2068 lines
70 KiB
C++
2068 lines
70 KiB
C++
//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that AVR uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AVRISelLowering.h"
|
|
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "AVR.h"
|
|
#include "AVRMachineFunctionInfo.h"
|
|
#include "AVRSubtarget.h"
|
|
#include "AVRTargetMachine.h"
|
|
#include "MCTargetDesc/AVRMCTargetDesc.h"
|
|
|
|
namespace llvm {
|
|
|
|
AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
|
|
const AVRSubtarget &STI)
|
|
: TargetLowering(TM), Subtarget(STI) {
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
|
|
addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
|
|
|
|
// Compute derived properties from the register classes.
|
|
computeRegisterProperties(Subtarget.getRegisterInfo());
|
|
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
setBooleanVectorContents(ZeroOrOneBooleanContent);
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
setStackPointerRegisterToSaveRestore(AVR::SP);
|
|
setSupportsUnalignedAtomics(true);
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
|
|
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
|
|
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
|
|
setLoadExtAction(N, VT, MVT::i1, Promote);
|
|
setLoadExtAction(N, VT, MVT::i8, Expand);
|
|
}
|
|
}
|
|
|
|
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
|
|
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setOperationAction(ISD::ADDC, VT, Legal);
|
|
setOperationAction(ISD::SUBC, VT, Legal);
|
|
setOperationAction(ISD::ADDE, VT, Legal);
|
|
setOperationAction(ISD::SUBE, VT, Legal);
|
|
}
|
|
|
|
// sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
|
|
// revert into a sub since we don't have an add with immediate instruction.
|
|
setOperationAction(ISD::ADD, MVT::i32, Custom);
|
|
setOperationAction(ISD::ADD, MVT::i64, Custom);
|
|
|
|
// our shift instructions are only able to shift 1 bit at a time, so handle
|
|
// this in a custom way.
|
|
setOperationAction(ISD::SRA, MVT::i8, Custom);
|
|
setOperationAction(ISD::SHL, MVT::i8, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i8, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i16, Custom);
|
|
setOperationAction(ISD::SHL, MVT::i16, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i16, Custom);
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
|
|
|
|
setOperationAction(ISD::ROTL, MVT::i8, Custom);
|
|
setOperationAction(ISD::ROTL, MVT::i16, Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i8, Custom);
|
|
setOperationAction(ISD::ROTR, MVT::i16, Expand);
|
|
|
|
setOperationAction(ISD::BR_CC, MVT::i8, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i16, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::i8, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i16, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i8, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::i16, Expand);
|
|
|
|
setOperationAction(ISD::BSWAP, MVT::i16, Expand);
|
|
|
|
// Add support for postincrement and predecrement load/stores.
|
|
setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
|
|
setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
|
|
setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
|
|
setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
|
|
setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
|
|
setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
|
|
setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
|
|
setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
|
|
// Atomic operations which must be lowered to rtlib calls
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
|
|
}
|
|
|
|
// Division/remainder
|
|
setOperationAction(ISD::UDIV, MVT::i8, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i16, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i8, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i16, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::i8, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::i16, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i8, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i16, Expand);
|
|
|
|
// Make division and modulus custom
|
|
setOperationAction(ISD::UDIVREM, MVT::i8, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i16, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
|
|
setOperationAction(ISD::SDIVREM, MVT::i8, Custom);
|
|
setOperationAction(ISD::SDIVREM, MVT::i16, Custom);
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
|
|
|
|
// Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
|
|
setOperationAction(ISD::MUL, MVT::i8, Expand);
|
|
setOperationAction(ISD::MUL, MVT::i16, Expand);
|
|
|
|
// Expand 16 bit multiplications.
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
|
|
|
|
// Expand multiplications to libcalls when there is
|
|
// no hardware MUL.
|
|
if (!Subtarget.supportsMultiplication()) {
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
|
|
}
|
|
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
}
|
|
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setOperationAction(ISD::CTPOP, VT, Expand);
|
|
setOperationAction(ISD::CTLZ, VT, Expand);
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
}
|
|
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
|
|
// TODO: The generated code is pretty poor. Investigate using the
|
|
// same "shift and subtract with carry" trick that we do for
|
|
// extending 8-bit to 16-bit. This may require infrastructure
|
|
// improvements in how we treat 16-bit "registers" to be feasible.
|
|
}
|
|
|
|
// Division rtlib functions (not supported), use divmod functions instead
|
|
setLibcallName(RTLIB::SDIV_I8, nullptr);
|
|
setLibcallName(RTLIB::SDIV_I16, nullptr);
|
|
setLibcallName(RTLIB::SDIV_I32, nullptr);
|
|
setLibcallName(RTLIB::UDIV_I8, nullptr);
|
|
setLibcallName(RTLIB::UDIV_I16, nullptr);
|
|
setLibcallName(RTLIB::UDIV_I32, nullptr);
|
|
|
|
// Modulus rtlib functions (not supported), use divmod functions instead
|
|
setLibcallName(RTLIB::SREM_I8, nullptr);
|
|
setLibcallName(RTLIB::SREM_I16, nullptr);
|
|
setLibcallName(RTLIB::SREM_I32, nullptr);
|
|
setLibcallName(RTLIB::UREM_I8, nullptr);
|
|
setLibcallName(RTLIB::UREM_I16, nullptr);
|
|
setLibcallName(RTLIB::UREM_I32, nullptr);
|
|
|
|
// Division and modulus rtlib functions
|
|
setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
|
|
setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
|
|
setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
|
|
setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
|
|
setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
|
|
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
|
|
|
|
// Several of the runtime library functions use a special calling conv
|
|
setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
|
|
setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
|
|
setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
|
|
setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
|
|
|
|
// Trigonometric rtlib functions
|
|
setLibcallName(RTLIB::SIN_F32, "sin");
|
|
setLibcallName(RTLIB::COS_F32, "cos");
|
|
|
|
setMinFunctionAlignment(Align(2));
|
|
setMinimumJumpTableEntries(UINT_MAX);
|
|
}
|
|
|
|
const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
#define NODE(name) \
|
|
case AVRISD::name: \
|
|
return #name
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
return nullptr;
|
|
NODE(RET_FLAG);
|
|
NODE(RETI_FLAG);
|
|
NODE(CALL);
|
|
NODE(WRAPPER);
|
|
NODE(LSL);
|
|
NODE(LSR);
|
|
NODE(ROL);
|
|
NODE(ROR);
|
|
NODE(ASR);
|
|
NODE(LSLLOOP);
|
|
NODE(LSRLOOP);
|
|
NODE(ROLLOOP);
|
|
NODE(RORLOOP);
|
|
NODE(ASRLOOP);
|
|
NODE(BRCOND);
|
|
NODE(CMP);
|
|
NODE(CMPC);
|
|
NODE(TST);
|
|
NODE(SELECT_CC);
|
|
#undef NODE
|
|
}
|
|
}
|
|
|
|
EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
|
|
EVT VT) const {
|
|
assert(!VT.isVector() && "No AVR SetCC type for vectors!");
|
|
return MVT::i8;
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
|
|
//:TODO: this function has to be completely rewritten to produce optimal
|
|
// code, for now it's producing very long but correct code.
|
|
unsigned Opc8;
|
|
const SDNode *N = Op.getNode();
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(N);
|
|
assert(isPowerOf2_32(VT.getSizeInBits()) &&
|
|
"Expected power-of-2 shift amount");
|
|
|
|
// Expand non-constant shifts to loops.
|
|
if (!isa<ConstantSDNode>(N->getOperand(1))) {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Invalid shift opcode!");
|
|
case ISD::SHL:
|
|
return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
|
|
N->getOperand(1));
|
|
case ISD::SRL:
|
|
return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
|
|
N->getOperand(1));
|
|
case ISD::ROTL: {
|
|
SDValue Amt = N->getOperand(1);
|
|
EVT AmtVT = Amt.getValueType();
|
|
Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
|
|
DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
|
|
return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt);
|
|
}
|
|
case ISD::ROTR: {
|
|
SDValue Amt = N->getOperand(1);
|
|
EVT AmtVT = Amt.getValueType();
|
|
Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
|
|
DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
|
|
return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt);
|
|
}
|
|
case ISD::SRA:
|
|
return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
|
|
N->getOperand(1));
|
|
}
|
|
}
|
|
|
|
uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
SDValue Victim = N->getOperand(0);
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::SRA:
|
|
Opc8 = AVRISD::ASR;
|
|
break;
|
|
case ISD::ROTL:
|
|
Opc8 = AVRISD::ROL;
|
|
ShiftAmount = ShiftAmount % VT.getSizeInBits();
|
|
break;
|
|
case ISD::ROTR:
|
|
Opc8 = AVRISD::ROR;
|
|
ShiftAmount = ShiftAmount % VT.getSizeInBits();
|
|
break;
|
|
case ISD::SRL:
|
|
Opc8 = AVRISD::LSR;
|
|
break;
|
|
case ISD::SHL:
|
|
Opc8 = AVRISD::LSL;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid shift opcode");
|
|
}
|
|
|
|
// Optimize int8 shifts.
|
|
if (VT.getSizeInBits() == 8) {
|
|
if (Op.getOpcode() == ISD::SHL && 4 <= ShiftAmount && ShiftAmount < 7) {
|
|
// Optimize LSL when 4 <= ShiftAmount <= 6.
|
|
Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
|
|
Victim =
|
|
DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0xf0, dl, VT));
|
|
ShiftAmount -= 4;
|
|
} else if (Op.getOpcode() == ISD::SRL && 4 <= ShiftAmount &&
|
|
ShiftAmount < 7) {
|
|
// Optimize LSR when 4 <= ShiftAmount <= 6.
|
|
Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
|
|
Victim =
|
|
DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0x0f, dl, VT));
|
|
ShiftAmount -= 4;
|
|
} else if (Op.getOpcode() == ISD::SHL && ShiftAmount == 7) {
|
|
// Optimize LSL when ShiftAmount == 7.
|
|
Victim = DAG.getNode(AVRISD::LSL7, dl, VT, Victim);
|
|
ShiftAmount = 0;
|
|
} else if (Op.getOpcode() == ISD::SRL && ShiftAmount == 7) {
|
|
// Optimize LSR when ShiftAmount == 7.
|
|
Victim = DAG.getNode(AVRISD::LSR7, dl, VT, Victim);
|
|
ShiftAmount = 0;
|
|
} else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 7) {
|
|
// Optimize ASR when ShiftAmount == 7.
|
|
Victim = DAG.getNode(AVRISD::ASR7, dl, VT, Victim);
|
|
ShiftAmount = 0;
|
|
}
|
|
}
|
|
|
|
while (ShiftAmount--) {
|
|
Victim = DAG.getNode(Opc8, dl, VT, Victim);
|
|
}
|
|
|
|
return Victim;
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
|
|
unsigned Opcode = Op->getOpcode();
|
|
assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
|
|
"Invalid opcode for Div/Rem lowering");
|
|
bool IsSigned = (Opcode == ISD::SDIVREM);
|
|
EVT VT = Op->getValueType(0);
|
|
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
|
|
|
|
RTLIB::Libcall LC;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::i8:
|
|
LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
|
|
break;
|
|
case MVT::i16:
|
|
LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
|
|
break;
|
|
case MVT::i32:
|
|
LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
|
|
break;
|
|
}
|
|
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (SDValue const &Value : Op->op_values()) {
|
|
Entry.Node = Value;
|
|
Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
|
|
Entry.IsSExt = IsSigned;
|
|
Entry.IsZExt = !IsSigned;
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
|
|
getPointerTy(DAG.getDataLayout()));
|
|
|
|
Type *RetTy = (Type *)StructType::get(Ty, Ty);
|
|
|
|
SDLoc dl(Op);
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(InChain)
|
|
.setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
|
|
.setInRegister()
|
|
.setSExtResult(IsSigned)
|
|
.setZExtResult(!IsSigned);
|
|
|
|
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
|
|
return CallInfo.first;
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto DL = DAG.getDataLayout();
|
|
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
|
|
|
|
// Create the TargetGlobalAddress node, folding in the constant offset.
|
|
SDValue Result =
|
|
DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
|
|
return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto DL = DAG.getDataLayout();
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
|
|
SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
|
|
|
|
return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
|
|
}
|
|
|
|
/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
|
|
static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unknown condition code!");
|
|
case ISD::SETEQ:
|
|
return AVRCC::COND_EQ;
|
|
case ISD::SETNE:
|
|
return AVRCC::COND_NE;
|
|
case ISD::SETGE:
|
|
return AVRCC::COND_GE;
|
|
case ISD::SETLT:
|
|
return AVRCC::COND_LT;
|
|
case ISD::SETUGE:
|
|
return AVRCC::COND_SH;
|
|
case ISD::SETULT:
|
|
return AVRCC::COND_LO;
|
|
}
|
|
}
|
|
|
|
/// Returns appropriate CP/CPI/CPC nodes code for the given 8/16-bit operands.
|
|
SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS,
|
|
SelectionDAG &DAG, SDLoc DL) const {
|
|
assert((LHS.getSimpleValueType() == RHS.getSimpleValueType()) &&
|
|
"LHS and RHS have different types");
|
|
assert(((LHS.getSimpleValueType() == MVT::i16) ||
|
|
(LHS.getSimpleValueType() == MVT::i8)) && "invalid comparison type");
|
|
|
|
SDValue Cmp;
|
|
|
|
if (LHS.getSimpleValueType() == MVT::i16 && dyn_cast<ConstantSDNode>(RHS)) {
|
|
// Generate a CPI/CPC pair if RHS is a 16-bit constant.
|
|
SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
|
|
Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
|
|
} else {
|
|
// Generate ordinary 16-bit comparison.
|
|
Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
|
|
}
|
|
|
|
return Cmp;
|
|
}
|
|
|
|
/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
|
|
/// the given operands.
|
|
SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDValue &AVRcc, SelectionDAG &DAG,
|
|
SDLoc DL) const {
|
|
SDValue Cmp;
|
|
EVT VT = LHS.getValueType();
|
|
bool UseTest = false;
|
|
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
case ISD::SETLE: {
|
|
// Swap operands and reverse the branching condition.
|
|
std::swap(LHS, RHS);
|
|
CC = ISD::SETGE;
|
|
break;
|
|
}
|
|
case ISD::SETGT: {
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
|
|
switch (C->getSExtValue()) {
|
|
case -1: {
|
|
// When doing lhs > -1 use a tst instruction on the top part of lhs
|
|
// and use brpl instead of using a chain of cp/cpc.
|
|
UseTest = true;
|
|
AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
|
|
break;
|
|
}
|
|
case 0: {
|
|
// Turn lhs > 0 into 0 < lhs since 0 can be materialized with
|
|
// __zero_reg__ in lhs.
|
|
RHS = LHS;
|
|
LHS = DAG.getConstant(0, DL, VT);
|
|
CC = ISD::SETLT;
|
|
break;
|
|
}
|
|
default: {
|
|
// Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
|
|
// us to fold the constant into the cmp instruction.
|
|
RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
|
|
CC = ISD::SETGE;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
// Swap operands and reverse the branching condition.
|
|
std::swap(LHS, RHS);
|
|
CC = ISD::SETLT;
|
|
break;
|
|
}
|
|
case ISD::SETLT: {
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
|
|
switch (C->getSExtValue()) {
|
|
case 1: {
|
|
// Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
|
|
// __zero_reg__ in lhs.
|
|
RHS = LHS;
|
|
LHS = DAG.getConstant(0, DL, VT);
|
|
CC = ISD::SETGE;
|
|
break;
|
|
}
|
|
case 0: {
|
|
// When doing lhs < 0 use a tst instruction on the top part of lhs
|
|
// and use brmi instead of using a chain of cp/cpc.
|
|
UseTest = true;
|
|
AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SETULE: {
|
|
// Swap operands and reverse the branching condition.
|
|
std::swap(LHS, RHS);
|
|
CC = ISD::SETUGE;
|
|
break;
|
|
}
|
|
case ISD::SETUGT: {
|
|
// Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
|
|
// fold the constant into the cmp instruction.
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
|
|
RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
|
|
CC = ISD::SETUGE;
|
|
break;
|
|
}
|
|
// Swap operands and reverse the branching condition.
|
|
std::swap(LHS, RHS);
|
|
CC = ISD::SETULT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
|
|
// using the default and/or/xor expansion code which is much longer.
|
|
if (VT == MVT::i32) {
|
|
SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
|
|
if (UseTest) {
|
|
// When using tst we only care about the highest part.
|
|
SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
|
|
} else {
|
|
Cmp = getAVRCmp(LHSlo, RHSlo, DAG, DL);
|
|
Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
|
|
}
|
|
} else if (VT == MVT::i64) {
|
|
SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
|
|
SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
|
|
SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
|
|
SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
|
|
DAG.getIntPtrConstant(0, DL));
|
|
SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
|
|
if (UseTest) {
|
|
// When using tst we only care about the highest part.
|
|
SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
|
|
DAG.getIntPtrConstant(1, DL));
|
|
Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
|
|
} else {
|
|
Cmp = getAVRCmp(LHS0, RHS0, DAG, DL);
|
|
Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
|
|
Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
|
|
Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
|
|
}
|
|
} else if (VT == MVT::i8 || VT == MVT::i16) {
|
|
if (UseTest) {
|
|
// When using tst we only care about the highest part.
|
|
Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
|
|
(VT == MVT::i8)
|
|
? LHS
|
|
: DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
|
|
LHS, DAG.getIntPtrConstant(1, DL)));
|
|
} else {
|
|
Cmp = getAVRCmp(LHS, RHS, DAG, DL);
|
|
}
|
|
} else {
|
|
llvm_unreachable("Invalid comparison size");
|
|
}
|
|
|
|
// When using a test instruction AVRcc is already set.
|
|
if (!UseTest) {
|
|
AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
|
|
}
|
|
|
|
return Cmp;
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc dl(Op);
|
|
|
|
SDValue TargetCC;
|
|
SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
|
|
|
|
return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
|
|
Cmp);
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue TrueV = Op.getOperand(2);
|
|
SDValue FalseV = Op.getOperand(3);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDLoc dl(Op);
|
|
|
|
SDValue TargetCC;
|
|
SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
|
|
SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
|
|
|
|
return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue TargetCC;
|
|
SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
|
|
|
|
SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
|
|
SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
|
|
SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
|
|
|
|
return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
auto DL = DAG.getDataLayout();
|
|
SDLoc dl(Op);
|
|
|
|
// Vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
|
|
|
|
return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom lower this!");
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
return LowerShifts(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return LowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress:
|
|
return LowerBlockAddress(Op, DAG);
|
|
case ISD::BR_CC:
|
|
return LowerBR_CC(Op, DAG);
|
|
case ISD::SELECT_CC:
|
|
return LowerSELECT_CC(Op, DAG);
|
|
case ISD::SETCC:
|
|
return LowerSETCC(Op, DAG);
|
|
case ISD::VASTART:
|
|
return LowerVASTART(Op, DAG);
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
return LowerDivRem(Op, DAG);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Replace a node with an illegal result type
|
|
/// with a new node built out of custom code.
|
|
void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(N);
|
|
|
|
switch (N->getOpcode()) {
|
|
case ISD::ADD: {
|
|
// Convert add (x, imm) into sub (x, -imm).
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
|
|
SDValue Sub = DAG.getNode(
|
|
ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
|
|
DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
|
|
Results.push_back(Sub);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
|
|
|
|
for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
|
|
Results.push_back(Res.getValue(I));
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS, Instruction *I) const {
|
|
int64_t Offs = AM.BaseOffs;
|
|
|
|
// Allow absolute addresses.
|
|
if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
|
|
return true;
|
|
}
|
|
|
|
// Flash memory instructions only allow zero offsets.
|
|
if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
|
|
return false;
|
|
}
|
|
|
|
// Allow reg+<6bit> offset.
|
|
if (Offs < 0)
|
|
Offs = -Offs;
|
|
if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
const SDNode *Op;
|
|
SDLoc DL(N);
|
|
|
|
if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Op = LD->getBasePtr().getNode();
|
|
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
|
|
return false;
|
|
if (AVR::isProgramMemoryAccess(LD)) {
|
|
return false;
|
|
}
|
|
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Op = ST->getBasePtr().getNode();
|
|
if (AVR::isProgramMemoryAccess(ST)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (VT != MVT::i8 && VT != MVT::i16) {
|
|
return false;
|
|
}
|
|
|
|
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
|
|
return false;
|
|
}
|
|
|
|
if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
|
|
int RHSC = RHS->getSExtValue();
|
|
if (Op->getOpcode() == ISD::SUB)
|
|
RHSC = -RHSC;
|
|
|
|
if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
|
|
return false;
|
|
}
|
|
|
|
Base = Op->getOperand(0);
|
|
Offset = DAG.getConstant(RHSC, DL, MVT::i8);
|
|
AM = ISD::PRE_DEC;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if this node can be
|
|
/// combined with a load / store to form a post-indexed load / store.
|
|
bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
|
|
SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
SDLoc DL(N);
|
|
|
|
if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
|
|
return false;
|
|
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
if (AVR::isProgramMemoryAccess(ST)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (VT != MVT::i8 && VT != MVT::i16) {
|
|
return false;
|
|
}
|
|
|
|
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
|
|
return false;
|
|
}
|
|
|
|
if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
|
|
int RHSC = RHS->getSExtValue();
|
|
if (Op->getOpcode() == ISD::SUB)
|
|
RHSC = -RHSC;
|
|
if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
|
|
return false;
|
|
}
|
|
|
|
Base = Op->getOperand(0);
|
|
Offset = DAG.getConstant(RHSC, DL, MVT::i8);
|
|
AM = ISD::POST_INC;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AVRTargetLowering::isOffsetFoldingLegal(
|
|
const GlobalAddressSDNode *GA) const {
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Formal Arguments Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AVRGenCallingConv.inc"
|
|
|
|
/// Registers for calling conventions, ordered in reverse as required by ABI.
|
|
/// Both arrays must be of the same length.
|
|
static const MCPhysReg RegList8[] = {
|
|
AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20,
|
|
AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14,
|
|
AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9, AVR::R8};
|
|
static const MCPhysReg RegList16[] = {
|
|
AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22,
|
|
AVR::R22R21, AVR::R21R20, AVR::R20R19, AVR::R19R18,
|
|
AVR::R18R17, AVR::R17R16, AVR::R16R15, AVR::R15R14,
|
|
AVR::R14R13, AVR::R13R12, AVR::R12R11, AVR::R11R10,
|
|
AVR::R10R9, AVR::R9R8};
|
|
|
|
static_assert(array_lengthof(RegList8) == array_lengthof(RegList16),
|
|
"8-bit and 16-bit register arrays must be of equal length");
|
|
|
|
/// Analyze incoming and outgoing function arguments. We need custom C++ code
|
|
/// to handle special constraints in the ABI.
|
|
/// In addition, all pieces of a certain argument have to be passed either
|
|
/// using registers or the stack but never mixing both.
|
|
template <typename ArgT>
|
|
static void
|
|
analyzeArguments(TargetLowering::CallLoweringInfo *CLI, const Function *F,
|
|
const DataLayout *TD, const SmallVectorImpl<ArgT> &Args,
|
|
SmallVectorImpl<CCValAssign> &ArgLocs, CCState &CCInfo) {
|
|
unsigned NumArgs = Args.size();
|
|
// This is the index of the last used register, in RegList*.
|
|
// -1 means R26 (R26 is never actually used in CC).
|
|
int RegLastIdx = -1;
|
|
// Once a value is passed to the stack it will always be used
|
|
bool UseStack = false;
|
|
for (unsigned i = 0; i != NumArgs;) {
|
|
MVT VT = Args[i].VT;
|
|
// We have to count the number of bytes for each function argument, that is
|
|
// those Args with the same OrigArgIndex. This is important in case the
|
|
// function takes an aggregate type.
|
|
// Current argument will be between [i..j).
|
|
unsigned ArgIndex = Args[i].OrigArgIndex;
|
|
unsigned TotalBytes = VT.getStoreSize();
|
|
unsigned j = i + 1;
|
|
for (; j != NumArgs; ++j) {
|
|
if (Args[j].OrigArgIndex != ArgIndex)
|
|
break;
|
|
TotalBytes += Args[j].VT.getStoreSize();
|
|
}
|
|
// Round up to even number of bytes.
|
|
TotalBytes = alignTo(TotalBytes, 2);
|
|
// Skip zero sized arguments
|
|
if (TotalBytes == 0)
|
|
continue;
|
|
// The index of the first register to be used
|
|
unsigned RegIdx = RegLastIdx + TotalBytes;
|
|
RegLastIdx = RegIdx;
|
|
// If there are not enough registers, use the stack
|
|
if (RegIdx >= array_lengthof(RegList8)) {
|
|
UseStack = true;
|
|
}
|
|
for (; i != j; ++i) {
|
|
MVT VT = Args[i].VT;
|
|
|
|
if (UseStack) {
|
|
auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext());
|
|
unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt),
|
|
TD->getABITypeAlign(evt));
|
|
CCInfo.addLoc(
|
|
CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full));
|
|
} else {
|
|
unsigned Reg;
|
|
if (VT == MVT::i8) {
|
|
Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
|
|
} else if (VT == MVT::i16) {
|
|
Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
|
|
} else {
|
|
llvm_unreachable(
|
|
"calling convention can only manage i8 and i16 types");
|
|
}
|
|
assert(Reg && "register not available in calling convention");
|
|
CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
|
|
// Registers inside a particular argument are sorted in increasing order
|
|
// (remember the array is reversed).
|
|
RegIdx -= VT.getStoreSize();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Count the total number of bytes needed to pass or return these arguments.
|
|
template <typename ArgT>
|
|
static unsigned getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) {
|
|
unsigned TotalBytes = 0;
|
|
|
|
for (const ArgT& Arg : Args) {
|
|
TotalBytes += Arg.VT.getStoreSize();
|
|
}
|
|
return TotalBytes;
|
|
}
|
|
|
|
/// Analyze incoming and outgoing value of returning from a function.
|
|
/// The algorithm is similar to analyzeArguments, but there can only be
|
|
/// one value, possibly an aggregate, and it is limited to 8 bytes.
|
|
template <typename ArgT>
|
|
static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args,
|
|
CCState &CCInfo) {
|
|
unsigned NumArgs = Args.size();
|
|
unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args);
|
|
// CanLowerReturn() guarantees this assertion.
|
|
assert(TotalBytes <= 8 && "return values greater than 8 bytes cannot be lowered");
|
|
|
|
// GCC-ABI says that the size is rounded up to the next even number,
|
|
// but actually once it is more than 4 it will always round up to 8.
|
|
if (TotalBytes > 4) {
|
|
TotalBytes = 8;
|
|
} else {
|
|
TotalBytes = alignTo(TotalBytes, 2);
|
|
}
|
|
|
|
// The index of the first register to use.
|
|
int RegIdx = TotalBytes - 1;
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT VT = Args[i].VT;
|
|
unsigned Reg;
|
|
if (VT == MVT::i8) {
|
|
Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
|
|
} else if (VT == MVT::i16) {
|
|
Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
|
|
} else {
|
|
llvm_unreachable("calling convention can only manage i8 and i16 types");
|
|
}
|
|
assert(Reg && "register not available in calling convention");
|
|
CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
|
|
// Registers sort in increasing order
|
|
RegIdx -= VT.getStoreSize();
|
|
}
|
|
}
|
|
|
|
SDValue AVRTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
auto DL = DAG.getDataLayout();
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// Variadic functions do not need all the analysis below.
|
|
if (isVarArg) {
|
|
CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg);
|
|
} else {
|
|
analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo);
|
|
}
|
|
|
|
SDValue ArgValue;
|
|
for (CCValAssign &VA : ArgLocs) {
|
|
|
|
// Arguments stored on registers.
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
const TargetRegisterClass *RC;
|
|
if (RegVT == MVT::i8) {
|
|
RC = &AVR::GPR8RegClass;
|
|
} else if (RegVT == MVT::i16) {
|
|
RC = &AVR::DREGSRegClass;
|
|
} else {
|
|
llvm_unreachable("Unknown argument type!");
|
|
}
|
|
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
|
|
// :NOTE: Clang should not promote any i8 into i16 but for safety the
|
|
// following code will handle zexts or sexts generated by other
|
|
// front ends. Otherwise:
|
|
// If this is an 8 bit value, it is really passed promoted
|
|
// to 16 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else {
|
|
// Sanity check.
|
|
assert(VA.isMemLoc());
|
|
|
|
EVT LocVT = VA.getLocVT();
|
|
|
|
// Create the frame index object for this incoming parameter.
|
|
int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
|
|
VA.getLocMemOffset(), true);
|
|
|
|
// Create the SelectionDAG nodes corresponding to a load
|
|
// from this parameter.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
|
|
InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(MF, FI)));
|
|
}
|
|
}
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (isVarArg) {
|
|
unsigned StackSize = CCInfo.getNextStackOffset();
|
|
AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
|
|
|
|
AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Call Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &DL = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &isTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool isVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// AVR does not yet support tail call optimization.
|
|
isTailCall = false;
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
const Function *F = nullptr;
|
|
if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
|
|
F = cast<Function>(GV);
|
|
Callee =
|
|
DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
|
|
} else if (const ExternalSymbolSDNode *ES =
|
|
dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
|
|
getPointerTy(DAG.getDataLayout()));
|
|
}
|
|
|
|
// Variadic functions do not need all the analysis below.
|
|
if (isVarArg) {
|
|
CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg);
|
|
} else {
|
|
analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo);
|
|
}
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
|
|
// First, walk the register assignments, inserting copies.
|
|
unsigned AI, AE;
|
|
bool HasStackArgs = false;
|
|
for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
|
|
CCValAssign &VA = ArgLocs[AI];
|
|
EVT RegVT = VA.getLocVT();
|
|
SDValue Arg = OutVals[AI];
|
|
|
|
// Promote the value if needed. With Clang this should not happen.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
|
|
break;
|
|
}
|
|
|
|
// Stop when we encounter a stack argument, we need to process them
|
|
// in reverse order in the loop below.
|
|
if (VA.isMemLoc()) {
|
|
HasStackArgs = true;
|
|
break;
|
|
}
|
|
|
|
// Arguments that can be passed on registers must be kept in the RegsToPass
|
|
// vector.
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
}
|
|
|
|
// Second, stack arguments have to walked in reverse order by inserting
|
|
// chained stores, this ensures their order is not changed by the scheduler
|
|
// and that the push instruction sequence generated is correct, otherwise they
|
|
// can be freely intermixed.
|
|
if (HasStackArgs) {
|
|
for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
|
|
unsigned Loc = AI - 1;
|
|
CCValAssign &VA = ArgLocs[Loc];
|
|
SDValue Arg = OutVals[Loc];
|
|
|
|
assert(VA.isMemLoc());
|
|
|
|
// SP points to one stack slot further so add one to adjust it.
|
|
SDValue PtrOff = DAG.getNode(
|
|
ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
|
|
DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
|
|
DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
|
|
|
|
Chain =
|
|
DAG.getStore(Chain, DL, Arg, PtrOff,
|
|
MachinePointerInfo::getStack(MF, VA.getLocMemOffset()));
|
|
}
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain and
|
|
// flag operands which copy the outgoing args into registers. The InFlag in
|
|
// necessary since all emited instructions must be stuck together.
|
|
SDValue InFlag;
|
|
for (auto Reg : RegsToPass) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Returns a chain & a flag for retval copy to use.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (auto Reg : RegsToPass) {
|
|
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
|
|
}
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *Mask =
|
|
TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode()) {
|
|
Ops.push_back(InFlag);
|
|
}
|
|
|
|
Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Create the CALLSEQ_END node.
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
|
|
DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
|
|
|
|
if (!Ins.empty()) {
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
|
|
InVals);
|
|
}
|
|
|
|
/// Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
///
|
|
SDValue AVRTargetLowering::LowerCallResult(
|
|
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
// Handle runtime calling convs.
|
|
if (CallConv == CallingConv::AVR_BUILTIN) {
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN);
|
|
} else {
|
|
analyzeReturnValues(Ins, CCInfo);
|
|
}
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (CCValAssign const &RVLoc : RVLocs) {
|
|
Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
|
|
InFlag)
|
|
.getValue(1);
|
|
InFlag = Chain.getValue(2);
|
|
InVals.push_back(Chain.getValue(0));
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool AVRTargetLowering::CanLowerReturn(
|
|
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
|
|
if (CallConv == CallingConv::AVR_BUILTIN) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN);
|
|
}
|
|
|
|
unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs);
|
|
return TotalBytes <= 8;
|
|
}
|
|
|
|
SDValue
|
|
AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &dl, SelectionDAG &DAG) const {
|
|
// CCValAssign - represent the assignment of the return value to locations.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slot.
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Analyze return values.
|
|
if (CallConv == CallingConv::AVR_BUILTIN) {
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN);
|
|
} else {
|
|
analyzeReturnValues(Outs, CCInfo);
|
|
}
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
|
|
|
|
// Guarantee that all emitted copies are stuck together with flags.
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
// Don't emit the ret/reti instruction when the naked attribute is present in
|
|
// the function being compiled.
|
|
if (MF.getFunction().getAttributes().hasAttribute(
|
|
AttributeList::FunctionIndex, Attribute::Naked)) {
|
|
return Chain;
|
|
}
|
|
|
|
const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
|
|
|
|
unsigned RetOpc =
|
|
AFI->isInterruptOrSignalHandler()
|
|
? AVRISD::RETI_FLAG
|
|
: AVRISD::RET_FLAG;
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
if (Flag.getNode()) {
|
|
RetOps.push_back(Flag);
|
|
}
|
|
|
|
return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom Inserters
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
unsigned Opc;
|
|
const TargetRegisterClass *RC;
|
|
bool HasRepeatedOperand = false;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineRegisterInfo &RI = F->getRegInfo();
|
|
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
DebugLoc dl = MI.getDebugLoc();
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Invalid shift opcode!");
|
|
case AVR::Lsl8:
|
|
Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
|
|
RC = &AVR::GPR8RegClass;
|
|
HasRepeatedOperand = true;
|
|
break;
|
|
case AVR::Lsl16:
|
|
Opc = AVR::LSLWRd;
|
|
RC = &AVR::DREGSRegClass;
|
|
break;
|
|
case AVR::Asr8:
|
|
Opc = AVR::ASRRd;
|
|
RC = &AVR::GPR8RegClass;
|
|
break;
|
|
case AVR::Asr16:
|
|
Opc = AVR::ASRWRd;
|
|
RC = &AVR::DREGSRegClass;
|
|
break;
|
|
case AVR::Lsr8:
|
|
Opc = AVR::LSRRd;
|
|
RC = &AVR::GPR8RegClass;
|
|
break;
|
|
case AVR::Lsr16:
|
|
Opc = AVR::LSRWRd;
|
|
RC = &AVR::DREGSRegClass;
|
|
break;
|
|
case AVR::Rol8:
|
|
Opc = AVR::ROLBRd;
|
|
RC = &AVR::GPR8RegClass;
|
|
break;
|
|
case AVR::Rol16:
|
|
Opc = AVR::ROLWRd;
|
|
RC = &AVR::DREGSRegClass;
|
|
break;
|
|
case AVR::Ror8:
|
|
Opc = AVR::RORBRd;
|
|
RC = &AVR::GPR8RegClass;
|
|
break;
|
|
case AVR::Ror16:
|
|
Opc = AVR::RORWRd;
|
|
RC = &AVR::DREGSRegClass;
|
|
break;
|
|
}
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
|
|
MachineFunction::iterator I;
|
|
for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
|
|
if (I != F->end()) ++I;
|
|
|
|
// Create loop block.
|
|
MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
F->insert(I, LoopBB);
|
|
F->insert(I, CheckBB);
|
|
F->insert(I, RemBB);
|
|
|
|
// Update machine-CFG edges by transferring all successors of the current
|
|
// block to the block containing instructions after shift.
|
|
RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
RemBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB.
|
|
BB->addSuccessor(CheckBB);
|
|
LoopBB->addSuccessor(CheckBB);
|
|
CheckBB->addSuccessor(LoopBB);
|
|
CheckBB->addSuccessor(RemBB);
|
|
|
|
Register ShiftAmtReg = RI.createVirtualRegister(&AVR::GPR8RegClass);
|
|
Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::GPR8RegClass);
|
|
Register ShiftReg = RI.createVirtualRegister(RC);
|
|
Register ShiftReg2 = RI.createVirtualRegister(RC);
|
|
Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
|
|
// BB:
|
|
// rjmp CheckBB
|
|
BuildMI(BB, dl, TII.get(AVR::RJMPk)).addMBB(CheckBB);
|
|
|
|
// LoopBB:
|
|
// ShiftReg2 = shift ShiftReg
|
|
auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
|
|
if (HasRepeatedOperand)
|
|
ShiftMI.addReg(ShiftReg);
|
|
|
|
// CheckBB:
|
|
// ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
|
|
// ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
|
|
// DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
|
|
// ShiftAmt2 = ShiftAmt - 1;
|
|
// if (ShiftAmt2 >= 0) goto LoopBB;
|
|
BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftReg)
|
|
.addReg(SrcReg)
|
|
.addMBB(BB)
|
|
.addReg(ShiftReg2)
|
|
.addMBB(LoopBB);
|
|
BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
|
|
.addReg(ShiftAmtSrcReg)
|
|
.addMBB(BB)
|
|
.addReg(ShiftAmtReg2)
|
|
.addMBB(LoopBB);
|
|
BuildMI(CheckBB, dl, TII.get(AVR::PHI), DstReg)
|
|
.addReg(SrcReg)
|
|
.addMBB(BB)
|
|
.addReg(ShiftReg2)
|
|
.addMBB(LoopBB);
|
|
|
|
BuildMI(CheckBB, dl, TII.get(AVR::DECRd), ShiftAmtReg2)
|
|
.addReg(ShiftAmtReg);
|
|
BuildMI(CheckBB, dl, TII.get(AVR::BRPLk)).addMBB(LoopBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return RemBB;
|
|
}
|
|
|
|
static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
|
|
if (I->getOpcode() == AVR::COPY) {
|
|
Register SrcReg = I->getOperand(1).getReg();
|
|
return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// The mul instructions wreak havock on our zero_reg R1. We need to clear it
|
|
// after the result has been evacuated. This is probably not the best way to do
|
|
// it, but it works for now.
|
|
MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
MachineBasicBlock::iterator I(MI);
|
|
++I; // in any case insert *after* the mul instruction
|
|
if (isCopyMulResult(I))
|
|
++I;
|
|
if (isCopyMulResult(I))
|
|
++I;
|
|
BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
|
|
.addReg(AVR::R1)
|
|
.addReg(AVR::R1);
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const {
|
|
int Opc = MI.getOpcode();
|
|
|
|
// Pseudo shift instructions with a non constant shift amount are expanded
|
|
// into a loop.
|
|
switch (Opc) {
|
|
case AVR::Lsl8:
|
|
case AVR::Lsl16:
|
|
case AVR::Lsr8:
|
|
case AVR::Lsr16:
|
|
case AVR::Rol8:
|
|
case AVR::Rol16:
|
|
case AVR::Ror8:
|
|
case AVR::Ror16:
|
|
case AVR::Asr8:
|
|
case AVR::Asr16:
|
|
return insertShift(MI, MBB);
|
|
case AVR::MULRdRr:
|
|
case AVR::MULSRdRr:
|
|
return insertMul(MI, MBB);
|
|
}
|
|
|
|
assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
|
|
"Unexpected instr type to insert");
|
|
|
|
const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
|
|
->getParent()
|
|
->getSubtarget()
|
|
.getInstrInfo();
|
|
DebugLoc dl = MI.getDebugLoc();
|
|
|
|
// To "insert" a SELECT instruction, we insert the diamond
|
|
// control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch
|
|
// on, the true/false values to select between, and a branch opcode
|
|
// to use.
|
|
|
|
MachineFunction *MF = MBB->getParent();
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
MachineBasicBlock *FallThrough = MBB->getFallThrough();
|
|
|
|
// If the current basic block falls through to another basic block,
|
|
// we must insert an unconditional branch to the fallthrough destination
|
|
// if we are to insert basic blocks at the prior fallthrough point.
|
|
if (FallThrough != nullptr) {
|
|
BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
|
|
}
|
|
|
|
MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MachineFunction::iterator I;
|
|
for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
|
|
if (I != MF->end()) ++I;
|
|
MF->insert(I, trueMBB);
|
|
MF->insert(I, falseMBB);
|
|
|
|
// Transfer remaining instructions and all successors of the current
|
|
// block to the block which will contain the Phi node for the
|
|
// select.
|
|
trueMBB->splice(trueMBB->begin(), MBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
|
|
trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
|
|
BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
|
|
BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
|
|
MBB->addSuccessor(falseMBB);
|
|
MBB->addSuccessor(trueMBB);
|
|
|
|
// Unconditionally flow back to the true block
|
|
BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
|
|
falseMBB->addSuccessor(trueMBB);
|
|
|
|
// Set up the Phi node to determine where we came from
|
|
BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addMBB(MBB)
|
|
.addReg(MI.getOperand(2).getReg())
|
|
.addMBB(falseMBB) ;
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return trueMBB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline Asm Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AVRTargetLowering::ConstraintType
|
|
AVRTargetLowering::getConstraintType(StringRef Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
// See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'a': // Simple upper registers
|
|
case 'b': // Base pointer registers pairs
|
|
case 'd': // Upper register
|
|
case 'l': // Lower registers
|
|
case 'e': // Pointer register pairs
|
|
case 'q': // Stack pointer register
|
|
case 'r': // Any register
|
|
case 'w': // Special upper register pairs
|
|
return C_RegisterClass;
|
|
case 't': // Temporary register
|
|
case 'x': case 'X': // Pointer register pair X
|
|
case 'y': case 'Y': // Pointer register pair Y
|
|
case 'z': case 'Z': // Pointer register pair Z
|
|
return C_Register;
|
|
case 'Q': // A memory address based on Y or Z pointer with displacement.
|
|
return C_Memory;
|
|
case 'G': // Floating point constant
|
|
case 'I': // 6-bit positive integer constant
|
|
case 'J': // 6-bit negative integer constant
|
|
case 'K': // Integer constant (Range: 2)
|
|
case 'L': // Integer constant (Range: 0)
|
|
case 'M': // 8-bit integer constant
|
|
case 'N': // Integer constant (Range: -1)
|
|
case 'O': // Integer constant (Range: 8, 16, 24)
|
|
case 'P': // Integer constant (Range: 1)
|
|
case 'R': // Integer constant (Range: -6 to 5)x
|
|
return C_Immediate;
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
unsigned
|
|
AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
|
|
// Not sure if this is actually the right thing to do, but we got to do
|
|
// *something* [agnat]
|
|
switch (ConstraintCode[0]) {
|
|
case 'Q':
|
|
return InlineAsm::Constraint_Q;
|
|
}
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
AVRTargetLowering::ConstraintWeight
|
|
AVRTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
// (this behaviour has been copied from the ARM backend)
|
|
if (!CallOperandVal) {
|
|
return CW_Default;
|
|
}
|
|
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'd':
|
|
case 'r':
|
|
case 'l':
|
|
weight = CW_Register;
|
|
break;
|
|
case 'a':
|
|
case 'b':
|
|
case 'e':
|
|
case 'q':
|
|
case 't':
|
|
case 'w':
|
|
case 'x': case 'X':
|
|
case 'y': case 'Y':
|
|
case 'z': case 'Z':
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'G':
|
|
if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
|
|
if (C->isZero()) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'I':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (isUInt<6>(C->getZExtValue())) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'J':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'K':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() == 2) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'L':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() == 0) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'M':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (isUInt<8>(C->getZExtValue())) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'N':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getSExtValue() == -1) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'O':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
|
|
(C->getZExtValue() == 24)) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'P':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if (C->getZExtValue() == 1) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'R':
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
|
|
if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
|
|
weight = CW_Constant;
|
|
}
|
|
}
|
|
break;
|
|
case 'Q':
|
|
weight = CW_Memory;
|
|
break;
|
|
}
|
|
|
|
return weight;
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
// We only support i8 and i16.
|
|
//
|
|
//:FIXME: remove this assert for now since it gets sometimes executed
|
|
// assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
|
|
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'a': // Simple upper registers r16..r23.
|
|
return std::make_pair(0U, &AVR::LD8loRegClass);
|
|
case 'b': // Base pointer registers: y, z.
|
|
return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
|
|
case 'd': // Upper registers r16..r31.
|
|
return std::make_pair(0U, &AVR::LD8RegClass);
|
|
case 'l': // Lower registers r0..r15.
|
|
return std::make_pair(0U, &AVR::GPR8loRegClass);
|
|
case 'e': // Pointer register pairs: x, y, z.
|
|
return std::make_pair(0U, &AVR::PTRREGSRegClass);
|
|
case 'q': // Stack pointer register: SPH:SPL.
|
|
return std::make_pair(0U, &AVR::GPRSPRegClass);
|
|
case 'r': // Any register: r0..r31.
|
|
if (VT == MVT::i8)
|
|
return std::make_pair(0U, &AVR::GPR8RegClass);
|
|
|
|
assert(VT == MVT::i16 && "inline asm constraint too large");
|
|
return std::make_pair(0U, &AVR::DREGSRegClass);
|
|
case 't': // Temporary register: r0.
|
|
return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
|
|
case 'w': // Special upper register pairs: r24, r26, r28, r30.
|
|
return std::make_pair(0U, &AVR::IWREGSRegClass);
|
|
case 'x': // Pointer register pair X: r27:r26.
|
|
case 'X':
|
|
return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
|
|
case 'y': // Pointer register pair Y: r29:r28.
|
|
case 'Y':
|
|
return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
|
|
case 'z': // Pointer register pair Z: r31:r30.
|
|
case 'Z':
|
|
return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(
|
|
Subtarget.getRegisterInfo(), Constraint, VT);
|
|
}
|
|
|
|
void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result(0, 0);
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getValueType();
|
|
|
|
// Currently only support length 1 constraints.
|
|
if (Constraint.length() != 1) {
|
|
return;
|
|
}
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default:
|
|
break;
|
|
// Deal with integers first:
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P':
|
|
case 'R': {
|
|
const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C) {
|
|
return;
|
|
}
|
|
|
|
int64_t CVal64 = C->getSExtValue();
|
|
uint64_t CUVal64 = C->getZExtValue();
|
|
switch (ConstraintLetter) {
|
|
case 'I': // 0..63
|
|
if (!isUInt<6>(CUVal64))
|
|
return;
|
|
Result = DAG.getTargetConstant(CUVal64, DL, Ty);
|
|
break;
|
|
case 'J': // -63..0
|
|
if (CVal64 < -63 || CVal64 > 0)
|
|
return;
|
|
Result = DAG.getTargetConstant(CVal64, DL, Ty);
|
|
break;
|
|
case 'K': // 2
|
|
if (CUVal64 != 2)
|
|
return;
|
|
Result = DAG.getTargetConstant(CUVal64, DL, Ty);
|
|
break;
|
|
case 'L': // 0
|
|
if (CUVal64 != 0)
|
|
return;
|
|
Result = DAG.getTargetConstant(CUVal64, DL, Ty);
|
|
break;
|
|
case 'M': // 0..255
|
|
if (!isUInt<8>(CUVal64))
|
|
return;
|
|
// i8 type may be printed as a negative number,
|
|
// e.g. 254 would be printed as -2,
|
|
// so we force it to i16 at least.
|
|
if (Ty.getSimpleVT() == MVT::i8) {
|
|
Ty = MVT::i16;
|
|
}
|
|
Result = DAG.getTargetConstant(CUVal64, DL, Ty);
|
|
break;
|
|
case 'N': // -1
|
|
if (CVal64 != -1)
|
|
return;
|
|
Result = DAG.getTargetConstant(CVal64, DL, Ty);
|
|
break;
|
|
case 'O': // 8, 16, 24
|
|
if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
|
|
return;
|
|
Result = DAG.getTargetConstant(CUVal64, DL, Ty);
|
|
break;
|
|
case 'P': // 1
|
|
if (CUVal64 != 1)
|
|
return;
|
|
Result = DAG.getTargetConstant(CUVal64, DL, Ty);
|
|
break;
|
|
case 'R': // -6..5
|
|
if (CVal64 < -6 || CVal64 > 5)
|
|
return;
|
|
Result = DAG.getTargetConstant(CVal64, DL, Ty);
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 'G':
|
|
const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
|
|
if (!FC || !FC->isZero())
|
|
return;
|
|
// Soften float to i8 0
|
|
Result = DAG.getTargetConstant(0, DL, MVT::i8);
|
|
break;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
|
|
const MachineFunction &MF) const {
|
|
Register Reg;
|
|
|
|
if (VT == LLT::scalar(8)) {
|
|
Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
|
|
.Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
|
|
.Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
|
|
.Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
|
|
.Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
|
|
.Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
|
|
.Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
|
|
.Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
|
|
.Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
|
|
.Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
|
|
.Case("r30", AVR::R30).Case("r31", AVR::R31)
|
|
.Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
|
|
.Default(0);
|
|
} else {
|
|
Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
|
|
.Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
|
|
.Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
|
|
.Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
|
|
.Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
|
|
.Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
|
|
.Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
|
|
.Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
|
|
.Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
|
|
.Default(0);
|
|
}
|
|
|
|
if (Reg)
|
|
return Reg;
|
|
|
|
report_fatal_error("Invalid register name global variable");
|
|
}
|
|
|
|
} // end of namespace llvm
|