llvm-for-llvmta/lib/Target/PowerPC/MCTargetDesc/PPCInstPrinter.cpp

657 lines
22 KiB
C++

//===-- PPCInstPrinter.cpp - Convert PPC MCInst to assembly syntax --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class prints an PPC MCInst to a .s file.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCInstPrinter.h"
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
// FIXME: Once the integrated assembler supports full register names, tie this
// to the verbose-asm setting.
static cl::opt<bool>
FullRegNames("ppc-asm-full-reg-names", cl::Hidden, cl::init(false),
cl::desc("Use full register names when printing assembly"));
// Useful for testing purposes. Prints vs{31-63} as v{0-31} respectively.
static cl::opt<bool>
ShowVSRNumsAsVR("ppc-vsr-nums-as-vr", cl::Hidden, cl::init(false),
cl::desc("Prints full register names with vs{31-63} as v{0-31}"));
// Prints full register names with percent symbol.
static cl::opt<bool>
FullRegNamesWithPercent("ppc-reg-with-percent-prefix", cl::Hidden,
cl::init(false),
cl::desc("Prints full register names with percent"));
#define PRINT_ALIAS_INSTR
#include "PPCGenAsmWriter.inc"
void PPCInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
const char *RegName = getRegisterName(RegNo);
OS << RegName;
}
void PPCInstPrinter::printInst(const MCInst *MI, uint64_t Address,
StringRef Annot, const MCSubtargetInfo &STI,
raw_ostream &O) {
// Customize printing of the addis instruction on AIX. When an operand is a
// symbol reference, the instruction syntax is changed to look like a load
// operation, i.e:
// Transform: addis $rD, $rA, $src --> addis $rD, $src($rA).
if (TT.isOSAIX() &&
(MI->getOpcode() == PPC::ADDIS8 || MI->getOpcode() == PPC::ADDIS) &&
MI->getOperand(2).isExpr()) {
assert((MI->getOperand(0).isReg() && MI->getOperand(1).isReg()) &&
"The first and the second operand of an addis instruction"
" should be registers.");
assert(isa<MCSymbolRefExpr>(MI->getOperand(2).getExpr()) &&
"The third operand of an addis instruction should be a symbol "
"reference expression if it is an expression at all.");
O << "\taddis ";
printOperand(MI, 0, STI, O);
O << ", ";
printOperand(MI, 2, STI, O);
O << "(";
printOperand(MI, 1, STI, O);
O << ")";
return;
}
// Check if the last operand is an expression with the variant kind
// VK_PPC_PCREL_OPT. If this is the case then this is a linker optimization
// relocation and the .reloc directive needs to be added.
unsigned LastOp = MI->getNumOperands() - 1;
if (MI->getNumOperands() > 1) {
const MCOperand &Operand = MI->getOperand(LastOp);
if (Operand.isExpr()) {
const MCExpr *Expr = Operand.getExpr();
const MCSymbolRefExpr *SymExpr =
static_cast<const MCSymbolRefExpr *>(Expr);
if (SymExpr && SymExpr->getKind() == MCSymbolRefExpr::VK_PPC_PCREL_OPT) {
const MCSymbol &Symbol = SymExpr->getSymbol();
if (MI->getOpcode() == PPC::PLDpc) {
printInstruction(MI, Address, STI, O);
O << "\n";
Symbol.print(O, &MAI);
O << ":";
return;
} else {
O << "\t.reloc ";
Symbol.print(O, &MAI);
O << "-8,R_PPC64_PCREL_OPT,.-(";
Symbol.print(O, &MAI);
O << "-8)\n";
}
}
}
}
// Check for slwi/srwi mnemonics.
if (MI->getOpcode() == PPC::RLWINM) {
unsigned char SH = MI->getOperand(2).getImm();
unsigned char MB = MI->getOperand(3).getImm();
unsigned char ME = MI->getOperand(4).getImm();
bool useSubstituteMnemonic = false;
if (SH <= 31 && MB == 0 && ME == (31-SH)) {
O << "\tslwi "; useSubstituteMnemonic = true;
}
if (SH <= 31 && MB == (32-SH) && ME == 31) {
O << "\tsrwi "; useSubstituteMnemonic = true;
SH = 32-SH;
}
if (useSubstituteMnemonic) {
printOperand(MI, 0, STI, O);
O << ", ";
printOperand(MI, 1, STI, O);
O << ", " << (unsigned int)SH;
printAnnotation(O, Annot);
return;
}
}
if (MI->getOpcode() == PPC::RLDICR ||
MI->getOpcode() == PPC::RLDICR_32) {
unsigned char SH = MI->getOperand(2).getImm();
unsigned char ME = MI->getOperand(3).getImm();
// rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH
if (63-SH == ME) {
O << "\tsldi ";
printOperand(MI, 0, STI, O);
O << ", ";
printOperand(MI, 1, STI, O);
O << ", " << (unsigned int)SH;
printAnnotation(O, Annot);
return;
}
}
// dcbt[st] is printed manually here because:
// 1. The assembly syntax is different between embedded and server targets
// 2. We must print the short mnemonics for TH == 0 because the
// embedded/server syntax default will not be stable across assemblers
// The syntax for dcbt is:
// dcbt ra, rb, th [server]
// dcbt th, ra, rb [embedded]
// where th can be omitted when it is 0. dcbtst is the same.
if (MI->getOpcode() == PPC::DCBT || MI->getOpcode() == PPC::DCBTST) {
unsigned char TH = MI->getOperand(0).getImm();
O << "\tdcbt";
if (MI->getOpcode() == PPC::DCBTST)
O << "st";
if (TH == 16)
O << "t";
O << " ";
bool IsBookE = STI.getFeatureBits()[PPC::FeatureBookE];
if (IsBookE && TH != 0 && TH != 16)
O << (unsigned int) TH << ", ";
printOperand(MI, 1, STI, O);
O << ", ";
printOperand(MI, 2, STI, O);
if (!IsBookE && TH != 0 && TH != 16)
O << ", " << (unsigned int) TH;
printAnnotation(O, Annot);
return;
}
if (MI->getOpcode() == PPC::DCBF) {
unsigned char L = MI->getOperand(0).getImm();
if (!L || L == 1 || L == 3 || L == 4 || L == 6) {
O << "\tdcb";
if (L != 6)
O << "f";
if (L == 1)
O << "l";
if (L == 3)
O << "lp";
if (L == 4)
O << "ps";
if (L == 6)
O << "stps";
O << " ";
printOperand(MI, 1, STI, O);
O << ", ";
printOperand(MI, 2, STI, O);
printAnnotation(O, Annot);
return;
}
}
if (!printAliasInstr(MI, Address, STI, O))
printInstruction(MI, Address, STI, O);
printAnnotation(O, Annot);
}
void PPCInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O,
const char *Modifier) {
unsigned Code = MI->getOperand(OpNo).getImm();
if (StringRef(Modifier) == "cc") {
switch ((PPC::Predicate)Code) {
case PPC::PRED_LT_MINUS:
case PPC::PRED_LT_PLUS:
case PPC::PRED_LT:
O << "lt";
return;
case PPC::PRED_LE_MINUS:
case PPC::PRED_LE_PLUS:
case PPC::PRED_LE:
O << "le";
return;
case PPC::PRED_EQ_MINUS:
case PPC::PRED_EQ_PLUS:
case PPC::PRED_EQ:
O << "eq";
return;
case PPC::PRED_GE_MINUS:
case PPC::PRED_GE_PLUS:
case PPC::PRED_GE:
O << "ge";
return;
case PPC::PRED_GT_MINUS:
case PPC::PRED_GT_PLUS:
case PPC::PRED_GT:
O << "gt";
return;
case PPC::PRED_NE_MINUS:
case PPC::PRED_NE_PLUS:
case PPC::PRED_NE:
O << "ne";
return;
case PPC::PRED_UN_MINUS:
case PPC::PRED_UN_PLUS:
case PPC::PRED_UN:
O << "un";
return;
case PPC::PRED_NU_MINUS:
case PPC::PRED_NU_PLUS:
case PPC::PRED_NU:
O << "nu";
return;
case PPC::PRED_BIT_SET:
case PPC::PRED_BIT_UNSET:
llvm_unreachable("Invalid use of bit predicate code");
}
llvm_unreachable("Invalid predicate code");
}
if (StringRef(Modifier) == "pm") {
switch ((PPC::Predicate)Code) {
case PPC::PRED_LT:
case PPC::PRED_LE:
case PPC::PRED_EQ:
case PPC::PRED_GE:
case PPC::PRED_GT:
case PPC::PRED_NE:
case PPC::PRED_UN:
case PPC::PRED_NU:
return;
case PPC::PRED_LT_MINUS:
case PPC::PRED_LE_MINUS:
case PPC::PRED_EQ_MINUS:
case PPC::PRED_GE_MINUS:
case PPC::PRED_GT_MINUS:
case PPC::PRED_NE_MINUS:
case PPC::PRED_UN_MINUS:
case PPC::PRED_NU_MINUS:
O << "-";
return;
case PPC::PRED_LT_PLUS:
case PPC::PRED_LE_PLUS:
case PPC::PRED_EQ_PLUS:
case PPC::PRED_GE_PLUS:
case PPC::PRED_GT_PLUS:
case PPC::PRED_NE_PLUS:
case PPC::PRED_UN_PLUS:
case PPC::PRED_NU_PLUS:
O << "+";
return;
case PPC::PRED_BIT_SET:
case PPC::PRED_BIT_UNSET:
llvm_unreachable("Invalid use of bit predicate code");
}
llvm_unreachable("Invalid predicate code");
}
assert(StringRef(Modifier) == "reg" &&
"Need to specify 'cc', 'pm' or 'reg' as predicate op modifier!");
printOperand(MI, OpNo + 1, STI, O);
}
void PPCInstPrinter::printATBitsAsHint(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned Code = MI->getOperand(OpNo).getImm();
if (Code == 2)
O << "-";
else if (Code == 3)
O << "+";
}
void PPCInstPrinter::printU1ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value <= 1 && "Invalid u1imm argument!");
O << (unsigned int)Value;
}
void PPCInstPrinter::printU2ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value <= 3 && "Invalid u2imm argument!");
O << (unsigned int)Value;
}
void PPCInstPrinter::printU3ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value <= 8 && "Invalid u3imm argument!");
O << (unsigned int)Value;
}
void PPCInstPrinter::printU4ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value <= 15 && "Invalid u4imm argument!");
O << (unsigned int)Value;
}
void PPCInstPrinter::printS5ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
int Value = MI->getOperand(OpNo).getImm();
Value = SignExtend32<5>(Value);
O << (int)Value;
}
void PPCInstPrinter::printImmZeroOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value == 0 && "Operand must be zero");
O << (unsigned int)Value;
}
void PPCInstPrinter::printU5ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value <= 31 && "Invalid u5imm argument!");
O << (unsigned int)Value;
}
void PPCInstPrinter::printU6ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value <= 63 && "Invalid u6imm argument!");
O << (unsigned int)Value;
}
void PPCInstPrinter::printU7ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned int Value = MI->getOperand(OpNo).getImm();
assert(Value <= 127 && "Invalid u7imm argument!");
O << (unsigned int)Value;
}
// Operands of BUILD_VECTOR are signed and we use this to print operands
// of XXSPLTIB which are unsigned. So we simply truncate to 8 bits and
// print as unsigned.
void PPCInstPrinter::printU8ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned char Value = MI->getOperand(OpNo).getImm();
O << (unsigned int)Value;
}
void PPCInstPrinter::printU10ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned short Value = MI->getOperand(OpNo).getImm();
assert(Value <= 1023 && "Invalid u10imm argument!");
O << (unsigned short)Value;
}
void PPCInstPrinter::printU12ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
unsigned short Value = MI->getOperand(OpNo).getImm();
assert(Value <= 4095 && "Invalid u12imm argument!");
O << (unsigned short)Value;
}
void PPCInstPrinter::printS16ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
if (MI->getOperand(OpNo).isImm())
O << (short)MI->getOperand(OpNo).getImm();
else
printOperand(MI, OpNo, STI, O);
}
void PPCInstPrinter::printS34ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
if (MI->getOperand(OpNo).isImm()) {
long long Value = MI->getOperand(OpNo).getImm();
assert(isInt<34>(Value) && "Invalid s34imm argument!");
O << (long long)Value;
}
else
printOperand(MI, OpNo, STI, O);
}
void PPCInstPrinter::printU16ImmOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
if (MI->getOperand(OpNo).isImm())
O << (unsigned short)MI->getOperand(OpNo).getImm();
else
printOperand(MI, OpNo, STI, O);
}
void PPCInstPrinter::printBranchOperand(const MCInst *MI, uint64_t Address,
unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
if (!MI->getOperand(OpNo).isImm())
return printOperand(MI, OpNo, STI, O);
int32_t Imm = SignExtend32<32>((unsigned)MI->getOperand(OpNo).getImm() << 2);
if (PrintBranchImmAsAddress) {
uint64_t Target = Address + Imm;
if (!TT.isPPC64())
Target &= 0xffffffff;
O << formatHex(Target);
} else {
// Branches can take an immediate operand. This is used by the branch
// selection pass to print, for example `.+8` (for ELF) or `$+8` (for AIX)
// to express an eight byte displacement from the program counter.
if (!TT.isOSAIX())
O << ".";
else
O << "$";
if (Imm >= 0)
O << "+";
O << Imm;
}
}
void PPCInstPrinter::printAbsBranchOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
if (!MI->getOperand(OpNo).isImm())
return printOperand(MI, OpNo, STI, O);
O << SignExtend32<32>((unsigned)MI->getOperand(OpNo).getImm() << 2);
}
void PPCInstPrinter::printcrbitm(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI, raw_ostream &O) {
unsigned CCReg = MI->getOperand(OpNo).getReg();
unsigned RegNo;
switch (CCReg) {
default: llvm_unreachable("Unknown CR register");
case PPC::CR0: RegNo = 0; break;
case PPC::CR1: RegNo = 1; break;
case PPC::CR2: RegNo = 2; break;
case PPC::CR3: RegNo = 3; break;
case PPC::CR4: RegNo = 4; break;
case PPC::CR5: RegNo = 5; break;
case PPC::CR6: RegNo = 6; break;
case PPC::CR7: RegNo = 7; break;
}
O << (0x80 >> RegNo);
}
void PPCInstPrinter::printMemRegImm(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
printS16ImmOperand(MI, OpNo, STI, O);
O << '(';
if (MI->getOperand(OpNo+1).getReg() == PPC::R0)
O << "0";
else
printOperand(MI, OpNo + 1, STI, O);
O << ')';
}
void PPCInstPrinter::printMemRegImm34PCRel(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
printS34ImmOperand(MI, OpNo, STI, O);
O << '(';
printImmZeroOperand(MI, OpNo + 1, STI, O);
O << ')';
}
void PPCInstPrinter::printMemRegImm34(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
printS34ImmOperand(MI, OpNo, STI, O);
O << '(';
printOperand(MI, OpNo + 1, STI, O);
O << ')';
}
void PPCInstPrinter::printMemRegReg(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI,
raw_ostream &O) {
// When used as the base register, r0 reads constant zero rather than
// the value contained in the register. For this reason, the darwin
// assembler requires that we print r0 as 0 (no r) when used as the base.
if (MI->getOperand(OpNo).getReg() == PPC::R0)
O << "0";
else
printOperand(MI, OpNo, STI, O);
O << ", ";
printOperand(MI, OpNo + 1, STI, O);
}
void PPCInstPrinter::printTLSCall(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI, raw_ostream &O) {
// On PPC64, VariantKind is VK_None, but on PPC32, it's VK_PLT, and it must
// come at the _end_ of the expression.
const MCOperand &Op = MI->getOperand(OpNo);
const MCSymbolRefExpr *RefExp = nullptr;
const MCConstantExpr *ConstExp = nullptr;
if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Op.getExpr())) {
RefExp = cast<MCSymbolRefExpr>(BinExpr->getLHS());
ConstExp = cast<MCConstantExpr>(BinExpr->getRHS());
} else
RefExp = cast<MCSymbolRefExpr>(Op.getExpr());
O << RefExp->getSymbol().getName();
// The variant kind VK_PPC_NOTOC needs to be handled as a special case
// because we do not want the assembly to print out the @notoc at the
// end like __tls_get_addr(x@tlsgd)@notoc. Instead we want it to look
// like __tls_get_addr@notoc(x@tlsgd).
if (RefExp->getKind() == MCSymbolRefExpr::VK_PPC_NOTOC)
O << '@' << MCSymbolRefExpr::getVariantKindName(RefExp->getKind());
O << '(';
printOperand(MI, OpNo + 1, STI, O);
O << ')';
if (RefExp->getKind() != MCSymbolRefExpr::VK_None &&
RefExp->getKind() != MCSymbolRefExpr::VK_PPC_NOTOC)
O << '@' << MCSymbolRefExpr::getVariantKindName(RefExp->getKind());
if (ConstExp != nullptr)
O << '+' << ConstExp->getValue();
}
/// showRegistersWithPercentPrefix - Check if this register name should be
/// printed with a percentage symbol as prefix.
bool PPCInstPrinter::showRegistersWithPercentPrefix(const char *RegName) const {
if (!FullRegNamesWithPercent || TT.getOS() == Triple::AIX)
return false;
switch (RegName[0]) {
default:
return false;
case 'r':
case 'f':
case 'q':
case 'v':
case 'c':
return true;
}
}
/// getVerboseConditionalRegName - This method expands the condition register
/// when requested explicitly or targetting Darwin.
const char *PPCInstPrinter::getVerboseConditionRegName(unsigned RegNum,
unsigned RegEncoding)
const {
if (!FullRegNames)
return nullptr;
if (RegNum < PPC::CR0EQ || RegNum > PPC::CR7UN)
return nullptr;
const char *CRBits[] = {
"lt", "gt", "eq", "un",
"4*cr1+lt", "4*cr1+gt", "4*cr1+eq", "4*cr1+un",
"4*cr2+lt", "4*cr2+gt", "4*cr2+eq", "4*cr2+un",
"4*cr3+lt", "4*cr3+gt", "4*cr3+eq", "4*cr3+un",
"4*cr4+lt", "4*cr4+gt", "4*cr4+eq", "4*cr4+un",
"4*cr5+lt", "4*cr5+gt", "4*cr5+eq", "4*cr5+un",
"4*cr6+lt", "4*cr6+gt", "4*cr6+eq", "4*cr6+un",
"4*cr7+lt", "4*cr7+gt", "4*cr7+eq", "4*cr7+un"
};
return CRBits[RegEncoding];
}
// showRegistersWithPrefix - This method determines whether registers
// should be number-only or include the prefix.
bool PPCInstPrinter::showRegistersWithPrefix() const {
if (TT.getOS() == Triple::AIX)
return false;
return FullRegNamesWithPercent || FullRegNames;
}
void PPCInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
const MCSubtargetInfo &STI, raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
unsigned Reg = Op.getReg();
if (!ShowVSRNumsAsVR)
Reg = PPCInstrInfo::getRegNumForOperand(MII.get(MI->getOpcode()),
Reg, OpNo);
const char *RegName;
RegName = getVerboseConditionRegName(Reg, MRI.getEncodingValue(Reg));
if (RegName == nullptr)
RegName = getRegisterName(Reg);
if (showRegistersWithPercentPrefix(RegName))
O << "%";
if (!showRegistersWithPrefix())
RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
O << RegName;
return;
}
if (Op.isImm()) {
O << Op.getImm();
return;
}
assert(Op.isExpr() && "unknown operand kind in printOperand");
Op.getExpr()->print(O, &MAI);
}