llvm-for-llvmta/lib/Target/Hexagon/HexagonInstrFormats.td

336 lines
12 KiB
TableGen

//==- HexagonInstrFormats.td - Hexagon Instruction Formats --*- tablegen -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Addressing modes for load/store instructions
class AddrModeType<bits<3> value> {
bits<3> Value = value;
}
def NoAddrMode : AddrModeType<0>; // No addressing mode
def Absolute : AddrModeType<1>; // Absolute addressing mode
def AbsoluteSet : AddrModeType<2>; // Absolute set addressing mode
def BaseImmOffset : AddrModeType<3>; // Indirect with offset
def BaseLongOffset : AddrModeType<4>; // Indirect with long offset
def BaseRegOffset : AddrModeType<5>; // Indirect with register offset
def PostInc : AddrModeType<6>; // Post increment addressing mode
class MemAccessSize<bits<4> value> {
bits<4> Value = value;
}
// These numbers must match the MemAccessSize enumeration values in
// HexagonBaseInfo.h.
def NoMemAccess : MemAccessSize<0>;
def ByteAccess : MemAccessSize<1>;
def HalfWordAccess : MemAccessSize<2>;
def WordAccess : MemAccessSize<3>;
def DoubleWordAccess : MemAccessSize<4>;
def HVXVectorAccess : MemAccessSize<5>;
//===----------------------------------------------------------------------===//
// Instruction Class Declaration +
//===----------------------------------------------------------------------===//
// "Parse" bits are explicitly NOT defined in the opcode space to prevent
// TableGen from using them for generation of the decoder tables.
class OpcodeHexagon {
field bits<32> Inst = ?; // Default to an invalid insn.
bits<4> IClass = 0; // ICLASS
bits<1> zero = 0;
let Inst{31-28} = IClass;
}
class InstHexagon<dag outs, dag ins, string asmstr, list<dag> pattern,
string cstr, InstrItinClass itin, IType type>
: Instruction {
let Namespace = "Hexagon";
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = asmstr;
let Pattern = pattern;
let Constraints = cstr;
let Itinerary = itin;
let Size = 4;
// SoftFail is a field the disassembler can use to provide a way for
// instructions to not match without killing the whole decode process. It is
// mainly used for ARM, but Tablegen expects this field to exist or it fails
// to build the decode table.
field bits<32> SoftFail = 0;
// *** Must match MCTargetDesc/HexagonBaseInfo.h ***
// Instruction type according to the ISA.
IType Type = type;
let TSFlags{6-0} = Type.Value;
// Solo instructions, i.e., those that cannot be in a packet with others.
bits<1> isSolo = 0;
let TSFlags{7} = isSolo;
// Packed only with A or X-type instructions.
bits<1> isSoloAX = 0;
let TSFlags{8} = isSoloAX;
// Restricts slot 1 to ALU-only instructions.
bits<1> isRestrictSlot1AOK = 0;
let TSFlags{9} = isRestrictSlot1AOK;
// Predicated instructions.
bits<1> isPredicated = 0;
let TSFlags{10} = isPredicated;
bits<1> isPredicatedFalse = 0;
let TSFlags{11} = isPredicatedFalse;
bits<1> isPredicatedNew = 0;
let TSFlags{12} = isPredicatedNew;
bits<1> isPredicateLate = 0;
let TSFlags{13} = isPredicateLate; // Late predicate producer insn.
// New-value insn helper fields.
bits<1> isNewValue = 0;
let TSFlags{14} = isNewValue; // New-value consumer insn.
bits<1> hasNewValue = 0;
let TSFlags{15} = hasNewValue; // New-value producer insn.
bits<3> opNewValue = 0;
let TSFlags{18-16} = opNewValue; // New-value produced operand.
bits<1> isNVStorable = 0;
let TSFlags{19} = isNVStorable; // Store that can become new-value store.
bits<1> isNVStore = 0;
let TSFlags{20} = isNVStore; // New-value store insn.
bits<1> isCVLoadable = 0;
let TSFlags{21} = isCVLoadable; // Load that can become cur-value load.
bits<1> isCVLoad = 0;
let TSFlags{22} = isCVLoad; // Cur-value load insn.
// Immediate extender helper fields.
bits<1> isExtendable = 0;
let TSFlags{23} = isExtendable; // Insn may be extended.
bits<1> isExtended = 0;
let TSFlags{24} = isExtended; // Insn must be extended.
bits<3> opExtendable = 0;
let TSFlags{27-25} = opExtendable; // Which operand may be extended.
bits<1> isExtentSigned = 0;
let TSFlags{28} = isExtentSigned; // Signed or unsigned range.
bits<5> opExtentBits = 0;
let TSFlags{33-29} = opExtentBits; //Number of bits of range before extending.
bits<2> opExtentAlign = 0;
let TSFlags{35-34} = opExtentAlign; // Alignment exponent before extending.
bit cofMax1 = 0;
let TSFlags{36} = cofMax1;
bit cofRelax1 = 0;
let TSFlags{37} = cofRelax1;
bit cofRelax2 = 0;
let TSFlags{38} = cofRelax2;
bit isRestrictNoSlot1Store = 0;
let TSFlags{39} = isRestrictNoSlot1Store;
// Addressing mode for load/store instructions.
AddrModeType addrMode = NoAddrMode;
let TSFlags{44-42} = addrMode.Value;
// Memory access size for mem access instructions (load/store)
MemAccessSize accessSize = NoMemAccess;
let TSFlags{48-45} = accessSize.Value;
bits<1> isTaken = 0;
let TSFlags {49} = isTaken; // Branch prediction.
bits<1> isFP = 0;
let TSFlags {50} = isFP; // Floating-point.
bits<1> isSomeOK = 0;
let TSFlags {51} = isSomeOK; // Relax some grouping constraints.
bits<1> hasNewValue2 = 0;
let TSFlags{52} = hasNewValue2; // Second New-value producer insn.
bits<3> opNewValue2 = 0;
let TSFlags{55-53} = opNewValue2; // Second New-value produced operand.
bits<1> isAccumulator = 0;
let TSFlags{56} = isAccumulator;
bits<1> prefersSlot3 = 0;
let TSFlags{57} = prefersSlot3; // Complex XU
bits<1> hasTmpDst = 0;
let TSFlags{60} = hasTmpDst; // v65 : 'fake" register VTMP is set
bit CVINew = 0;
let TSFlags{62} = CVINew;
bit isCVI = 0;
let TSFlags{63} = isCVI;
// Fields used for relation models.
bit isNonTemporal = 0;
string isNT = ""; // set to "true" for non-temporal vector stores.
string BaseOpcode = "";
string CextOpcode = "";
string PredSense = "";
string PNewValue = "";
string NValueST = ""; // Set to "true" for new-value stores.
string InputType = ""; // Input is "imm" or "reg" type.
string isFloat = "false"; // Set to "true" for the floating-point load/store.
string isBrTaken = !if(isTaken, "true", "false"); // Set to "true"/"false" for jump instructions
let PredSense = !if(isPredicated, !if(isPredicatedFalse, "false", "true"),
"");
let PNewValue = !if(isPredicatedNew, "new", "");
let NValueST = !if(isNVStore, "true", "false");
let isNT = !if(isNonTemporal, "true", "false");
let hasSideEffects = 0;
// *** Must match MCTargetDesc/HexagonBaseInfo.h ***
}
class HInst<dag outs, dag ins, string asmstr, InstrItinClass itin, IType type> :
InstHexagon<outs, ins, asmstr, [], "", itin, type>;
//===----------------------------------------------------------------------===//
// Instruction Classes Definitions +
//===----------------------------------------------------------------------===//
let mayLoad = 1 in
class LDInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
string cstr = "", InstrItinClass itin = LD_tc_ld_SLOT01>
: InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeLD>, OpcodeHexagon;
class CONSTLDInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
string cstr = "", InstrItinClass itin = LD_tc_ld_SLOT01>
: InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeLD>, OpcodeHexagon;
let mayStore = 1 in
class STInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
string cstr = "", InstrItinClass itin = ST_tc_st_SLOT01>
: InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeST>, OpcodeHexagon;
let isCodeGenOnly = 1, isPseudo = 1 in
class Endloop<dag outs, dag ins, string asmstr, list<dag> pattern = [],
string cstr = "", InstrItinClass itin = tc_ENDLOOP>
: InstHexagon<outs, ins, asmstr, pattern, cstr, itin, TypeENDLOOP>,
OpcodeHexagon;
let isCodeGenOnly = 1, isPseudo = 1 in
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern = [],
string cstr = "">
: InstHexagon<outs, ins, asmstr, pattern, cstr, PSEUDO, TypePSEUDO>,
OpcodeHexagon;
let isCodeGenOnly = 1, isPseudo = 1 in
class PseudoM<dag outs, dag ins, string asmstr, list<dag> pattern = [],
string cstr="">
: InstHexagon<outs, ins, asmstr, pattern, cstr, PSEUDOM, TypePSEUDO>,
OpcodeHexagon;
//===----------------------------------------------------------------------===//
// Special Instructions -
//===----------------------------------------------------------------------===//
// The 'invalid_decode' instruction is used by the disassembler to
// show an instruction that didn't decode correctly. This feature
// is only leveraged in a special disassembler mode that's activated
// by a command line flag.
def tc_invalid : InstrItinClass;
class Enc_invalid : OpcodeHexagon {
}
def invalid_decode : HInst<
(outs ),
(ins ),
"<invalid>",
tc_invalid, TypeALU32_2op>, Enc_invalid {
let Inst{13-0} = 0b00000000000000;
let Inst{31-16} = 0b0000000000000000;
let isCodeGenOnly = 1;
}
//===----------------------------------------------------------------------===//
// Duplex Instruction Class Declaration
//===----------------------------------------------------------------------===//
class OpcodeDuplex {
field bits<32> Inst = ?; // Default to an invalid insn.
bits<4> IClass = 0; // ICLASS
bits<13> ISubHi = 0; // Low sub-insn
bits<13> ISubLo = 0; // High sub-insn
let Inst{31-29} = IClass{3-1};
let Inst{13} = IClass{0};
let Inst{15-14} = 0;
let Inst{28-16} = ISubHi;
let Inst{12-0} = ISubLo;
}
class InstDuplex<bits<4> iClass, list<dag> pattern = [],
string cstr = "">
: Instruction, OpcodeDuplex {
let Namespace = "Hexagon";
IType Type = TypeDUPLEX; // uses slot 0,1
let isCodeGenOnly = 1;
let hasSideEffects = 0;
dag OutOperandList = (outs);
dag InOperandList = (ins);
let IClass = iClass;
let Constraints = cstr;
let Itinerary = DUPLEX;
let Size = 4;
// SoftFail is a field the disassembler can use to provide a way for
// instructions to not match without killing the whole decode process. It is
// mainly used for ARM, but Tablegen expects this field to exist or it fails
// to build the decode table.
field bits<32> SoftFail = 0;
// *** Must match MCTargetDesc/HexagonBaseInfo.h ***
let TSFlags{6-0} = Type.Value;
// Predicated instructions.
bits<1> isPredicated = 0;
let TSFlags{7} = isPredicated;
bits<1> isPredicatedFalse = 0;
let TSFlags{8} = isPredicatedFalse;
bits<1> isPredicatedNew = 0;
let TSFlags{9} = isPredicatedNew;
// New-value insn helper fields.
bits<1> isNewValue = 0;
let TSFlags{10} = isNewValue; // New-value consumer insn.
bits<1> hasNewValue = 0;
let TSFlags{11} = hasNewValue; // New-value producer insn.
bits<3> opNewValue = 0;
let TSFlags{14-12} = opNewValue; // New-value produced operand.
bits<1> isNVStorable = 0;
let TSFlags{15} = isNVStorable; // Store that can become new-value store.
bits<1> isNVStore = 0;
let TSFlags{16} = isNVStore; // New-value store insn.
// Immediate extender helper fields.
bits<1> isExtendable = 0;
let TSFlags{17} = isExtendable; // Insn may be extended.
bits<1> isExtended = 0;
let TSFlags{18} = isExtended; // Insn must be extended.
bits<3> opExtendable = 0;
let TSFlags{21-19} = opExtendable; // Which operand may be extended.
bits<1> isExtentSigned = 0;
let TSFlags{22} = isExtentSigned; // Signed or unsigned range.
bits<5> opExtentBits = 0;
let TSFlags{27-23} = opExtentBits; //Number of bits of range before extending.
bits<2> opExtentAlign = 0;
let TSFlags{29-28} = opExtentAlign; // Alignment exponent before extending.
}
//===----------------------------------------------------------------------===//
// Instruction Classes Definitions -
//===----------------------------------------------------------------------===//
include "HexagonInstrFormatsV60.td"
include "HexagonInstrFormatsV65.td"