478 lines
20 KiB
C++
478 lines
20 KiB
C++
//===-- PPCMCCodeEmitter.cpp - Convert PPC code to machine code -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the PPCMCCodeEmitter class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/PPCFixupKinds.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCMCCodeEmitter.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/MC/MCFixup.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mccodeemitter"
|
|
|
|
STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
|
|
|
|
MCCodeEmitter *llvm::createPPCMCCodeEmitter(const MCInstrInfo &MCII,
|
|
const MCRegisterInfo &MRI,
|
|
MCContext &Ctx) {
|
|
return new PPCMCCodeEmitter(MCII, Ctx);
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::
|
|
getDirectBrEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
|
|
if (MO.isReg() || MO.isImm())
|
|
return getMachineOpValue(MI, MO, Fixups, STI);
|
|
// Add a fixup for the branch target.
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
|
|
((MI.getOpcode() == PPC::BL8_NOTOC ||
|
|
MI.getOpcode() == PPC::BL8_NOTOC_TLS)
|
|
? (MCFixupKind)PPC::fixup_ppc_br24_notoc
|
|
: (MCFixupKind)PPC::fixup_ppc_br24)));
|
|
return 0;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getCondBrEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
|
|
|
|
// Add a fixup for the branch target.
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_brcond14));
|
|
return 0;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::
|
|
getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
|
|
|
|
// Add a fixup for the branch target.
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_br24abs));
|
|
return 0;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::
|
|
getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
|
|
|
|
// Add a fixup for the branch target.
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_brcond14abs));
|
|
return 0;
|
|
}
|
|
|
|
unsigned
|
|
PPCMCCodeEmitter::getVSRpEvenEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
assert(MI.getOperand(OpNo).isReg() && "Operand should be a register");
|
|
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI)
|
|
<< 1;
|
|
return RegBits;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getImm16Encoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
|
|
|
|
// Add a fixup for the immediate field.
|
|
Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_half16));
|
|
return 0;
|
|
}
|
|
|
|
uint64_t PPCMCCodeEmitter::getImm34Encoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI,
|
|
MCFixupKind Fixup) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
assert(!MO.isReg() && "Not expecting a register for this operand.");
|
|
if (MO.isImm())
|
|
return getMachineOpValue(MI, MO, Fixups, STI);
|
|
|
|
// Add a fixup for the immediate field.
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(), Fixup));
|
|
return 0;
|
|
}
|
|
|
|
uint64_t
|
|
PPCMCCodeEmitter::getImm34EncodingNoPCRel(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
return getImm34Encoding(MI, OpNo, Fixups, STI,
|
|
(MCFixupKind)PPC::fixup_ppc_imm34);
|
|
}
|
|
|
|
uint64_t
|
|
PPCMCCodeEmitter::getImm34EncodingPCRel(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
return getImm34Encoding(MI, OpNo, Fixups, STI,
|
|
(MCFixupKind)PPC::fixup_ppc_pcrel34);
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getMemRIEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
// Encode (imm, reg) as a memri, which has the low 16-bits as the
|
|
// displacement and the next 5 bits as the register #.
|
|
assert(MI.getOperand(OpNo+1).isReg());
|
|
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 16;
|
|
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isImm())
|
|
return (getMachineOpValue(MI, MO, Fixups, STI) & 0xFFFF) | RegBits;
|
|
|
|
// Add a fixup for the displacement field.
|
|
Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_half16));
|
|
return RegBits;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getMemRIXEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
// Encode (imm, reg) as a memrix, which has the low 14-bits as the
|
|
// displacement and the next 5 bits as the register #.
|
|
assert(MI.getOperand(OpNo+1).isReg());
|
|
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 14;
|
|
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isImm())
|
|
return ((getMachineOpValue(MI, MO, Fixups, STI) >> 2) & 0x3FFF) | RegBits;
|
|
|
|
// Add a fixup for the displacement field.
|
|
Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_half16ds));
|
|
return RegBits;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getMemRIX16Encoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
// Encode (imm, reg) as a memrix16, which has the low 12-bits as the
|
|
// displacement and the next 5 bits as the register #.
|
|
assert(MI.getOperand(OpNo+1).isReg());
|
|
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 12;
|
|
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isImm()) {
|
|
assert(!(MO.getImm() % 16) &&
|
|
"Expecting an immediate that is a multiple of 16");
|
|
return ((getMachineOpValue(MI, MO, Fixups, STI) >> 4) & 0xFFF) | RegBits;
|
|
}
|
|
|
|
// Otherwise add a fixup for the displacement field.
|
|
Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_half16ds));
|
|
return RegBits;
|
|
}
|
|
|
|
uint64_t
|
|
PPCMCCodeEmitter::getMemRI34PCRelEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
// Encode the PCRelative version of memri34: imm34(r0).
|
|
// In the PC relative version the register for the address must be zero.
|
|
// The 34 bit immediate can fall into one of three cases:
|
|
// 1) It is a relocation to be filled in by the linker represented as:
|
|
// (MCExpr::SymbolRef)
|
|
// 2) It is a relocation + SignedOffset represented as:
|
|
// (MCExpr::Binary(MCExpr::SymbolRef + MCExpr::Constant))
|
|
// 3) It is a known value at compile time.
|
|
|
|
// Make sure that the register is a zero as expected.
|
|
assert(MI.getOperand(OpNo + 1).isImm() && "Expecting an immediate.");
|
|
uint64_t RegBits =
|
|
getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI) << 34;
|
|
assert(RegBits == 0 && "Operand must be 0.");
|
|
|
|
// If this is not a MCExpr then we are in case 3) and we are dealing with
|
|
// a value known at compile time, not a relocation.
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (!MO.isExpr())
|
|
return ((getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL) | RegBits;
|
|
|
|
// At this point in the function it is known that MO is of type MCExpr.
|
|
// Therefore we are dealing with either case 1) a symbol ref or
|
|
// case 2) a symbol ref plus a constant.
|
|
const MCExpr *Expr = MO.getExpr();
|
|
switch (Expr->getKind()) {
|
|
default:
|
|
llvm_unreachable("Unsupported MCExpr for getMemRI34PCRelEncoding.");
|
|
case MCExpr::SymbolRef: {
|
|
// Relocation alone.
|
|
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(Expr);
|
|
(void)SRE;
|
|
// Currently these are the only valid PCRelative Relocations.
|
|
assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL ||
|
|
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL ||
|
|
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSGD_PCREL ||
|
|
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSLD_PCREL ||
|
|
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TPREL_PCREL) &&
|
|
"VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL or "
|
|
"VK_PPC_GOT_TLSGD_PCREL or VK_PPC_GOT_TLSLD_PCREL or "
|
|
"VK_PPC_GOT_TPREL_PCREL.");
|
|
// Generate the fixup for the relocation.
|
|
Fixups.push_back(
|
|
MCFixup::create(0, Expr,
|
|
static_cast<MCFixupKind>(PPC::fixup_ppc_pcrel34)));
|
|
// Put zero in the location of the immediate. The linker will fill in the
|
|
// correct value based on the relocation.
|
|
return 0;
|
|
}
|
|
case MCExpr::Binary: {
|
|
// Relocation plus some offset.
|
|
const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr);
|
|
assert(BE->getOpcode() == MCBinaryExpr::Add &&
|
|
"Binary expression opcode must be an add.");
|
|
|
|
const MCExpr *LHS = BE->getLHS();
|
|
const MCExpr *RHS = BE->getRHS();
|
|
|
|
// Need to check in both directions. Reloc+Offset and Offset+Reloc.
|
|
if (LHS->getKind() != MCExpr::SymbolRef)
|
|
std::swap(LHS, RHS);
|
|
|
|
if (LHS->getKind() != MCExpr::SymbolRef ||
|
|
RHS->getKind() != MCExpr::Constant)
|
|
llvm_unreachable("Expecting to have one constant and one relocation.");
|
|
|
|
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(LHS);
|
|
(void)SRE;
|
|
assert(isInt<34>(cast<MCConstantExpr>(RHS)->getValue()) &&
|
|
"Value must fit in 34 bits.");
|
|
|
|
// Currently these are the only valid PCRelative Relocations.
|
|
assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL ||
|
|
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL) &&
|
|
"VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL");
|
|
// Generate the fixup for the relocation.
|
|
Fixups.push_back(
|
|
MCFixup::create(0, Expr,
|
|
static_cast<MCFixupKind>(PPC::fixup_ppc_pcrel34)));
|
|
// Put zero in the location of the immediate. The linker will fill in the
|
|
// correct value based on the relocation.
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
PPCMCCodeEmitter::getMemRI34Encoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
// Encode (imm, reg) as a memri34, which has the low 34-bits as the
|
|
// displacement and the next 5 bits as the register #.
|
|
assert(MI.getOperand(OpNo + 1).isReg() && "Expecting a register.");
|
|
uint64_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo + 1), Fixups, STI)
|
|
<< 34;
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
return ((getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL) | RegBits;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getSPE8DisEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI)
|
|
const {
|
|
// Encode (imm, reg) as a spe8dis, which has the low 5-bits of (imm / 8)
|
|
// as the displacement and the next 5 bits as the register #.
|
|
assert(MI.getOperand(OpNo+1).isReg());
|
|
uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5;
|
|
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
assert(MO.isImm());
|
|
uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 3;
|
|
return reverseBits(Imm | RegBits) >> 22;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getSPE4DisEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI)
|
|
const {
|
|
// Encode (imm, reg) as a spe4dis, which has the low 5-bits of (imm / 4)
|
|
// as the displacement and the next 5 bits as the register #.
|
|
assert(MI.getOperand(OpNo+1).isReg());
|
|
uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5;
|
|
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
assert(MO.isImm());
|
|
uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 2;
|
|
return reverseBits(Imm | RegBits) >> 22;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getSPE2DisEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI)
|
|
const {
|
|
// Encode (imm, reg) as a spe2dis, which has the low 5-bits of (imm / 2)
|
|
// as the displacement and the next 5 bits as the register #.
|
|
assert(MI.getOperand(OpNo+1).isReg());
|
|
uint32_t RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 5;
|
|
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
assert(MO.isImm());
|
|
uint32_t Imm = getMachineOpValue(MI, MO, Fixups, STI) >> 1;
|
|
return reverseBits(Imm | RegBits) >> 22;
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
if (MO.isReg()) return getMachineOpValue(MI, MO, Fixups, STI);
|
|
|
|
// Add a fixup for the TLS register, which simply provides a relocation
|
|
// hint to the linker that this statement is part of a relocation sequence.
|
|
// Return the thread-pointer register's encoding. Add a one byte displacement
|
|
// if using PC relative memops.
|
|
const MCExpr *Expr = MO.getExpr();
|
|
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(Expr);
|
|
bool IsPCRel = SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS_PCREL;
|
|
Fixups.push_back(MCFixup::create(IsPCRel ? 1 : 0, Expr,
|
|
(MCFixupKind)PPC::fixup_ppc_nofixup));
|
|
const Triple &TT = STI.getTargetTriple();
|
|
bool isPPC64 = TT.isPPC64();
|
|
return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2);
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::getTLSCallEncoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
// For special TLS calls, we need two fixups; one for the branch target
|
|
// (__tls_get_addr), which we create via getDirectBrEncoding as usual,
|
|
// and one for the TLSGD or TLSLD symbol, which is emitted here.
|
|
const MCOperand &MO = MI.getOperand(OpNo+1);
|
|
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
|
|
(MCFixupKind)PPC::fixup_ppc_nofixup));
|
|
return getDirectBrEncoding(MI, OpNo, Fixups, STI);
|
|
}
|
|
|
|
unsigned PPCMCCodeEmitter::
|
|
get_crbitm_encoding(const MCInst &MI, unsigned OpNo,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
const MCOperand &MO = MI.getOperand(OpNo);
|
|
assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 ||
|
|
MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) &&
|
|
(MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7));
|
|
return 0x80 >> CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
|
|
}
|
|
|
|
// Get the index for this operand in this instruction. This is needed for
|
|
// computing the register number in PPCInstrInfo::getRegNumForOperand() for
|
|
// any instructions that use a different numbering scheme for registers in
|
|
// different operands.
|
|
static unsigned getOpIdxForMO(const MCInst &MI, const MCOperand &MO) {
|
|
for (unsigned i = 0; i < MI.getNumOperands(); i++) {
|
|
const MCOperand &Op = MI.getOperand(i);
|
|
if (&Op == &MO)
|
|
return i;
|
|
}
|
|
llvm_unreachable("This operand is not part of this instruction");
|
|
return ~0U; // Silence any warnings about no return.
|
|
}
|
|
|
|
uint64_t PPCMCCodeEmitter::
|
|
getMachineOpValue(const MCInst &MI, const MCOperand &MO,
|
|
SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
if (MO.isReg()) {
|
|
// MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand.
|
|
// The GPR operand should come through here though.
|
|
assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 &&
|
|
MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) ||
|
|
MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7);
|
|
unsigned OpNo = getOpIdxForMO(MI, MO);
|
|
unsigned Reg =
|
|
PPCInstrInfo::getRegNumForOperand(MCII.get(MI.getOpcode()),
|
|
MO.getReg(), OpNo);
|
|
return CTX.getRegisterInfo()->getEncodingValue(Reg);
|
|
}
|
|
|
|
assert(MO.isImm() &&
|
|
"Relocation required in an instruction that we cannot encode!");
|
|
return MO.getImm();
|
|
}
|
|
|
|
void PPCMCCodeEmitter::encodeInstruction(
|
|
const MCInst &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
|
|
const MCSubtargetInfo &STI) const {
|
|
verifyInstructionPredicates(MI,
|
|
computeAvailableFeatures(STI.getFeatureBits()));
|
|
|
|
uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI);
|
|
|
|
// Output the constant in big/little endian byte order.
|
|
unsigned Size = getInstSizeInBytes(MI);
|
|
support::endianness E = IsLittleEndian ? support::little : support::big;
|
|
switch (Size) {
|
|
case 0:
|
|
break;
|
|
case 4:
|
|
support::endian::write<uint32_t>(OS, Bits, E);
|
|
break;
|
|
case 8:
|
|
// If we emit a pair of instructions, the first one is
|
|
// always in the top 32 bits, even on little-endian.
|
|
support::endian::write<uint32_t>(OS, Bits >> 32, E);
|
|
support::endian::write<uint32_t>(OS, Bits, E);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid instruction size");
|
|
}
|
|
|
|
++MCNumEmitted; // Keep track of the # of mi's emitted.
|
|
}
|
|
|
|
// Get the number of bytes used to encode the given MCInst.
|
|
unsigned PPCMCCodeEmitter::getInstSizeInBytes(const MCInst &MI) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
const MCInstrDesc &Desc = MCII.get(Opcode);
|
|
return Desc.getSize();
|
|
}
|
|
|
|
bool PPCMCCodeEmitter::isPrefixedInstruction(const MCInst &MI) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
const PPCInstrInfo *InstrInfo = static_cast<const PPCInstrInfo*>(&MCII);
|
|
return InstrInfo->isPrefixed(Opcode);
|
|
}
|
|
|
|
#define ENABLE_INSTR_PREDICATE_VERIFIER
|
|
#include "PPCGenMCCodeEmitter.inc"
|