700 lines
32 KiB
C++
700 lines
32 KiB
C++
//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the PowerPC implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
|
|
#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
|
|
|
|
#include "PPCRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
|
|
#define GET_INSTRINFO_HEADER
|
|
#include "PPCGenInstrInfo.inc"
|
|
|
|
namespace llvm {
|
|
|
|
/// PPCII - This namespace holds all of the PowerPC target-specific
|
|
/// per-instruction flags. These must match the corresponding definitions in
|
|
/// PPC.td and PPCInstrFormats.td.
|
|
namespace PPCII {
|
|
enum {
|
|
// PPC970 Instruction Flags. These flags describe the characteristics of the
|
|
// PowerPC 970 (aka G5) dispatch groups and how they are formed out of
|
|
// raw machine instructions.
|
|
|
|
/// PPC970_First - This instruction starts a new dispatch group, so it will
|
|
/// always be the first one in the group.
|
|
PPC970_First = 0x1,
|
|
|
|
/// PPC970_Single - This instruction starts a new dispatch group and
|
|
/// terminates it, so it will be the sole instruction in the group.
|
|
PPC970_Single = 0x2,
|
|
|
|
/// PPC970_Cracked - This instruction is cracked into two pieces, requiring
|
|
/// two dispatch pipes to be available to issue.
|
|
PPC970_Cracked = 0x4,
|
|
|
|
/// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
|
|
/// an instruction is issued to.
|
|
PPC970_Shift = 3,
|
|
PPC970_Mask = 0x07 << PPC970_Shift
|
|
};
|
|
enum PPC970_Unit {
|
|
/// These are the various PPC970 execution unit pipelines. Each instruction
|
|
/// is one of these.
|
|
PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
|
|
PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
|
|
PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
|
|
PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
|
|
PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
|
|
PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
|
|
PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
|
|
PPC970_BRU = 7 << PPC970_Shift // Branch Unit
|
|
};
|
|
|
|
enum {
|
|
/// Shift count to bypass PPC970 flags
|
|
NewDef_Shift = 6,
|
|
|
|
/// This instruction is an X-Form memory operation.
|
|
XFormMemOp = 0x1 << NewDef_Shift,
|
|
/// This instruction is prefixed.
|
|
Prefixed = 0x1 << (NewDef_Shift+1)
|
|
};
|
|
} // end namespace PPCII
|
|
|
|
// Instructions that have an immediate form might be convertible to that
|
|
// form if the correct input is a result of a load immediate. In order to
|
|
// know whether the transformation is special, we might need to know some
|
|
// of the details of the two forms.
|
|
struct ImmInstrInfo {
|
|
// Is the immediate field in the immediate form signed or unsigned?
|
|
uint64_t SignedImm : 1;
|
|
// Does the immediate need to be a multiple of some value?
|
|
uint64_t ImmMustBeMultipleOf : 5;
|
|
// Is R0/X0 treated specially by the original r+r instruction?
|
|
// If so, in which operand?
|
|
uint64_t ZeroIsSpecialOrig : 3;
|
|
// Is R0/X0 treated specially by the new r+i instruction?
|
|
// If so, in which operand?
|
|
uint64_t ZeroIsSpecialNew : 3;
|
|
// Is the operation commutative?
|
|
uint64_t IsCommutative : 1;
|
|
// The operand number to check for add-immediate def.
|
|
uint64_t OpNoForForwarding : 3;
|
|
// The operand number for the immediate.
|
|
uint64_t ImmOpNo : 3;
|
|
// The opcode of the new instruction.
|
|
uint64_t ImmOpcode : 16;
|
|
// The size of the immediate.
|
|
uint64_t ImmWidth : 5;
|
|
// The immediate should be truncated to N bits.
|
|
uint64_t TruncateImmTo : 5;
|
|
// Is the instruction summing the operand
|
|
uint64_t IsSummingOperands : 1;
|
|
};
|
|
|
|
// Information required to convert an instruction to just a materialized
|
|
// immediate.
|
|
struct LoadImmediateInfo {
|
|
unsigned Imm : 16;
|
|
unsigned Is64Bit : 1;
|
|
unsigned SetCR : 1;
|
|
};
|
|
|
|
// Index into the OpcodesForSpill array.
|
|
enum SpillOpcodeKey {
|
|
SOK_Int4Spill,
|
|
SOK_Int8Spill,
|
|
SOK_Float8Spill,
|
|
SOK_Float4Spill,
|
|
SOK_CRSpill,
|
|
SOK_CRBitSpill,
|
|
SOK_VRVectorSpill,
|
|
SOK_VSXVectorSpill,
|
|
SOK_VectorFloat8Spill,
|
|
SOK_VectorFloat4Spill,
|
|
SOK_SpillToVSR,
|
|
SOK_PairedVecSpill,
|
|
SOK_AccumulatorSpill,
|
|
SOK_UAccumulatorSpill,
|
|
SOK_SPESpill,
|
|
SOK_LastOpcodeSpill // This must be last on the enum.
|
|
};
|
|
|
|
// Define list of load and store spill opcodes.
|
|
#define NoInstr PPC::INSTRUCTION_LIST_END
|
|
#define Pwr8LoadOpcodes \
|
|
{ \
|
|
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
|
|
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, \
|
|
PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, PPC::EVLDD \
|
|
}
|
|
|
|
#define Pwr9LoadOpcodes \
|
|
{ \
|
|
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
|
|
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
|
|
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, NoInstr \
|
|
}
|
|
|
|
#define Pwr10LoadOpcodes \
|
|
{ \
|
|
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
|
|
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
|
|
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
|
|
PPC::RESTORE_UACC, NoInstr \
|
|
}
|
|
|
|
#define Pwr8StoreOpcodes \
|
|
{ \
|
|
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
|
|
PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, \
|
|
PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, PPC::EVSTDD \
|
|
}
|
|
|
|
#define Pwr9StoreOpcodes \
|
|
{ \
|
|
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
|
|
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
|
|
PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr \
|
|
}
|
|
|
|
#define Pwr10StoreOpcodes \
|
|
{ \
|
|
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
|
|
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
|
|
PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
|
|
NoInstr \
|
|
}
|
|
|
|
// Initialize arrays for load and store spill opcodes on supported subtargets.
|
|
#define StoreOpcodesForSpill \
|
|
{ Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes }
|
|
#define LoadOpcodesForSpill \
|
|
{ Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes }
|
|
|
|
class PPCSubtarget;
|
|
class PPCInstrInfo : public PPCGenInstrInfo {
|
|
PPCSubtarget &Subtarget;
|
|
const PPCRegisterInfo RI;
|
|
const unsigned StoreSpillOpcodesArray[3][SOK_LastOpcodeSpill] =
|
|
StoreOpcodesForSpill;
|
|
const unsigned LoadSpillOpcodesArray[3][SOK_LastOpcodeSpill] =
|
|
LoadOpcodesForSpill;
|
|
|
|
void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
|
|
int FrameIdx, const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const;
|
|
void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const;
|
|
|
|
// Replace the instruction with single LI if possible. \p DefMI must be LI or
|
|
// LI8.
|
|
bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
|
|
unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
|
|
// If the inst is imm-form and its register operand is produced by a ADDI, put
|
|
// the imm into the inst directly and remove the ADDI if possible.
|
|
bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
|
|
unsigned OpNoForForwarding) const;
|
|
// If the inst is x-form and has imm-form and one of its operand is produced
|
|
// by a LI, put the imm into the inst directly and remove the LI if possible.
|
|
bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
|
|
unsigned ConstantOpNo,
|
|
MachineInstr &DefMI) const;
|
|
// If the inst is x-form and has imm-form and one of its operand is produced
|
|
// by an add-immediate, try to transform it when possible.
|
|
bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
|
|
unsigned ConstantOpNo, MachineInstr &DefMI,
|
|
bool KillDefMI) const;
|
|
// Try to find that, if the instruction 'MI' contains any operand that
|
|
// could be forwarded from some inst that feeds it. If yes, return the
|
|
// Def of that operand. And OpNoForForwarding is the operand index in
|
|
// the 'MI' for that 'Def'. If we see another use of this Def between
|
|
// the Def and the MI, SeenIntermediateUse becomes 'true'.
|
|
MachineInstr *getForwardingDefMI(MachineInstr &MI,
|
|
unsigned &OpNoForForwarding,
|
|
bool &SeenIntermediateUse) const;
|
|
|
|
// Can the user MI have it's source at index \p OpNoForForwarding
|
|
// forwarded from an add-immediate that feeds it?
|
|
bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
|
|
unsigned OpNoForForwarding) const;
|
|
bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
|
|
const ImmInstrInfo &III,
|
|
MachineOperand *&ImmMO,
|
|
MachineOperand *&RegMO) const;
|
|
bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
|
|
const MachineInstr &DefMI,
|
|
const ImmInstrInfo &III,
|
|
int64_t &Imm,
|
|
int64_t BaseImm = 0) const;
|
|
bool isRegElgibleForForwarding(const MachineOperand &RegMO,
|
|
const MachineInstr &DefMI,
|
|
const MachineInstr &MI, bool KillDefMI,
|
|
bool &IsFwdFeederRegKilled) const;
|
|
unsigned getSpillTarget() const;
|
|
const unsigned *getStoreOpcodesForSpillArray() const;
|
|
const unsigned *getLoadOpcodesForSpillArray() const;
|
|
unsigned getSpillIndex(const TargetRegisterClass *RC) const;
|
|
int16_t getFMAOpIdxInfo(unsigned Opcode) const;
|
|
void reassociateFMA(MachineInstr &Root, MachineCombinerPattern Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
|
|
bool isLoadFromConstantPool(MachineInstr *I) const;
|
|
Register
|
|
generateLoadForNewConst(unsigned Idx, MachineInstr *MI, Type *Ty,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs) const;
|
|
const Constant *getConstantFromConstantPool(MachineInstr *I) const;
|
|
virtual void anchor();
|
|
|
|
protected:
|
|
/// Commutes the operands in the given instruction.
|
|
/// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
|
|
///
|
|
/// Do not call this method for a non-commutable instruction or for
|
|
/// non-commutable pair of operand indices OpIdx1 and OpIdx2.
|
|
/// Even though the instruction is commutable, the method may still
|
|
/// fail to commute the operands, null pointer is returned in such cases.
|
|
///
|
|
/// For example, we can commute rlwimi instructions, but only if the
|
|
/// rotate amt is zero. We also have to munge the immediates a bit.
|
|
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned OpIdx1,
|
|
unsigned OpIdx2) const override;
|
|
|
|
public:
|
|
explicit PPCInstrInfo(PPCSubtarget &STI);
|
|
|
|
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
|
|
/// such, whenever a client has an instance of instruction info, it should
|
|
/// always be able to get register info as well (through this method).
|
|
///
|
|
const PPCRegisterInfo &getRegisterInfo() const { return RI; }
|
|
|
|
bool isXFormMemOp(unsigned Opcode) const {
|
|
return get(Opcode).TSFlags & PPCII::XFormMemOp;
|
|
}
|
|
bool isPrefixed(unsigned Opcode) const {
|
|
return get(Opcode).TSFlags & PPCII::Prefixed;
|
|
}
|
|
|
|
static bool isSameClassPhysRegCopy(unsigned Opcode) {
|
|
unsigned CopyOpcodes[] = {PPC::OR, PPC::OR8, PPC::FMR,
|
|
PPC::VOR, PPC::XXLOR, PPC::XXLORf,
|
|
PPC::XSCPSGNDP, PPC::MCRF, PPC::CROR,
|
|
PPC::EVOR, -1U};
|
|
for (int i = 0; CopyOpcodes[i] != -1U; i++)
|
|
if (Opcode == CopyOpcodes[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
ScheduleHazardRecognizer *
|
|
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
|
|
const ScheduleDAG *DAG) const override;
|
|
ScheduleHazardRecognizer *
|
|
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const override;
|
|
|
|
unsigned getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &MI,
|
|
unsigned *PredCost = nullptr) const override;
|
|
|
|
int getOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &DefMI, unsigned DefIdx,
|
|
const MachineInstr &UseMI,
|
|
unsigned UseIdx) const override;
|
|
int getOperandLatency(const InstrItineraryData *ItinData,
|
|
SDNode *DefNode, unsigned DefIdx,
|
|
SDNode *UseNode, unsigned UseIdx) const override {
|
|
return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
|
|
UseNode, UseIdx);
|
|
}
|
|
|
|
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
|
|
const MachineInstr &DefMI,
|
|
unsigned DefIdx) const override {
|
|
// Machine LICM should hoist all instructions in low-register-pressure
|
|
// situations; none are sufficiently free to justify leaving in a loop
|
|
// body.
|
|
return false;
|
|
}
|
|
|
|
bool useMachineCombiner() const override {
|
|
return true;
|
|
}
|
|
|
|
/// When getMachineCombinerPatterns() finds patterns, this function generates
|
|
/// the instructions that could replace the original code sequence
|
|
void genAlternativeCodeSequence(
|
|
MachineInstr &Root, MachineCombinerPattern Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
|
|
|
|
/// Return true when there is potentially a faster code sequence for a fma
|
|
/// chain ending in \p Root. All potential patterns are output in the \p
|
|
/// P array.
|
|
bool getFMAPatterns(MachineInstr &Root,
|
|
SmallVectorImpl<MachineCombinerPattern> &P,
|
|
bool DoRegPressureReduce) const;
|
|
|
|
/// Return true when there is potentially a faster code sequence
|
|
/// for an instruction chain ending in <Root>. All potential patterns are
|
|
/// output in the <Pattern> array.
|
|
bool getMachineCombinerPatterns(MachineInstr &Root,
|
|
SmallVectorImpl<MachineCombinerPattern> &P,
|
|
bool DoRegPressureReduce) const override;
|
|
|
|
/// On PowerPC, we leverage machine combiner pass to reduce register pressure
|
|
/// when the register pressure is high for one BB.
|
|
/// Return true if register pressure for \p MBB is high and ABI is supported
|
|
/// to reduce register pressure. Otherwise return false.
|
|
bool
|
|
shouldReduceRegisterPressure(MachineBasicBlock *MBB,
|
|
RegisterClassInfo *RegClassInfo) const override;
|
|
|
|
/// Fixup the placeholders we put in genAlternativeCodeSequence() for
|
|
/// MachineCombiner.
|
|
void
|
|
finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs) const override;
|
|
|
|
bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
|
|
|
|
/// On PowerPC, we try to reassociate FMA chain which will increase
|
|
/// instruction size. Set extension resource length limit to 1 for edge case.
|
|
/// Resource Length is calculated by scaled resource usage in getCycles().
|
|
/// Because of the division in getCycles(), it returns different cycles due to
|
|
/// legacy scaled resource usage. So new resource length may be same with
|
|
/// legacy or 1 bigger than legacy.
|
|
/// We need to execlude the 1 bigger case even the resource length is not
|
|
/// perserved for more FMA chain reassociations on PowerPC.
|
|
int getExtendResourceLenLimit() const override { return 1; }
|
|
|
|
void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
|
|
MachineInstr &NewMI1,
|
|
MachineInstr &NewMI2) const override;
|
|
|
|
void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const override;
|
|
|
|
bool isCoalescableExtInstr(const MachineInstr &MI,
|
|
Register &SrcReg, Register &DstReg,
|
|
unsigned &SubIdx) const override;
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AAResults *AA) const override;
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const override;
|
|
|
|
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const override;
|
|
|
|
void insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const override;
|
|
|
|
|
|
// Branch analysis.
|
|
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const override;
|
|
unsigned removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved = nullptr) const override;
|
|
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded = nullptr) const override;
|
|
|
|
// Select analysis.
|
|
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
|
|
Register, Register, Register, int &, int &,
|
|
int &) const override;
|
|
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, Register DstReg,
|
|
ArrayRef<MachineOperand> Cond, Register TrueReg,
|
|
Register FalseReg) const override;
|
|
|
|
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
|
|
bool KillSrc) const override;
|
|
|
|
void storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Register SrcReg, bool isKill, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
// Emits a register spill without updating the register class for vector
|
|
// registers. This ensures that when we spill a vector register the
|
|
// element order in the register is the same as it was in memory.
|
|
void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned SrcReg, bool isKill, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
void loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Register DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
// Emits a register reload without updating the register class for vector
|
|
// registers. This ensures that when we reload a vector register the
|
|
// element order in the register is the same as it was in memory.
|
|
void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
|
|
|
|
unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
|
|
|
|
bool
|
|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
|
|
|
|
bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
|
|
MachineRegisterInfo *MRI) const override;
|
|
|
|
bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
|
|
Register Reg) const;
|
|
|
|
// If conversion by predication (only supported by some branch instructions).
|
|
// All of the profitability checks always return true; it is always
|
|
// profitable to use the predicated branches.
|
|
bool isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCycles, unsigned ExtraPredCycles,
|
|
BranchProbability Probability) const override {
|
|
return true;
|
|
}
|
|
|
|
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumT, unsigned ExtraT,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumF, unsigned ExtraF,
|
|
BranchProbability Probability) const override;
|
|
|
|
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
|
|
BranchProbability Probability) const override {
|
|
return true;
|
|
}
|
|
|
|
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
|
|
MachineBasicBlock &FMBB) const override {
|
|
return false;
|
|
}
|
|
|
|
// Predication support.
|
|
bool isPredicated(const MachineInstr &MI) const override;
|
|
|
|
bool isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const override;
|
|
|
|
bool PredicateInstruction(MachineInstr &MI,
|
|
ArrayRef<MachineOperand> Pred) const override;
|
|
|
|
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
|
|
ArrayRef<MachineOperand> Pred2) const override;
|
|
|
|
bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
|
|
bool SkipDead) const override;
|
|
|
|
// Comparison optimization.
|
|
|
|
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
|
|
Register &SrcReg2, int &Mask, int &Value) const override;
|
|
|
|
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
|
|
Register SrcReg2, int Mask, int Value,
|
|
const MachineRegisterInfo *MRI) const override;
|
|
|
|
|
|
/// Return true if get the base operand, byte offset of an instruction and
|
|
/// the memory width. Width is the size of memory that is being
|
|
/// loaded/stored (e.g. 1, 2, 4, 8).
|
|
bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
|
|
const MachineOperand *&BaseOp,
|
|
int64_t &Offset, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Get the base operand and byte offset of an instruction that reads/writes
|
|
/// memory.
|
|
bool getMemOperandsWithOffsetWidth(
|
|
const MachineInstr &LdSt,
|
|
SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
|
|
bool &OffsetIsScalable, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
/// Returns true if the two given memory operations should be scheduled
|
|
/// adjacent.
|
|
bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
|
|
ArrayRef<const MachineOperand *> BaseOps2,
|
|
unsigned NumLoads, unsigned NumBytes) const override;
|
|
|
|
/// Return true if two MIs access different memory addresses and false
|
|
/// otherwise
|
|
bool
|
|
areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
|
|
const MachineInstr &MIb) const override;
|
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
///
|
|
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
|
|
|
|
void getNoop(MCInst &NopInst) const override;
|
|
|
|
std::pair<unsigned, unsigned>
|
|
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableDirectMachineOperandTargetFlags() const override;
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
getSerializableBitmaskMachineOperandTargetFlags() const override;
|
|
|
|
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
|
|
bool expandVSXMemPseudo(MachineInstr &MI) const;
|
|
|
|
// Lower pseudo instructions after register allocation.
|
|
bool expandPostRAPseudo(MachineInstr &MI) const override;
|
|
|
|
static bool isVFRegister(unsigned Reg) {
|
|
return Reg >= PPC::VF0 && Reg <= PPC::VF31;
|
|
}
|
|
static bool isVRRegister(unsigned Reg) {
|
|
return Reg >= PPC::V0 && Reg <= PPC::V31;
|
|
}
|
|
const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
|
|
static int getRecordFormOpcode(unsigned Opcode);
|
|
|
|
bool isTOCSaveMI(const MachineInstr &MI) const;
|
|
|
|
bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
|
|
const unsigned PhiDepth) const;
|
|
|
|
/// Return true if the output of the instruction is always a sign-extended,
|
|
/// i.e. 0 to 31-th bits are same as 32-th bit.
|
|
bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
|
|
return isSignOrZeroExtended(MI, true, depth);
|
|
}
|
|
|
|
/// Return true if the output of the instruction is always zero-extended,
|
|
/// i.e. 0 to 31-th bits are all zeros
|
|
bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
|
|
return isSignOrZeroExtended(MI, false, depth);
|
|
}
|
|
|
|
bool convertToImmediateForm(MachineInstr &MI,
|
|
MachineInstr **KilledDef = nullptr) const;
|
|
bool foldFrameOffset(MachineInstr &MI) const;
|
|
bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
|
|
bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
|
|
bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
|
|
bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
|
|
unsigned &XFormOpcode,
|
|
int64_t &OffsetOfImmInstr,
|
|
ImmInstrInfo &III) const;
|
|
bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
|
|
MachineInstr *&ADDIMI, int64_t &OffsetAddi,
|
|
int64_t OffsetImm) const;
|
|
|
|
/// Fixup killed/dead flag for register \p RegNo between instructions [\p
|
|
/// StartMI, \p EndMI]. Some pre-RA or post-RA transformations may violate
|
|
/// register killed/dead flags semantics, this function can be called to fix
|
|
/// up. Before calling this function,
|
|
/// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
|
|
/// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
|
|
/// and possible definition for \p RegNo is \p StartMI or \p EndMI. For
|
|
/// pre-RA cases, definition may be \p StartMI through COPY, \p StartMI
|
|
/// will be adjust to true definition.
|
|
/// 3. We can do accurate fixup for the case when all instructions between
|
|
/// [\p StartMI, \p EndMI] are in same basic block.
|
|
/// 4. For the case when \p StartMI and \p EndMI are not in same basic block,
|
|
/// we conservatively clear kill flag for all uses of \p RegNo for pre-RA
|
|
/// and for post-RA, we give an assertion as without reaching definition
|
|
/// analysis post-RA, \p StartMI and \p EndMI are hard to keep right.
|
|
void fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
|
|
unsigned RegNo) const;
|
|
void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
|
|
void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
|
|
int64_t Imm) const;
|
|
|
|
bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
|
|
bool PostRA) const;
|
|
|
|
// In PostRA phase, try to find instruction defines \p Reg before \p MI.
|
|
// \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
|
|
MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
|
|
bool &SeenIntermediateUse) const;
|
|
|
|
/// getRegNumForOperand - some operands use different numbering schemes
|
|
/// for the same registers. For example, a VSX instruction may have any of
|
|
/// vs0-vs63 allocated whereas an Altivec instruction could only have
|
|
/// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
|
|
/// register number needed for the opcode/operand number combination.
|
|
/// The operand number argument will be useful when we need to extend this
|
|
/// to instructions that use both Altivec and VSX numbering (for different
|
|
/// operands).
|
|
static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
|
|
unsigned OpNo) {
|
|
int16_t regClass = Desc.OpInfo[OpNo].RegClass;
|
|
switch (regClass) {
|
|
// We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
|
|
// VSX32-VSX63 during encoding/disassembling
|
|
case PPC::VSSRCRegClassID:
|
|
case PPC::VSFRCRegClassID:
|
|
if (isVFRegister(Reg))
|
|
return PPC::VSX32 + (Reg - PPC::VF0);
|
|
break;
|
|
// We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
|
|
// VSX32-VSX63 during encoding/disassembling
|
|
case PPC::VSRCRegClassID:
|
|
if (isVRRegister(Reg))
|
|
return PPC::VSX32 + (Reg - PPC::V0);
|
|
break;
|
|
// Other RegClass doesn't need mapping
|
|
default:
|
|
break;
|
|
}
|
|
return Reg;
|
|
}
|
|
|
|
/// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
|
|
bool isBDNZ(unsigned Opcode) const;
|
|
|
|
/// Find the hardware loop instruction used to set-up the specified loop.
|
|
/// On PPC, we have two instructions used to set-up the hardware loop
|
|
/// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
|
|
/// instructions to indicate the end of a loop.
|
|
MachineInstr *
|
|
findLoopInstr(MachineBasicBlock &PreHeader,
|
|
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
|
|
|
|
/// Analyze loop L, which must be a single-basic-block loop, and if the
|
|
/// conditions can be understood enough produce a PipelinerLoopInfo object.
|
|
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
|
|
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|