();
return RE->evaluateAsConstant(Imm);
}
if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
VK = RISCVMCExpr::VK_RISCV_None;
Imm = CE->getValue();
return true;
}
return false;
}
// True if operand is a symbol with no modifiers, or a constant with no
// modifiers and isShiftedInt<N-1, 1>(Op).
template <int N> bool isBareSimmNLsb0() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
bool IsValid;
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
else
IsValid = isShiftedInt<N - 1, 1>(Imm);
return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
}
// Predicate methods for AsmOperands defined in RISCVInstrInfo.td
bool isBareSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isCallSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
(VK == RISCVMCExpr::VK_RISCV_CALL ||
VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
}
bool isPseudoJumpSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_RISCV_CALL;
}
bool isTPRelAddSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
}
bool isCSRSystemRegister() const { return isSystemRegister(); }
bool isVTypeI() const { return isVType(); }
/// Return true if the operand is a valid for the fence instruction e.g.
/// ('iorw').
bool isFenceArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
// Letters must be unique, taken from 'iorw', and in ascending order. This
// holds as long as each individual character is one of 'iorw' and is
// greater than the previous character.
char Prev = '\0';
for (char c : Str) {
if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
return false;
if (c <= Prev)
return false;
Prev = c;
}
return true;
}
/// Return true if the operand is a valid floating point rounding mode.
bool isFRMArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
}
bool isImmXLenLI() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
return true;
// Given only Imm, ensuring that the actually specified constant is either
// a signed or unsigned 64-bit number is unfortunately impossible.
return IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None &&
(isRV64() || (isInt<32>(Imm) || isUInt<32>(Imm)));
}
bool isUImmLog2XLen() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImmLog2XLenNonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
if (Imm == 0)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImmLog2XLenHalf() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
return (isRV64() && isUInt<5>(Imm)) || isUInt<4>(Imm);
}
bool isUImm5() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm5() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<6>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6NonZero() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<6>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isCLUIImm() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm != 0) &&
(isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm7Lsb00() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb00() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb000() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
bool isUImm9Lsb000() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm10Lsb00NonZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm12() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
else
IsValid = isInt<12>(Imm);
return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
VK == RISCVMCExpr::VK_RISCV_LO ||
VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
}
bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
bool isSImm10Lsb0000NonZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm20LUI() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm) {
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
} else {
return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
}
}
bool isUImm20AUIPC() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm) {
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
} else {
return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
}
}
bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
bool isImmZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm5Plus1() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<5>(Imm - 1) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
/// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
/// True if this operand is for an RV64 instruction
bool isRV64() const { return IsRV64; }
unsigned getReg() const override {
assert(Kind == KindTy::Register && "Invalid type access!");
return Reg.RegNum.id();
}
StringRef getSysReg() const {
assert(Kind == KindTy::SystemRegister && "Invalid type access!");
return StringRef(SysReg.Data, SysReg.Length);
}
const MCExpr *getImm() const {
assert(Kind == KindTy::Immediate && "Invalid type access!");
return Imm.Val;
}
StringRef getToken() const {
assert(Kind == KindTy::Token && "Invalid type access!");
return Tok;
}
unsigned getVType() const {
assert(Kind == KindTy::VType && "Invalid type access!");
return VType.Val;
}
void print(raw_ostream &OS) const override {
auto RegName = [](unsigned Reg) {
if (Reg)
return RISCVInstPrinter::getRegisterName(Reg);
else
return "noreg";
};
switch (Kind) {
case KindTy::Immediate:
OS << *getImm();
break;
case KindTy::Register:
OS << "<register " << RegName(getReg()) << ">";
break;
case KindTy::Token:
OS << "'" << getToken() << "'";
break;
case KindTy::SystemRegister:
OS << "<sysreg: " << getSysReg() << '>';
break;
case KindTy::VType:
OS << "<vtype: ";
RISCVVType::printVType(getVType(), OS);
OS << '>';
break;
}
}
static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand>
createSysReg(StringRef Str, SMLoc S, unsigned Encoding, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
Op->SysReg.Data = Str.data();
Op->SysReg.Length = Str.size();
Op->SysReg.Encoding = Encoding;
Op->StartLoc = S;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S,
bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
Op->VType.Val = VTypeI;
Op->StartLoc = S;
Op->IsRV64 = IsRV64;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
int64_t Imm = 0;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
if (IsConstant)
Inst.addOperand(MCOperand::createImm(Imm));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addFenceArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// isFenceArg has validated the operand, meaning this cast is safe
auto SE = cast<MCSymbolRefExpr>(getImm());
unsigned Imm = 0;
for (char c : SE->getSymbol().getName()) {
switch (c) {
default:
llvm_unreachable("FenceArg must contain only [iorw]");
case 'i': Imm |= RISCVFenceField::I; break;
case 'o': Imm |= RISCVFenceField::O; break;
case 'r': Imm |= RISCVFenceField::R; break;
case 'w': Imm |= RISCVFenceField::W; break;
}
}
Inst.addOperand(MCOperand::createImm(Imm));
}
void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
}
void addVTypeIOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVType()));
}
// Returns the rounding mode represented by this RISCVOperand. Should only
// be called after checking isFRMArg.
RISCVFPRndMode::RoundingMode getRoundingMode() const {
// isFRMArg has validated the operand, meaning this cast is safe.
auto SE = cast<MCSymbolRefExpr>(getImm());
RISCVFPRndMode::RoundingMode FRM =
RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
return FRM;
}
void addFRMArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getRoundingMode()));
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "RISCVGenAsmMatcher.inc"
static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_H;
}
static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_F;
}
unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
if (!Op.isReg())
return Match_InvalidOperand;
MCRegister Reg = Op.getReg();
bool IsRegFPR64 =
RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
bool IsRegFPR64C =
RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
// As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
// register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
if ((IsRegFPR64 && Kind == MCK_FPR32) ||
(IsRegFPR64C && Kind == MCK_FPR32C)) {
Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
return Match_Success;
}
// As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
// register from FPR64 to FPR16 if necessary.
if (IsRegFPR64 && Kind == MCK_FPR16) {
Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
return Match_Success;
}
return Match_InvalidOperand;
}
bool RISCVAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
Twine Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
static std::string RISCVMnemonicSpellCheck(StringRef S,
const FeatureBitset &FBS,
unsigned VariantID = 0);
bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
FeatureBitset MissingFeatures;
auto Result =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
if (validateInstruction(Inst, Operands))
return true;
return processInstruction(Inst, IDLoc, Operands, Out);
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing features!");
bool FirstFeature = true;
std::string Msg = "instruction requires the following:";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i]) {
Msg += FirstFeature ? " " : ", ";
Msg += getSubtargetFeatureName(i);
FirstFeature = false;
}
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = RISCVMnemonicSpellCheck(
((RISCVOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
// Handle the case when the error message is of specific type
// other than the generic Match_InvalidOperand, and the
// corresponding operand is missing.
if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
}
switch(Result) {
default:
break;
case Match_InvalidImmXLenLI:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constant 64-bit integer");
}
return generateImmOutOfRangeError(Operands, ErrorInfo,
std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max());
case Match_InvalidImmZero: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "immediate must be zero");
}
case Match_InvalidUImmLog2XLen:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenNonZero:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenHalf:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidSImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
(1 << 4) - 1);
case Match_InvalidSImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1);
case Match_InvalidSImm6NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
"immediate must be non-zero in the range");
case Match_InvalidCLUIImm:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 1, (1 << 5) - 1,
"immediate must be in [0xfffe0, 0xfffff] or");
case Match_InvalidUImm7Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidSImm9Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm9Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 9) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidUImm10Lsb00NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 4, (1 << 10) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidSImm10Lsb0000NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
"immediate must be a multiple of 16 bytes and non-zero in the range");
case Match_InvalidSImm12:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
"operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
"integer in the range");
case Match_InvalidSImm12Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidSImm13Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm20LUI:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with "
"%hi/%tprel_hi modifier or an integer in "
"the range");
case Match_InvalidUImm20AUIPC:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with a "
"%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
"an integer in the range");
case Match_InvalidSImm21Lsb0JAL:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidCSRSystemRegister: {
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
"operand must be a valid system register "
"name or an integer in the range");
}
case Match_InvalidFenceArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be formed of letters selected in-order from 'iorw'");
}
case Match_InvalidFRMArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be a valid floating point rounding mode mnemonic");
}
case Match_InvalidBareSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
case Match_InvalidPseudoJumpSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a valid jump target");
}
case Match_InvalidCallSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
case Match_InvalidTPRelAddSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
}
case Match_InvalidVTypeI: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be "
"e[8|16|32|64|128|256|512|1024],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
}
case Match_InvalidVMaskRegister: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be v0.t");
}
case Match_InvalidSImm5Plus1: {
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
(1 << 4),
"immediate must be in the range");
}
}
llvm_unreachable("Unknown match type detected!");
}
// Attempts to match Name as a register (either using the default name or
// alternative ABI names), setting RegNo to the matching register. Upon
// failure, returns true and sets RegNo to 0. If IsRV32E then registers
// x16-x31 will be rejected.
static bool matchRegisterNameHelper(bool IsRV32E, MCRegister &RegNo,
StringRef Name) {
RegNo = MatchRegisterName(Name);
// The 16-/32- and 64-bit FPRs have the same asm name. Check that the initial
// match always matches the 64-bit variant, and not the 16/32-bit one.
assert(!(RegNo >= RISCV::F0_H && RegNo <= RISCV::F31_H));
assert(!(RegNo >= RISCV::F0_F && RegNo <= RISCV::F31_F));
// The default FPR register class is based on the tablegen enum ordering.
static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
if (RegNo == RISCV::NoRegister)
RegNo = MatchRegisterAltName(Name);
if (IsRV32E && RegNo >= RISCV::X16 && RegNo <= RISCV::X31)
RegNo = RISCV::NoRegister;
return RegNo == RISCV::NoRegister;
}
bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
if (tryParseRegister(RegNo, StartLoc, EndLoc) != MatchOperand_Success)
return Error(StartLoc, "invalid register name");
return false;
}
OperandMatchResultTy RISCVAsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
StringRef Name = getLexer().getTok().getIdentifier();
if (matchRegisterNameHelper(isRV32E(), (MCRegister &)RegNo, Name))
return MatchOperand_NoMatch;
getParser().Lex(); // Eat identifier token.
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
bool AllowParens) {
SMLoc FirstS = getLoc();
bool HadParens = false;
AsmToken LParen;
// If this is an LParen and a parenthesised register name is allowed, parse it
// atomically.
if (AllowParens && getLexer().is(AsmToken::LParen)) {
AsmToken Buf[2];
size_t ReadCount = getLexer().peekTokens(Buf);
if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
HadParens = true;
LParen = getParser().getTok();
getParser().Lex(); // Eat '('
}
}
switch (getLexer().getKind()) {
default:
if (HadParens)
getLexer().UnLex(LParen);
return MatchOperand_NoMatch;
case AsmToken::Identifier:
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister RegNo;
matchRegisterNameHelper(isRV32E(), RegNo, Name);
if (RegNo == RISCV::NoRegister) {
if (HadParens)
getLexer().UnLex(LParen);
return MatchOperand_NoMatch;
}
if (HadParens)
Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
}
if (HadParens) {
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
}
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res))
return MatchOperand_ParseFail;
auto *CE = dyn_cast<MCConstantExpr>(Res);
if (CE) {
int64_t Imm = CE->getValue();
if (isUInt<12>(Imm)) {
auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
// Accept an immediate representing a named or un-named Sys Reg
// if the range is valid, regardless of the required features.
Operands.push_back(RISCVOperand::createSysReg(
SysReg ? SysReg->Name : "", S, Imm, isRV64()));
return MatchOperand_Success;
}
}
Twine Msg = "immediate must be an integer in the range";
Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
return MatchOperand_ParseFail;
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
if (!SysReg)
SysReg = RISCVSysReg::lookupSysRegByAltName(Identifier);
// Accept a named Sys Reg if the required features are present.
if (SysReg) {
if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits())) {
Error(S, "system register use requires an option to be enabled");
return MatchOperand_ParseFail;
}
Operands.push_back(RISCVOperand::createSysReg(
Identifier, S, SysReg->Encoding, isRV64()));
return MatchOperand_Success;
}
Twine Msg = "operand must be a valid system register name "
"or an integer in the range";
Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
return MatchOperand_ParseFail;
}
case AsmToken::Percent: {
// Discard operand with modifier.
Twine Msg = "immediate must be an integer in the range";
Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
return MatchOperand_ParseFail;
}
}
return MatchOperand_NoMatch;
}
OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Dot:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String:
case AsmToken::Identifier:
if (getParser().parseExpression(Res))
return MatchOperand_ParseFail;
break;
case AsmToken::Percent:
return parseOperandWithModifier(Operands);
}
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::Percent) {
Error(getLoc(), "expected '%' for operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '%'
if (getLexer().getKind() != AsmToken::Identifier) {
Error(getLoc(), "expected valid identifier for operand modifier");
return MatchOperand_ParseFail;
}
StringRef Identifier = getParser().getTok().getIdentifier();
RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
Error(getLoc(), "unrecognized operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat the identifier
if (getLexer().getKind() != AsmToken::LParen) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
const MCExpr *SubExpr;
if (getParser().parseParenExpression(SubExpr, E)) {
return MatchOperand_ParseFail;
}
const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
StringRef Identifier;
AsmToken Tok = getLexer().getTok();
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
if (Identifier.consume_back("@plt")) {
Error(getLoc(), "'@plt' operand not valid for instruction");
return MatchOperand_ParseFail;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
if (Sym->isVariable()) {
const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
if (!isa<MCSymbolRefExpr>(V)) {
getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
return MatchOperand_NoMatch;
}
Res = V;
} else
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
MCBinaryExpr::Opcode Opcode;
switch (getLexer().getKind()) {
default:
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
case AsmToken::Plus:
Opcode = MCBinaryExpr::Add;
break;
case AsmToken::Minus:
Opcode = MCBinaryExpr::Sub;
break;
}
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
// Avoid parsing the register in `call rd, foo` as a call symbol.
if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
return MatchOperand_NoMatch;
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL;
if (Identifier.consume_back("@plt"))
Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
Res = RISCVMCExpr::create(Res, Kind, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
if (getParser().parseExpression(Res))
return MatchOperand_ParseFail;
if (Res->getKind() != MCExpr::ExprKind::SymbolRef ||
cast<MCSymbolRefExpr>(Res)->getKind() ==
MCSymbolRefExpr::VariantKind::VK_PLT) {
Error(S, "operand must be a valid jump target");
return MatchOperand_ParseFail;
}
Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_RISCV_CALL, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
// Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
// both being acceptable forms. When parsing `jal ra, foo` this function
// will be called for the `ra` register operand in an attempt to match the
// single-operand alias. parseJALOffset must fail for this case. It would
// seem logical to try parse the operand using parseImmediate and return
// NoMatch if the next token is a comma (meaning we must be parsing a jal in
// the second form rather than the first). We can't do this as there's no
// way of rewinding the lexer state. Instead, return NoMatch if this operand
// is an identifier and is followed by a comma.
if (getLexer().is(AsmToken::Identifier) &&
getLexer().peekTok().is(AsmToken::Comma))
return MatchOperand_NoMatch;
return parseImmediate(Operands);
}
OperandMatchResultTy RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
SMLoc S = getLoc();
if (getLexer().getKind() != AsmToken::Identifier)
return MatchOperand_NoMatch;
// Parse "e8,m1,t[a|u],m[a|u]"
StringRef Name = getLexer().getTok().getIdentifier();
if (!Name.consume_front("e"))
return MatchOperand_NoMatch;
unsigned Sew;
if (Name.getAsInteger(10, Sew))
return MatchOperand_NoMatch;
if (!RISCVVType::isValidSEW(Sew))
return MatchOperand_NoMatch;
getLexer().Lex();
if (!getLexer().is(AsmToken::Comma))
return MatchOperand_NoMatch;
getLexer().Lex();
Name = getLexer().getTok().getIdentifier();
if (!Name.consume_front("m"))
return MatchOperand_NoMatch;
// "m" or "mf"
bool Fractional = Name.consume_front("f");
unsigned Lmul;
if (Name.getAsInteger(10, Lmul))
return MatchOperand_NoMatch;
if (!RISCVVType::isValidLMUL(Lmul, Fractional))
return MatchOperand_NoMatch;
getLexer().Lex();
if (!getLexer().is(AsmToken::Comma))
return MatchOperand_NoMatch;
getLexer().Lex();
Name = getLexer().getTok().getIdentifier();
// ta or tu
bool TailAgnostic;
if (Name == "ta")
TailAgnostic = true;
else if (Name == "tu")
TailAgnostic = false;
else
return MatchOperand_NoMatch;
getLexer().Lex();
if (!getLexer().is(AsmToken::Comma))
return MatchOperand_NoMatch;
getLexer().Lex();
Name = getLexer().getTok().getIdentifier();
// ma or mu
bool MaskAgnostic;
if (Name == "ma")
MaskAgnostic = true;
else if (Name == "mu")
MaskAgnostic = false;
else
return MatchOperand_NoMatch;
getLexer().Lex();
if (getLexer().getKind() != AsmToken::EndOfStatement)
return MatchOperand_NoMatch;
unsigned SewLog2 = Log2_32(Sew / 8);
unsigned LmulLog2 = Log2_32(Lmul);
RISCVVSEW VSEW = static_cast<RISCVVSEW>(SewLog2);
RISCVVLMUL VLMUL =
static_cast<RISCVVLMUL>(Fractional ? 8 - LmulLog2 : LmulLog2);
unsigned VTypeI =
RISCVVType::encodeVTYPE(VLMUL, VSEW, TailAgnostic, MaskAgnostic);
Operands.push_back(RISCVOperand::createVType(VTypeI, S, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::Identifier:
StringRef Name = getLexer().getTok().getIdentifier();
if (!Name.consume_back(".t")) {
Error(getLoc(), "expected '.t' suffix");
return MatchOperand_ParseFail;
}
MCRegister RegNo;
matchRegisterNameHelper(isRV32E(), RegNo, Name);
if (RegNo == RISCV::NoRegister)
return MatchOperand_NoMatch;
if (RegNo != RISCV::V0)
return MatchOperand_NoMatch;
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
}
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::LParen)) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
if (parseRegister(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected register");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseAtomicMemOp(OperandVector &Operands) {
// Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
// as one of their register operands, such as `(a0)`. This just denotes that
// the register (in this case `a0`) contains a memory address.
//
// Normally, we would be able to parse these by putting the parens into the
// instruction string. However, GNU as also accepts a zero-offset memory
// operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
// with parseImmediate followed by parseMemOpBaseReg, but these instructions
// do not accept an immediate operand, and we do not want to add a "dummy"
// operand that is silently dropped.
//
// Instead, we use this custom parser. This will: allow (and discard) an
// offset if it is zero; require (and discard) parentheses; and add only the
// parsed register operand to `Operands`.
//
// These operands are printed with RISCVInstPrinter::printAtomicMemOp, which
// will only print the register surrounded by parentheses (which GNU as also
// uses as its canonical representation for these operands).
std::unique_ptr<RISCVOperand> OptionalImmOp;
if (getLexer().isNot(AsmToken::LParen)) {
// Parse an Integer token. We do not accept arbritrary constant expressions
// in the offset field (because they may include parens, which complicates
// parsing a lot).
int64_t ImmVal;
SMLoc ImmStart = getLoc();
if (getParser().parseIntToken(ImmVal,
"expected '(' or optional integer offset"))
return MatchOperand_ParseFail;
// Create a RISCVOperand for checking later (so the error messages are
// nicer), but we don't add it to Operands.
SMLoc ImmEnd = getLoc();
OptionalImmOp =
RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
ImmStart, ImmEnd, isRV64());
}
if (getLexer().isNot(AsmToken::LParen)) {
Error(getLoc(), OptionalImmOp ? "expected '(' after optional integer offset"
: "expected '(' or optional integer offset");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
if (parseRegister(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected register");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ')'
// Deferred Handling of non-zero offsets. This makes the error messages nicer.
if (OptionalImmOp && !OptionalImmOp->isImmZero()) {
Error(OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
return MatchOperand_ParseFail;
}
return MatchOperand_Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy Result =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
if (Result == MatchOperand_Success)
return false;
if (Result == MatchOperand_ParseFail)
return true;
// Attempt to parse token as a register.
if (parseRegister(Operands, true) == MatchOperand_Success)
return false;
// Attempt to parse token as an immediate
if (parseImmediate(Operands) == MatchOperand_Success) {
// Parse memory base register if present
if (getLexer().is(AsmToken::LParen))
return parseMemOpBaseReg(Operands) != MatchOperand_Success;
return false;
}
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// Ensure that if the instruction occurs when relaxation is enabled,
// relocations are forced for the file. Ideally this would be done when there
// is enough information to reliably determine if the instruction itself may
// cause relaxations. Unfortunately instruction processing stage occurs in the
// same pass as relocation emission, so it's too late to set a 'sticky bit'
// for the entire file.
if (getSTI().getFeatureBits()[RISCV::FeatureRelax]) {
auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
if (Assembler != nullptr) {
RISCVAsmBackend &MAB =
static_cast<RISCVAsmBackend &>(Assembler->getBackend());
MAB.setForceRelocs();
}
}
// First operand is token for instruction
Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
// If there are no more operands, then finish
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands
unsigned OperandIdx = 1;
while (getLexer().is(AsmToken::Comma)) {
// Consume comma token
getLexer().Lex();
// Parse next operand
if (parseOperand(Operands, Name))
return true;
++OperandIdx;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind) {
Kind = RISCVMCExpr::VK_RISCV_None;
if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
Kind = RE->getKind();
Expr = RE->getSubExpr();
}
MCValue Res;
MCFixup Fixup;
if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup))
return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None;
return false;
}
bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
// This returns false if this function recognizes the directive
// regardless of whether it is successfully handles or reports an
// error. Otherwise it returns true to give the generic parser a
// chance at recognizing it.
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".option")
return parseDirectiveOption();
else if (IDVal == ".attribute")
return parseDirectiveAttribute();
return true;
}
bool RISCVAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected identifier");
StringRef Option = Tok.getIdentifier();
if (Option == "push") {
getTargetStreamer().emitDirectiveOptionPush();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
pushFeatureBits();
return false;
}
if (Option == "pop") {
SMLoc StartLoc = Parser.getTok().getLoc();
getTargetStreamer().emitDirectiveOptionPop();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
if (popFeatureBits())
return Error(StartLoc, ".option pop with no .option push");
return false;
}
if (Option == "rvc") {
getTargetStreamer().emitDirectiveOptionRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
setFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "norvc") {
getTargetStreamer().emitDirectiveOptionNoRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
clearFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "pic") {
getTargetStreamer().emitDirectiveOptionPIC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
ParserOptions.IsPicEnabled = true;
return false;
}
if (Option == "nopic") {
getTargetStreamer().emitDirectiveOptionNoPIC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
ParserOptions.IsPicEnabled = false;
return false;
}
if (Option == "relax") {
getTargetStreamer().emitDirectiveOptionRelax();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
setFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
if (Option == "norelax") {
getTargetStreamer().emitDirectiveOptionNoRelax();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
clearFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(),
"unknown option, expected 'push', 'pop', 'rvc', 'norvc', 'relax' or "
"'norelax'");
Parser.eatToEndOfStatement();
return false;
}
/// parseDirectiveAttribute
/// ::= .attribute expression ',' ( expression | "string" )
/// ::= .attribute identifier ',' ( expression | "string" )
bool RISCVAsmParser::parseDirectiveAttribute() {
MCAsmParser &Parser = getParser();
int64_t Tag;
SMLoc TagLoc;
TagLoc = Parser.getTok().getLoc();
if (Parser.getTok().is(AsmToken::Identifier)) {
StringRef Name = Parser.getTok().getIdentifier();
Optional<unsigned> Ret =
ELFAttrs::attrTypeFromString(Name, RISCVAttrs::RISCVAttributeTags);
if (!Ret.hasValue()) {
Error(TagLoc, "attribute name not recognised: " + Name);
return false;
}
Tag = Ret.getValue();
Parser.Lex();
} else {
const MCExpr *AttrExpr;
TagLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(AttrExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
if (check(!CE, TagLoc, "expected numeric constant"))
return true;
Tag = CE->getValue();
}
if (Parser.parseToken(AsmToken::Comma, "comma expected"))
return true;
StringRef StringValue;
int64_t IntegerValue = 0;
bool IsIntegerValue = true;
// RISC-V attributes have a string value if the tag number is odd
// and an integer value if the tag number is even.
if (Tag % 2)
IsIntegerValue = false;
SMLoc ValueExprLoc = Parser.getTok().getLoc();
if (IsIntegerValue) {
const MCExpr *ValueExpr;
if (Parser.parseExpression(ValueExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
if (!CE)
return Error(ValueExprLoc, "expected numeric constant");
IntegerValue = CE->getValue();
} else {
if (Parser.getTok().isNot(AsmToken::String))
return Error(Parser.getTok().getLoc(), "expected string constant");
StringValue = Parser.getTok().getStringContents();
Parser.Lex();
}
if (Parser.parseToken(AsmToken::EndOfStatement,
"unexpected token in '.attribute' directive"))
return true;
if (Tag == RISCVAttrs::ARCH) {
StringRef Arch = StringValue;
if (Arch.consume_front("rv32"))
clearFeatureBits(RISCV::Feature64Bit, "64bit");
else if (Arch.consume_front("rv64"))
setFeatureBits(RISCV::Feature64Bit, "64bit");
else
return Error(ValueExprLoc, "bad arch string " + Arch);
// .attribute arch overrides the current architecture, so unset all
// currently enabled extensions
clearFeatureBits(RISCV::FeatureRV32E, "e");
clearFeatureBits(RISCV::FeatureStdExtM, "m");
clearFeatureBits(RISCV::FeatureStdExtA, "a");
clearFeatureBits(RISCV::FeatureStdExtF, "f");
clearFeatureBits(RISCV::FeatureStdExtD, "d");
clearFeatureBits(RISCV::FeatureStdExtC, "c");
clearFeatureBits(RISCV::FeatureStdExtB, "experimental-b");
clearFeatureBits(RISCV::FeatureStdExtV, "experimental-v");
clearFeatureBits(RISCV::FeatureExtZfh, "experimental-zfh");
clearFeatureBits(RISCV::FeatureExtZba, "experimental-zba");
clearFeatureBits(RISCV::FeatureExtZbb, "experimental-zbb");
clearFeatureBits(RISCV::FeatureExtZbc, "experimental-zbc");
clearFeatureBits(RISCV::FeatureExtZbe, "experimental-zbe");
clearFeatureBits(RISCV::FeatureExtZbf, "experimental-zbf");
clearFeatureBits(RISCV::FeatureExtZbm, "experimental-zbm");
clearFeatureBits(RISCV::FeatureExtZbp, "experimental-zbp");
clearFeatureBits(RISCV::FeatureExtZbproposedc, "experimental-zbproposedc");
clearFeatureBits(RISCV::FeatureExtZbr, "experimental-zbr");
clearFeatureBits(RISCV::FeatureExtZbs, "experimental-zbs");
clearFeatureBits(RISCV::FeatureExtZbt, "experimental-zbt");
clearFeatureBits(RISCV::FeatureExtZvamo, "experimental-zvamo");
clearFeatureBits(RISCV::FeatureStdExtZvlsseg, "experimental-zvlsseg");
while (!Arch.empty()) {
bool DropFirst = true;
if (Arch[0] == 'i')
clearFeatureBits(RISCV::FeatureRV32E, "e");
else if (Arch[0] == 'e')
setFeatureBits(RISCV::FeatureRV32E, "e");
else if (Arch[0] == 'g') {
clearFeatureBits(RISCV::FeatureRV32E, "e");
setFeatureBits(RISCV::FeatureStdExtM, "m");
setFeatureBits(RISCV::FeatureStdExtA, "a");
setFeatureBits(RISCV::FeatureStdExtF, "f");
setFeatureBits(RISCV::FeatureStdExtD, "d");
} else if (Arch[0] == 'm')
setFeatureBits(RISCV::FeatureStdExtM, "m");
else if (Arch[0] == 'a')
setFeatureBits(RISCV::FeatureStdExtA, "a");
else if (Arch[0] == 'f')
setFeatureBits(RISCV::FeatureStdExtF, "f");
else if (Arch[0] == 'd') {
setFeatureBits(RISCV::FeatureStdExtF, "f");
setFeatureBits(RISCV::FeatureStdExtD, "d");
} else if (Arch[0] == 'c') {
setFeatureBits(RISCV::FeatureStdExtC, "c");
} else if (Arch[0] == 'b') {
setFeatureBits(RISCV::FeatureStdExtB, "experimental-b");
} else if (Arch[0] == 'v') {
setFeatureBits(RISCV::FeatureStdExtV, "experimental-v");
} else if (Arch[0] == 's' || Arch[0] == 'x' || Arch[0] == 'z') {
StringRef Ext =
Arch.take_until([](char c) { return ::isdigit(c) || c == '_'; });
if (Ext == "zba")
setFeatureBits(RISCV::FeatureExtZba, "experimental-zba");
else if (Ext == "zbb")
setFeatureBits(RISCV::FeatureExtZbb, "experimental-zbb");
else if (Ext == "zbc")
setFeatureBits(RISCV::FeatureExtZbc, "experimental-zbc");
else if (Ext == "zbe")
setFeatureBits(RISCV::FeatureExtZbe, "experimental-zbe");
else if (Ext == "zbf")
setFeatureBits(RISCV::FeatureExtZbf, "experimental-zbf");
else if (Ext == "zbm")
setFeatureBits(RISCV::FeatureExtZbm, "experimental-zbm");
else if (Ext == "zbp")
setFeatureBits(RISCV::FeatureExtZbp, "experimental-zbp");
else if (Ext == "zbproposedc")
setFeatureBits(RISCV::FeatureExtZbproposedc,
"experimental-zbproposedc");
else if (Ext == "zbr")
setFeatureBits(RISCV::FeatureExtZbr, "experimental-zbr");
else if (Ext == "zbs")
setFeatureBits(RISCV::FeatureExtZbs, "experimental-zbs");
else if (Ext == "zbt")
setFeatureBits(RISCV::FeatureExtZbt, "experimental-zbt");
else if (Ext == "zfh")
setFeatureBits(RISCV::FeatureExtZfh, "experimental-zfh");
else if (Ext == "zvamo")
setFeatureBits(RISCV::FeatureExtZvamo, "experimental-zvamo");
else if (Ext == "zvlsseg")
setFeatureBits(RISCV::FeatureStdExtZvlsseg, "experimental-zvlsseg");
else
return Error(ValueExprLoc, "bad arch string " + Ext);
Arch = Arch.drop_until([](char c) { return ::isdigit(c) || c == '_'; });
DropFirst = false;
} else
return Error(ValueExprLoc, "bad arch string " + Arch);
if (DropFirst)
Arch = Arch.drop_front(1);
int major = 0;
int minor = 0;
Arch.consumeInteger(10, major);
Arch.consume_front("p");
Arch.consumeInteger(10, minor);
Arch = Arch.drop_while([](char c) { return c == '_'; });
}
}
if (IsIntegerValue)
getTargetStreamer().emitAttribute(Tag, IntegerValue);
else {
if (Tag != RISCVAttrs::ARCH) {
getTargetStreamer().emitTextAttribute(Tag, StringValue);
} else {
std::string formalArchStr = "rv32";
if (getFeatureBits(RISCV::Feature64Bit))
formalArchStr = "rv64";
if (getFeatureBits(RISCV::FeatureRV32E))
formalArchStr = (Twine(formalArchStr) + "e1p9").str();
else
formalArchStr = (Twine(formalArchStr) + "i2p0").str();
if (getFeatureBits(RISCV::FeatureStdExtM))
formalArchStr = (Twine(formalArchStr) + "_m2p0").str();
if (getFeatureBits(RISCV::FeatureStdExtA))
formalArchStr = (Twine(formalArchStr) + "_a2p0").str();
if (getFeatureBits(RISCV::FeatureStdExtF))
formalArchStr = (Twine(formalArchStr) + "_f2p0").str();
if (getFeatureBits(RISCV::FeatureStdExtD))
formalArchStr = (Twine(formalArchStr) + "_d2p0").str();
if (getFeatureBits(RISCV::FeatureStdExtC))
formalArchStr = (Twine(formalArchStr) + "_c2p0").str();
if (getFeatureBits(RISCV::FeatureStdExtB))
formalArchStr = (Twine(formalArchStr) + "_b0p93").str();
if (getFeatureBits(RISCV::FeatureStdExtV))
formalArchStr = (Twine(formalArchStr) + "_v0p10").str();
if (getFeatureBits(RISCV::FeatureExtZfh))
formalArchStr = (Twine(formalArchStr) + "_zfh0p1").str();
if (getFeatureBits(RISCV::FeatureExtZba))
formalArchStr = (Twine(formalArchStr) + "_zba0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbb))
formalArchStr = (Twine(formalArchStr) + "_zbb0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbc))
formalArchStr = (Twine(formalArchStr) + "_zbc0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbe))
formalArchStr = (Twine(formalArchStr) + "_zbe0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbf))
formalArchStr = (Twine(formalArchStr) + "_zbf0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbm))
formalArchStr = (Twine(formalArchStr) + "_zbm0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbp))
formalArchStr = (Twine(formalArchStr) + "_zbp0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbproposedc))
formalArchStr = (Twine(formalArchStr) + "_zbproposedc0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbr))
formalArchStr = (Twine(formalArchStr) + "_zbr0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbs))
formalArchStr = (Twine(formalArchStr) + "_zbs0p93").str();
if (getFeatureBits(RISCV::FeatureExtZbt))
formalArchStr = (Twine(formalArchStr) + "_zbt0p93").str();
if (getFeatureBits(RISCV::FeatureExtZvamo))
formalArchStr = (Twine(formalArchStr) + "_zvamo0p10").str();
if (getFeatureBits(RISCV::FeatureStdExtZvlsseg))
formalArchStr = (Twine(formalArchStr) + "_zvlsseg0p10").str();
getTargetStreamer().emitTextAttribute(Tag, formalArchStr);
}
}
return false;
}
void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
MCInst CInst;
bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
if (Res)
++RISCVNumInstrsCompressed;
S.emitInstruction((Res ? CInst : Inst), getSTI());
}
void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
MCStreamer &Out) {
RISCVMatInt::InstSeq Seq;
RISCVMatInt::generateInstSeq(Value, isRV64(), Seq);
MCRegister SrcReg = RISCV::X0;
for (RISCVMatInt::Inst &Inst : Seq) {
if (Inst.Opc == RISCV::LUI) {
emitToStreamer(
Out, MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Inst.Imm));
} else {
emitToStreamer(
Out, MCInstBuilder(Inst.Opc).addReg(DestReg).addReg(SrcReg).addImm(
Inst.Imm));
}
// Only the first instruction has X0 as its source.
SrcReg = DestReg;
}
}
void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
const MCExpr *Symbol,
RISCVMCExpr::VariantKind VKHi,
unsigned SecondOpcode, SMLoc IDLoc,
MCStreamer &Out) {
// A pair of instructions for PC-relative addressing; expands to
// TmpLabel: AUIPC TmpReg, VKHi(symbol)
// OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
MCContext &Ctx = getContext();
MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
Out.emitLabel(TmpLabel);
const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
emitToStreamer(
Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
const MCExpr *RefToLinkTmpLabel =
RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
emitToStreamer(Out, MCInstBuilder(SecondOpcode)
.addOperand(DestReg)
.addOperand(TmpReg)
.addExpr(RefToLinkTmpLabel));
}
void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load local address pseudo-instruction "lla" is used in PC-relative
// addressing of local symbols:
// lla rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load address pseudo-instruction "la" is used in PC-relative and
// GOT-indirect addressing of global symbols:
// la rdest, symbol
// expands to either (for non-PIC)
// TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
// or (for PIC)
// TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode;
RISCVMCExpr::VariantKind VKHi;
if (ParserOptions.IsPicEnabled) {
SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
VKHi = RISCVMCExpr::VK_RISCV_GOT_HI;
} else {
SecondOpcode = RISCV::ADDI;
VKHi = RISCVMCExpr::VK_RISCV_PCREL_HI;
}
emitAuipcInstPair(DestReg, DestReg, Symbol, VKHi, SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS IE address pseudo-instruction "la.tls.ie" is used in
// initial-exec TLS model addressing of global symbols:
// la.tls.ie rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS GD address pseudo-instruction "la.tls.gd" is used in
// global-dynamic TLS model addressing of global symbols:
// la.tls.gd rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
SMLoc IDLoc, MCStreamer &Out,
bool HasTmpReg) {
// The load/store pseudo-instruction does a pc-relative load with
// a symbol.
//
// The expansion looks like this
//
// TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
// [S|L]X rd, %pcrel_lo(TmpLabel)(tmp)
MCOperand DestReg = Inst.getOperand(0);
unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
unsigned TmpRegOpIdx = HasTmpReg ? 1 : 0;
MCOperand TmpReg = Inst.getOperand(TmpRegOpIdx);
const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
Opcode, IDLoc, Out);
}
void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
int64_t Width, SMLoc IDLoc,
MCStreamer &Out) {
// The sign/zero extend pseudo-instruction does two shifts, with the shift
// amounts dependent on the XLEN.
//
// The expansion looks like this
//
// SLLI rd, rs, XLEN - Width
// SR[A|R]I rd, rd, XLEN - Width
MCOperand DestReg = Inst.getOperand(0);
MCOperand SourceReg = Inst.getOperand(1);
unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
assert(ShAmt > 0 && "Shift amount must be non-zero.");
emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
.addOperand(DestReg)
.addOperand(SourceReg)
.addImm(ShAmt));
emitToStreamer(Out, MCInstBuilder(SecondOpcode)
.addOperand(DestReg)
.addOperand(DestReg)
.addImm(ShAmt));
}
void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
MCStreamer &Out) {
if (Inst.getNumOperands() == 3) {
// unmasked va >= x
//
// pseudoinstruction: vmsge{u}.vx vd, va, x
// expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addReg(RISCV::NoRegister));
emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0)));
} else if (Inst.getNumOperands() == 4) {
// masked va >= x, vd != v0
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
// expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
"The destination register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3)));
emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addReg(RISCV::V0));
} else if (Inst.getNumOperands() == 5) {
// masked va >= x, vd == v0
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
// expansion: vmslt{u}.vx vt, va, x; vmandnot.mm vd, vd, vt
assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
"The destination register should be V0.");
assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
"The temporary vector register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3))
.addOperand(Inst.getOperand(4)));
emitToStreamer(Out, MCInstBuilder(RISCV::VMANDNOT_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1)));
}
}
bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
OperandVector &Operands) {
assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
if (Inst.getOperand(2).getReg() != RISCV::X4) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
"%tprel_add modifier");
}
return false;
}
std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
return RISCVOperand::createReg(RISCV::NoRegister, llvm::SMLoc(),
llvm::SMLoc(), isRV64());
}
bool RISCVAsmParser::validateInstruction(MCInst &Inst,
OperandVector &Operands) {
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
unsigned Constraints =
(MCID.TSFlags & RISCVII::ConstraintMask) >> RISCVII::ConstraintShift;
if (Constraints == RISCVII::NoConstraint)
return false;
unsigned DestReg = Inst.getOperand(0).getReg();
// Operands[1] will be the first operand, DestReg.
SMLoc Loc = Operands[1]->getStartLoc();
if (Constraints & RISCVII::VS2Constraint) {
unsigned CheckReg = Inst.getOperand(1).getReg();
if (DestReg == CheckReg)
return Error(Loc, "The destination vector register group cannot overlap"
" the source vector register group.");
}
if ((Constraints & RISCVII::VS1Constraint) && (Inst.getOperand(2).isReg())) {
unsigned CheckReg = Inst.getOperand(2).getReg();
if (DestReg == CheckReg)
return Error(Loc, "The destination vector register group cannot overlap"
" the source vector register group.");
}
if ((Constraints & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
// vadc, vsbc are special cases. These instructions have no mask register.
// The destination register could not be V0.
unsigned Opcode = Inst.getOpcode();
if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
Opcode == RISCV::VMERGE_VXM)
return Error(Loc, "The destination vector register group cannot be V0.");
// Regardless masked or unmasked version, the number of operands is the
// same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
// actually. We need to check the last operand to ensure whether it is
// masked or not.
unsigned CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
assert((CheckReg == RISCV::V0 || CheckReg == RISCV::NoRegister) &&
"Unexpected register for mask operand");
if (DestReg == CheckReg)
return Error(Loc, "The destination vector register group cannot overlap"
" the mask register.");
}
return false;
}
bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
OperandVector &Operands,
MCStreamer &Out) {
Inst.setLoc(IDLoc);
switch (Inst.getOpcode()) {
default:
break;
case RISCV::PseudoLI: {
MCRegister Reg = Inst.getOperand(0).getReg();
const MCOperand &Op1 = Inst.getOperand(1);
if (Op1.isExpr()) {
// We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
// Just convert to an addi. This allows compatibility with gas.
emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
.addReg(Reg)
.addReg(RISCV::X0)
.addExpr(Op1.getExpr()));
return false;
}
int64_t Imm = Inst.getOperand(1).getImm();
// On RV32 the immediate here can either be a signed or an unsigned
// 32-bit number. Sign extension has to be performed to ensure that Imm
// represents the expected signed 64-bit number.
if (!isRV64())
Imm = SignExtend64<32>(Imm);
emitLoadImm(Reg, Imm, Out);
return false;
}
case RISCV::PseudoLLA:
emitLoadLocalAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA:
emitLoadAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_IE:
emitLoadTLSIEAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_GD:
emitLoadTLSGDAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLB:
emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLBU:
emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLH:
emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLHU:
emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLW:
emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLWU:
emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLD:
emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoFLH:
emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLW:
emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLD:
emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSB:
emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSH:
emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSW:
emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSD:
emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSH:
emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSW:
emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSD:
emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoAddTPRel:
if (checkPseudoAddTPRel(Inst, Operands))
return true;
break;
case RISCV::PseudoSEXT_B:
emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
return false;
case RISCV::PseudoSEXT_H:
emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
return false;
case RISCV::PseudoZEXT_H:
emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
return false;
case RISCV::PseudoZEXT_W:
emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
return false;
case RISCV::PseudoVMSGEU_VX:
case RISCV::PseudoVMSGEU_VX_M:
case RISCV::PseudoVMSGEU_VX_M_T:
emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
return false;
case RISCV::PseudoVMSGE_VX:
case RISCV::PseudoVMSGE_VX_M:
case RISCV::PseudoVMSGE_VX_M_T:
emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
return false;
case RISCV::PseudoVMSGE_VI:
case RISCV::PseudoVMSLT_VI: {
// These instructions are signed and so is immediate so we can subtract one
// and change the opcode.
int64_t Imm = Inst.getOperand(2).getImm();
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
: RISCV::VMSLE_VI;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addImm(Imm - 1)
.addOperand(Inst.getOperand(3)));
return false;
}
case RISCV::PseudoVMSGEU_VI:
case RISCV::PseudoVMSLTU_VI: {
int64_t Imm = Inst.getOperand(2).getImm();
// Unsigned comparisons are tricky because the immediate is signed. If the
// immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
// false, but vmsle.vi v0, v1, -1 is always true. Instead we use
// vmsne v0, v1, v1 which is always false.
if (Imm == 0) {
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
? RISCV::VMSEQ_VV
: RISCV::VMSNE_VV;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(3)));
} else {
// Other immediate values can subtract one like signed.
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
? RISCV::VMSGTU_VI
: RISCV::VMSLEU_VI;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addImm(Imm - 1)
.addOperand(Inst.getOperand(3)));
}
return false;
}
}
emitToStreamer(Out, Inst);
return false;
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
}