llvm-for-llvmta/lib/Target/ARM/AsmParser/ARMAsmParser.cpp

12274 lines
453 KiB
C++

//===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ARMFeatures.h"
#include "ARMBaseInstrInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMInstPrinter.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "TargetInfo/ARMTargetInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCAsmParserUtils.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/ARMEHABI.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#define DEBUG_TYPE "asm-parser"
using namespace llvm;
namespace llvm {
extern const MCInstrDesc ARMInsts[];
} // end namespace llvm
namespace {
enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
static cl::opt<ImplicitItModeTy> ImplicitItMode(
"arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
cl::desc("Allow conditional instructions outdside of an IT block"),
cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
"Accept in both ISAs, emit implicit ITs in Thumb"),
clEnumValN(ImplicitItModeTy::Never, "never",
"Warn in ARM, reject in Thumb"),
clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
"Accept in ARM, reject in Thumb"),
clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
"Warn in ARM, emit implicit ITs in Thumb")));
static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
cl::init(false));
enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
// Position==0 means we're not in an IT block at all. Position==1
// means we want the first state bit, which is always 0 (Then).
// Position==2 means we want the second state bit, stored at bit 3
// of Mask, and so on downwards. So (5 - Position) will shift the
// right bit down to bit 0, including the always-0 bit at bit 4 for
// the mandatory initial Then.
return (Mask >> (5 - Position) & 1);
}
class UnwindContext {
using Locs = SmallVector<SMLoc, 4>;
MCAsmParser &Parser;
Locs FnStartLocs;
Locs CantUnwindLocs;
Locs PersonalityLocs;
Locs PersonalityIndexLocs;
Locs HandlerDataLocs;
int FPReg;
public:
UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
bool hasFnStart() const { return !FnStartLocs.empty(); }
bool cantUnwind() const { return !CantUnwindLocs.empty(); }
bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
bool hasPersonality() const {
return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
}
void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
void saveFPReg(int Reg) { FPReg = Reg; }
int getFPReg() const { return FPReg; }
void emitFnStartLocNotes() const {
for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
FI != FE; ++FI)
Parser.Note(*FI, ".fnstart was specified here");
}
void emitCantUnwindLocNotes() const {
for (Locs::const_iterator UI = CantUnwindLocs.begin(),
UE = CantUnwindLocs.end(); UI != UE; ++UI)
Parser.Note(*UI, ".cantunwind was specified here");
}
void emitHandlerDataLocNotes() const {
for (Locs::const_iterator HI = HandlerDataLocs.begin(),
HE = HandlerDataLocs.end(); HI != HE; ++HI)
Parser.Note(*HI, ".handlerdata was specified here");
}
void emitPersonalityLocNotes() const {
for (Locs::const_iterator PI = PersonalityLocs.begin(),
PE = PersonalityLocs.end(),
PII = PersonalityIndexLocs.begin(),
PIE = PersonalityIndexLocs.end();
PI != PE || PII != PIE;) {
if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
Parser.Note(*PI++, ".personality was specified here");
else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
Parser.Note(*PII++, ".personalityindex was specified here");
else
llvm_unreachable(".personality and .personalityindex cannot be "
"at the same location");
}
}
void reset() {
FnStartLocs = Locs();
CantUnwindLocs = Locs();
PersonalityLocs = Locs();
HandlerDataLocs = Locs();
PersonalityIndexLocs = Locs();
FPReg = ARM::SP;
}
};
// Various sets of ARM instruction mnemonics which are used by the asm parser
class ARMMnemonicSets {
StringSet<> CDE;
StringSet<> CDEWithVPTSuffix;
public:
ARMMnemonicSets(const MCSubtargetInfo &STI);
/// Returns true iff a given mnemonic is a CDE instruction
bool isCDEInstr(StringRef Mnemonic) {
// Quick check before searching the set
if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx"))
return false;
return CDE.count(Mnemonic);
}
/// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
/// (possibly with a predication suffix "e" or "t")
bool isVPTPredicableCDEInstr(StringRef Mnemonic) {
if (!Mnemonic.startswith("vcx"))
return false;
return CDEWithVPTSuffix.count(Mnemonic);
}
/// Returns true iff a given mnemonic is an IT-predicable CDE instruction
/// (possibly with a condition suffix)
bool isITPredicableCDEInstr(StringRef Mnemonic) {
if (!Mnemonic.startswith("cx"))
return false;
return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") ||
Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") ||
Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da");
}
/// Return true iff a given mnemonic is an integer CDE instruction with
/// dual-register destination
bool isCDEDualRegInstr(StringRef Mnemonic) {
if (!Mnemonic.startswith("cx"))
return false;
return Mnemonic == "cx1d" || Mnemonic == "cx1da" ||
Mnemonic == "cx2d" || Mnemonic == "cx2da" ||
Mnemonic == "cx3d" || Mnemonic == "cx3da";
}
};
ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) {
for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da",
"cx2", "cx2a", "cx2d", "cx2da",
"cx3", "cx3a", "cx3d", "cx3da", })
CDE.insert(Mnemonic);
for (StringRef Mnemonic :
{"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
CDE.insert(Mnemonic);
CDEWithVPTSuffix.insert(Mnemonic);
CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t");
CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e");
}
}
class ARMAsmParser : public MCTargetAsmParser {
const MCRegisterInfo *MRI;
UnwindContext UC;
ARMMnemonicSets MS;
ARMTargetStreamer &getTargetStreamer() {
assert(getParser().getStreamer().getTargetStreamer() &&
"do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<ARMTargetStreamer &>(TS);
}
// Map of register aliases registers via the .req directive.
StringMap<unsigned> RegisterReqs;
bool NextSymbolIsThumb;
bool useImplicitITThumb() const {
return ImplicitItMode == ImplicitItModeTy::Always ||
ImplicitItMode == ImplicitItModeTy::ThumbOnly;
}
bool useImplicitITARM() const {
return ImplicitItMode == ImplicitItModeTy::Always ||
ImplicitItMode == ImplicitItModeTy::ARMOnly;
}
struct {
ARMCC::CondCodes Cond; // Condition for IT block.
unsigned Mask:4; // Condition mask for instructions.
// Starting at first 1 (from lsb).
// '1' condition as indicated in IT.
// '0' inverse of condition (else).
// Count of instructions in IT block is
// 4 - trailingzeroes(mask)
// Note that this does not have the same encoding
// as in the IT instruction, which also depends
// on the low bit of the condition code.
unsigned CurPosition; // Current position in parsing of IT
// block. In range [0,4], with 0 being the IT
// instruction itself. Initialized according to
// count of instructions in block. ~0U if no
// active IT block.
bool IsExplicit; // true - The IT instruction was present in the
// input, we should not modify it.
// false - The IT instruction was added
// implicitly, we can extend it if that
// would be legal.
} ITState;
SmallVector<MCInst, 4> PendingConditionalInsts;
void flushPendingInstructions(MCStreamer &Out) override {
if (!inImplicitITBlock()) {
assert(PendingConditionalInsts.size() == 0);
return;
}
// Emit the IT instruction
MCInst ITInst;
ITInst.setOpcode(ARM::t2IT);
ITInst.addOperand(MCOperand::createImm(ITState.Cond));
ITInst.addOperand(MCOperand::createImm(ITState.Mask));
Out.emitInstruction(ITInst, getSTI());
// Emit the conditonal instructions
assert(PendingConditionalInsts.size() <= 4);
for (const MCInst &Inst : PendingConditionalInsts) {
Out.emitInstruction(Inst, getSTI());
}
PendingConditionalInsts.clear();
// Clear the IT state
ITState.Mask = 0;
ITState.CurPosition = ~0U;
}
bool inITBlock() { return ITState.CurPosition != ~0U; }
bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
bool lastInITBlock() {
return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
}
void forwardITPosition() {
if (!inITBlock()) return;
// Move to the next instruction in the IT block, if there is one. If not,
// mark the block as done, except for implicit IT blocks, which we leave
// open until we find an instruction that can't be added to it.
unsigned TZ = countTrailingZeros(ITState.Mask);
if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
ITState.CurPosition = ~0U; // Done with the IT block after this.
}
// Rewind the state of the current IT block, removing the last slot from it.
void rewindImplicitITPosition() {
assert(inImplicitITBlock());
assert(ITState.CurPosition > 1);
ITState.CurPosition--;
unsigned TZ = countTrailingZeros(ITState.Mask);
unsigned NewMask = 0;
NewMask |= ITState.Mask & (0xC << TZ);
NewMask |= 0x2 << TZ;
ITState.Mask = NewMask;
}
// Rewind the state of the current IT block, removing the last slot from it.
// If we were at the first slot, this closes the IT block.
void discardImplicitITBlock() {
assert(inImplicitITBlock());
assert(ITState.CurPosition == 1);
ITState.CurPosition = ~0U;
}
// Return the low-subreg of a given Q register.
unsigned getDRegFromQReg(unsigned QReg) const {
return MRI->getSubReg(QReg, ARM::dsub_0);
}
// Get the condition code corresponding to the current IT block slot.
ARMCC::CondCodes currentITCond() {
unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
}
// Invert the condition of the current IT block slot without changing any
// other slots in the same block.
void invertCurrentITCondition() {
if (ITState.CurPosition == 1) {
ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
} else {
ITState.Mask ^= 1 << (5 - ITState.CurPosition);
}
}
// Returns true if the current IT block is full (all 4 slots used).
bool isITBlockFull() {
return inITBlock() && (ITState.Mask & 1);
}
// Extend the current implicit IT block to have one more slot with the given
// condition code.
void extendImplicitITBlock(ARMCC::CondCodes Cond) {
assert(inImplicitITBlock());
assert(!isITBlockFull());
assert(Cond == ITState.Cond ||
Cond == ARMCC::getOppositeCondition(ITState.Cond));
unsigned TZ = countTrailingZeros(ITState.Mask);
unsigned NewMask = 0;
// Keep any existing condition bits.
NewMask |= ITState.Mask & (0xE << TZ);
// Insert the new condition bit.
NewMask |= (Cond != ITState.Cond) << TZ;
// Move the trailing 1 down one bit.
NewMask |= 1 << (TZ - 1);
ITState.Mask = NewMask;
}
// Create a new implicit IT block with a dummy condition code.
void startImplicitITBlock() {
assert(!inITBlock());
ITState.Cond = ARMCC::AL;
ITState.Mask = 8;
ITState.CurPosition = 1;
ITState.IsExplicit = false;
}
// Create a new explicit IT block with the given condition and mask.
// The mask should be in the format used in ARMOperand and
// MCOperand, with a 1 implying 'e', regardless of the low bit of
// the condition.
void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
assert(!inITBlock());
ITState.Cond = Cond;
ITState.Mask = Mask;
ITState.CurPosition = 0;
ITState.IsExplicit = true;
}
struct {
unsigned Mask : 4;
unsigned CurPosition;
} VPTState;
bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
void forwardVPTPosition() {
if (!inVPTBlock()) return;
unsigned TZ = countTrailingZeros(VPTState.Mask);
if (++VPTState.CurPosition == 5 - TZ)
VPTState.CurPosition = ~0U;
}
void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
return getParser().Note(L, Msg, Range);
}
bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
return getParser().Warning(L, Msg, Range);
}
bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
return getParser().Error(L, Msg, Range);
}
bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
unsigned ListNo, bool IsARPop = false);
bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
unsigned ListNo);
int tryParseRegister();
bool tryParseRegisterWithWriteBack(OperandVector &);
int tryParseShiftRegister(OperandVector &);
bool parseRegisterList(OperandVector &, bool EnforceOrder = true);
bool parseMemory(OperandVector &);
bool parseOperand(OperandVector &, StringRef Mnemonic);
bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
unsigned &ShiftAmount);
bool parseLiteralValues(unsigned Size, SMLoc L);
bool parseDirectiveThumb(SMLoc L);
bool parseDirectiveARM(SMLoc L);
bool parseDirectiveThumbFunc(SMLoc L);
bool parseDirectiveCode(SMLoc L);
bool parseDirectiveSyntax(SMLoc L);
bool parseDirectiveReq(StringRef Name, SMLoc L);
bool parseDirectiveUnreq(SMLoc L);
bool parseDirectiveArch(SMLoc L);
bool parseDirectiveEabiAttr(SMLoc L);
bool parseDirectiveCPU(SMLoc L);
bool parseDirectiveFPU(SMLoc L);
bool parseDirectiveFnStart(SMLoc L);
bool parseDirectiveFnEnd(SMLoc L);
bool parseDirectiveCantUnwind(SMLoc L);
bool parseDirectivePersonality(SMLoc L);
bool parseDirectiveHandlerData(SMLoc L);
bool parseDirectiveSetFP(SMLoc L);
bool parseDirectivePad(SMLoc L);
bool parseDirectiveRegSave(SMLoc L, bool IsVector);
bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
bool parseDirectiveLtorg(SMLoc L);
bool parseDirectiveEven(SMLoc L);
bool parseDirectivePersonalityIndex(SMLoc L);
bool parseDirectiveUnwindRaw(SMLoc L);
bool parseDirectiveTLSDescSeq(SMLoc L);
bool parseDirectiveMovSP(SMLoc L);
bool parseDirectiveObjectArch(SMLoc L);
bool parseDirectiveArchExtension(SMLoc L);
bool parseDirectiveAlign(SMLoc L);
bool parseDirectiveThumbSet(SMLoc L);
bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
unsigned &PredicationCode,
unsigned &VPTPredicationCode, bool &CarrySetting,
unsigned &ProcessorIMod, StringRef &ITMask);
void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
StringRef FullInst, bool &CanAcceptCarrySet,
bool &CanAcceptPredicationCode,
bool &CanAcceptVPTPredicationCode);
void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
OperandVector &Operands);
bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands);
bool isThumb() const {
// FIXME: Can tablegen auto-generate this?
return getSTI().getFeatureBits()[ARM::ModeThumb];
}
bool isThumbOne() const {
return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
}
bool isThumbTwo() const {
return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
}
bool hasThumb() const {
return getSTI().getFeatureBits()[ARM::HasV4TOps];
}
bool hasThumb2() const {
return getSTI().getFeatureBits()[ARM::FeatureThumb2];
}
bool hasV6Ops() const {
return getSTI().getFeatureBits()[ARM::HasV6Ops];
}
bool hasV6T2Ops() const {
return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
}
bool hasV6MOps() const {
return getSTI().getFeatureBits()[ARM::HasV6MOps];
}
bool hasV7Ops() const {
return getSTI().getFeatureBits()[ARM::HasV7Ops];
}
bool hasV8Ops() const {
return getSTI().getFeatureBits()[ARM::HasV8Ops];
}
bool hasV8MBaseline() const {
return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
}
bool hasV8MMainline() const {
return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
}
bool hasV8_1MMainline() const {
return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
}
bool hasMVE() const {
return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
}
bool hasMVEFloat() const {
return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
}
bool hasCDE() const {
return getSTI().getFeatureBits()[ARM::HasCDEOps];
}
bool has8MSecExt() const {
return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
}
bool hasARM() const {
return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
}
bool hasDSP() const {
return getSTI().getFeatureBits()[ARM::FeatureDSP];
}
bool hasD32() const {
return getSTI().getFeatureBits()[ARM::FeatureD32];
}
bool hasV8_1aOps() const {
return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
}
bool hasRAS() const {
return getSTI().getFeatureBits()[ARM::FeatureRAS];
}
void SwitchMode() {
MCSubtargetInfo &STI = copySTI();
auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
setAvailableFeatures(FB);
}
void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
bool isMClass() const {
return getSTI().getFeatureBits()[ARM::FeatureMClass];
}
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "ARMGenAsmMatcher.inc"
/// }
OperandMatchResultTy parseITCondCode(OperandVector &);
OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
OperandMatchResultTy parseBankedRegOperand(OperandVector &);
OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
int High);
OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
return parsePKHImm(O, "lsl", 0, 31);
}
OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
return parsePKHImm(O, "asr", 1, 32);
}
OperandMatchResultTy parseSetEndImm(OperandVector &);
OperandMatchResultTy parseShifterImm(OperandVector &);
OperandMatchResultTy parseRotImm(OperandVector &);
OperandMatchResultTy parseModImm(OperandVector &);
OperandMatchResultTy parseBitfield(OperandVector &);
OperandMatchResultTy parsePostIdxReg(OperandVector &);
OperandMatchResultTy parseAM3Offset(OperandVector &);
OperandMatchResultTy parseFPImm(OperandVector &);
OperandMatchResultTy parseVectorList(OperandVector &);
OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
SMLoc &EndLoc);
// Asm Match Converter Methods
void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
void cvtThumbBranches(MCInst &Inst, const OperandVector &);
void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
bool isITBlockTerminator(MCInst &Inst) const;
void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
bool Load, bool ARMMode, bool Writeback);
public:
enum ARMMatchResultTy {
Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
Match_RequiresNotITBlock,
Match_RequiresV6,
Match_RequiresThumb2,
Match_RequiresV8,
Match_RequiresFlagSetting,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "ARMGenAsmMatcher.inc"
};
ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) {
MCAsmParserExtension::Initialize(Parser);
// Cache the MCRegisterInfo.
MRI = getContext().getRegisterInfo();
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
// Add build attributes based on the selected target.
if (AddBuildAttributes)
getTargetStreamer().emitTargetAttributes(STI);
// Not in an ITBlock to start with.
ITState.CurPosition = ~0U;
VPTState.CurPosition = ~0U;
NextSymbolIsThumb = false;
}
// Implementation of the MCTargetAsmParser interface:
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
SmallVectorImpl<NearMissInfo> &NearMisses,
bool MatchingInlineAsm, bool &EmitInITBlock,
MCStreamer &Out);
struct NearMissMessage {
SMLoc Loc;
SmallString<128> Message;
};
const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
SmallVectorImpl<NearMissMessage> &NearMissesOut,
SMLoc IDLoc, OperandVector &Operands);
void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
OperandVector &Operands);
void doBeforeLabelEmit(MCSymbol *Symbol) override;
void onLabelParsed(MCSymbol *Symbol) override;
};
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// operand.
class ARMOperand : public MCParsedAsmOperand {
enum KindTy {
k_CondCode,
k_VPTPred,
k_CCOut,
k_ITCondMask,
k_CoprocNum,
k_CoprocReg,
k_CoprocOption,
k_Immediate,
k_MemBarrierOpt,
k_InstSyncBarrierOpt,
k_TraceSyncBarrierOpt,
k_Memory,
k_PostIndexRegister,
k_MSRMask,
k_BankedReg,
k_ProcIFlags,
k_VectorIndex,
k_Register,
k_RegisterList,
k_RegisterListWithAPSR,
k_DPRRegisterList,
k_SPRRegisterList,
k_FPSRegisterListWithVPR,
k_FPDRegisterListWithVPR,
k_VectorList,
k_VectorListAllLanes,
k_VectorListIndexed,
k_ShiftedRegister,
k_ShiftedImmediate,
k_ShifterImmediate,
k_RotateImmediate,
k_ModifiedImmediate,
k_ConstantPoolImmediate,
k_BitfieldDescriptor,
k_Token,
} Kind;
SMLoc StartLoc, EndLoc, AlignmentLoc;
SmallVector<unsigned, 8> Registers;
struct CCOp {
ARMCC::CondCodes Val;
};
struct VCCOp {
ARMVCC::VPTCodes Val;
};
struct CopOp {
unsigned Val;
};
struct CoprocOptionOp {
unsigned Val;
};
struct ITMaskOp {
unsigned Mask:4;
};
struct MBOptOp {
ARM_MB::MemBOpt Val;
};
struct ISBOptOp {
ARM_ISB::InstSyncBOpt Val;
};
struct TSBOptOp {
ARM_TSB::TraceSyncBOpt Val;
};
struct IFlagsOp {
ARM_PROC::IFlags Val;
};
struct MMaskOp {
unsigned Val;
};
struct BankedRegOp {
unsigned Val;
};
struct TokOp {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNum;
};
// A vector register list is a sequential list of 1 to 4 registers.
struct VectorListOp {
unsigned RegNum;
unsigned Count;
unsigned LaneIndex;
bool isDoubleSpaced;
};
struct VectorIndexOp {
unsigned Val;
};
struct ImmOp {
const MCExpr *Val;
};
/// Combined record for all forms of ARM address expressions.
struct MemoryOp {
unsigned BaseRegNum;
// Offset is in OffsetReg or OffsetImm. If both are zero, no offset
// was specified.
const MCConstantExpr *OffsetImm; // Offset immediate value
unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
unsigned ShiftImm; // shift for OffsetReg.
unsigned Alignment; // 0 = no alignment specified
// n = alignment in bytes (2, 4, 8, 16, or 32)
unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
};
struct PostIdxRegOp {
unsigned RegNum;
bool isAdd;
ARM_AM::ShiftOpc ShiftTy;
unsigned ShiftImm;
};
struct ShifterImmOp {
bool isASR;
unsigned Imm;
};
struct RegShiftedRegOp {
ARM_AM::ShiftOpc ShiftTy;
unsigned SrcReg;
unsigned ShiftReg;
unsigned ShiftImm;
};
struct RegShiftedImmOp {
ARM_AM::ShiftOpc ShiftTy;
unsigned SrcReg;
unsigned ShiftImm;
};
struct RotImmOp {
unsigned Imm;
};
struct ModImmOp {
unsigned Bits;
unsigned Rot;
};
struct BitfieldOp {
unsigned LSB;
unsigned Width;
};
union {
struct CCOp CC;
struct VCCOp VCC;
struct CopOp Cop;
struct CoprocOptionOp CoprocOption;
struct MBOptOp MBOpt;
struct ISBOptOp ISBOpt;
struct TSBOptOp TSBOpt;
struct ITMaskOp ITMask;
struct IFlagsOp IFlags;
struct MMaskOp MMask;
struct BankedRegOp BankedReg;
struct TokOp Tok;
struct RegOp Reg;
struct VectorListOp VectorList;
struct VectorIndexOp VectorIndex;
struct ImmOp Imm;
struct MemoryOp Memory;
struct PostIdxRegOp PostIdxReg;
struct ShifterImmOp ShifterImm;
struct RegShiftedRegOp RegShiftedReg;
struct RegShiftedImmOp RegShiftedImm;
struct RotImmOp RotImm;
struct ModImmOp ModImm;
struct BitfieldOp Bitfield;
};
public:
ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
/// getLocRange - Get the range between the first and last token of this
/// operand.
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
/// getAlignmentLoc - Get the location of the Alignment token of this operand.
SMLoc getAlignmentLoc() const {
assert(Kind == k_Memory && "Invalid access!");
return AlignmentLoc;
}
ARMCC::CondCodes getCondCode() const {
assert(Kind == k_CondCode && "Invalid access!");
return CC.Val;
}
ARMVCC::VPTCodes getVPTPred() const {
assert(isVPTPred() && "Invalid access!");
return VCC.Val;
}
unsigned getCoproc() const {
assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
return Cop.Val;
}
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const override {
assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
return Reg.RegNum;
}
const SmallVectorImpl<unsigned> &getRegList() const {
assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
Kind == k_FPSRegisterListWithVPR ||
Kind == k_FPDRegisterListWithVPR) &&
"Invalid access!");
return Registers;
}
const MCExpr *getImm() const {
assert(isImm() && "Invalid access!");
return Imm.Val;
}
const MCExpr *getConstantPoolImm() const {
assert(isConstantPoolImm() && "Invalid access!");
return Imm.Val;
}
unsigned getVectorIndex() const {
assert(Kind == k_VectorIndex && "Invalid access!");
return VectorIndex.Val;
}
ARM_MB::MemBOpt getMemBarrierOpt() const {
assert(Kind == k_MemBarrierOpt && "Invalid access!");
return MBOpt.Val;
}
ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
return ISBOpt.Val;
}
ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
return TSBOpt.Val;
}
ARM_PROC::IFlags getProcIFlags() const {
assert(Kind == k_ProcIFlags && "Invalid access!");
return IFlags.Val;
}
unsigned getMSRMask() const {
assert(Kind == k_MSRMask && "Invalid access!");
return MMask.Val;
}
unsigned getBankedReg() const {
assert(Kind == k_BankedReg && "Invalid access!");
return BankedReg.Val;
}
bool isCoprocNum() const { return Kind == k_CoprocNum; }
bool isCoprocReg() const { return Kind == k_CoprocReg; }
bool isCoprocOption() const { return Kind == k_CoprocOption; }
bool isCondCode() const { return Kind == k_CondCode; }
bool isVPTPred() const { return Kind == k_VPTPred; }
bool isCCOut() const { return Kind == k_CCOut; }
bool isITMask() const { return Kind == k_ITCondMask; }
bool isITCondCode() const { return Kind == k_CondCode; }
bool isImm() const override {
return Kind == k_Immediate;
}
bool isARMBranchTarget() const {
if (!isImm()) return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
return CE->getValue() % 4 == 0;
return true;
}
bool isThumbBranchTarget() const {
if (!isImm()) return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
return CE->getValue() % 2 == 0;
return true;
}
// checks whether this operand is an unsigned offset which fits is a field
// of specified width and scaled by a specific number of bits
template<unsigned width, unsigned scale>
bool isUnsignedOffset() const {
if (!isImm()) return false;
if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Align = 1LL << scale;
int64_t Max = Align * ((1LL << width) - 1);
return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
}
return false;
}
// checks whether this operand is an signed offset which fits is a field
// of specified width and scaled by a specific number of bits
template<unsigned width, unsigned scale>
bool isSignedOffset() const {
if (!isImm()) return false;
if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Align = 1LL << scale;
int64_t Max = Align * ((1LL << (width-1)) - 1);
int64_t Min = -Align * (1LL << (width-1));
return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
}
return false;
}
// checks whether this operand is an offset suitable for the LE /
// LETP instructions in Arm v8.1M
bool isLEOffset() const {
if (!isImm()) return false;
if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
return Val < 0 && Val >= -4094 && (Val & 1) == 0;
}
return false;
}
// checks whether this operand is a memory operand computed as an offset
// applied to PC. the offset may have 8 bits of magnitude and is represented
// with two bits of shift. textually it may be either [pc, #imm], #imm or
// relocable expression...
bool isThumbMemPC() const {
int64_t Val = 0;
if (isImm()) {
if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
if (!CE) return false;
Val = CE->getValue();
}
else if (isGPRMem()) {
if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
if(Memory.BaseRegNum != ARM::PC) return false;
Val = Memory.OffsetImm->getValue();
}
else return false;
return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
}
bool isFPImm() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
return Val != -1;
}
template<int64_t N, int64_t M>
bool isImmediate() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value >= N && Value <= M;
}
template<int64_t N, int64_t M>
bool isImmediateS4() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 3) == 0) && Value >= N && Value <= M;
}
template<int64_t N, int64_t M>
bool isImmediateS2() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ((Value & 1) == 0) && Value >= N && Value <= M;
}
bool isFBits16() const {
return isImmediate<0, 17>();
}
bool isFBits32() const {
return isImmediate<1, 33>();
}
bool isImm8s4() const {
return isImmediateS4<-1020, 1020>();
}
bool isImm7s4() const {
return isImmediateS4<-508, 508>();
}
bool isImm7Shift0() const {
return isImmediate<-127, 127>();
}
bool isImm7Shift1() const {
return isImmediateS2<-255, 255>();
}
bool isImm7Shift2() const {
return isImmediateS4<-511, 511>();
}
bool isImm7() const {
return isImmediate<-127, 127>();
}
bool isImm0_1020s4() const {
return isImmediateS4<0, 1020>();
}
bool isImm0_508s4() const {
return isImmediateS4<0, 508>();
}
bool isImm0_508s4Neg() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = -CE->getValue();
// explicitly exclude zero. we want that to use the normal 0_508 version.
return ((Value & 3) == 0) && Value > 0 && Value <= 508;
}
bool isImm0_4095Neg() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
// isImm0_4095Neg is used with 32-bit immediates only.
// 32-bit immediates are zero extended to 64-bit when parsed,
// thus simple -CE->getValue() results in a big negative number,
// not a small positive number as intended
if ((CE->getValue() >> 32) > 0) return false;
uint32_t Value = -static_cast<uint32_t>(CE->getValue());
return Value > 0 && Value < 4096;
}
bool isImm0_7() const {
return isImmediate<0, 7>();
}
bool isImm1_16() const {
return isImmediate<1, 16>();
}
bool isImm1_32() const {
return isImmediate<1, 32>();
}
bool isImm8_255() const {
return isImmediate<8, 255>();
}
bool isImm256_65535Expr() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// If it's not a constant expression, it'll generate a fixup and be
// handled later.
if (!CE) return true;
int64_t Value = CE->getValue();
return Value >= 256 && Value < 65536;
}
bool isImm0_65535Expr() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// If it's not a constant expression, it'll generate a fixup and be
// handled later.
if (!CE) return true;
int64_t Value = CE->getValue();
return Value >= 0 && Value < 65536;
}
bool isImm24bit() const {
return isImmediate<0, 0xffffff + 1>();
}
bool isImmThumbSR() const {
return isImmediate<1, 33>();
}
template<int shift>
bool isExpImmValue(uint64_t Value) const {
uint64_t mask = (1 << shift) - 1;
if ((Value & mask) != 0 || (Value >> shift) > 0xff)
return false;
return true;
}
template<int shift>
bool isExpImm() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
return isExpImmValue<shift>(CE->getValue());
}
template<int shift, int size>
bool isInvertedExpImm() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
uint64_t OriginalValue = CE->getValue();
uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
return isExpImmValue<shift>(InvertedValue);
}
bool isPKHLSLImm() const {
return isImmediate<0, 32>();
}
bool isPKHASRImm() const {
return isImmediate<0, 33>();
}
bool isAdrLabel() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup.
if (isImm() && !isa<MCConstantExpr>(getImm()))
return true;
// If it is a constant, it must fit into a modified immediate encoding.
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return (ARM_AM::getSOImmVal(Value) != -1 ||
ARM_AM::getSOImmVal(-Value) != -1);
}
bool isT2SOImm() const {
// If we have an immediate that's not a constant, treat it as an expression
// needing a fixup.
if (isImm() && !isa<MCConstantExpr>(getImm())) {
// We want to avoid matching :upper16: and :lower16: as we want these
// expressions to match in isImm0_65535Expr()
const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
}
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getT2SOImmVal(Value) != -1;
}
bool isT2SOImmNot() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getT2SOImmVal(Value) == -1 &&
ARM_AM::getT2SOImmVal(~Value) != -1;
}
bool isT2SOImmNeg() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
// Only use this when not representable as a plain so_imm.
return ARM_AM::getT2SOImmVal(Value) == -1 &&
ARM_AM::getT2SOImmVal(-Value) != -1;
}
bool isSetEndImm() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value == 1 || Value == 0;
}
bool isReg() const override { return Kind == k_Register; }
bool isRegList() const { return Kind == k_RegisterList; }
bool isRegListWithAPSR() const {
return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
}
bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
bool isToken() const override { return Kind == k_Token; }
bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
bool isMem() const override {
return isGPRMem() || isMVEMem();
}
bool isMVEMem() const {
if (Kind != k_Memory)
return false;
if (Memory.BaseRegNum &&
!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
return false;
if (Memory.OffsetRegNum &&
!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
Memory.OffsetRegNum))
return false;
return true;
}
bool isGPRMem() const {
if (Kind != k_Memory)
return false;
if (Memory.BaseRegNum &&
!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
return false;
if (Memory.OffsetRegNum &&
!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
return false;
return true;
}
bool isShifterImm() const { return Kind == k_ShifterImmediate; }
bool isRegShiftedReg() const {
return Kind == k_ShiftedRegister &&
ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
RegShiftedReg.SrcReg) &&
ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
RegShiftedReg.ShiftReg);
}
bool isRegShiftedImm() const {
return Kind == k_ShiftedImmediate &&
ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
RegShiftedImm.SrcReg);
}
bool isRotImm() const { return Kind == k_RotateImmediate; }
template<unsigned Min, unsigned Max>
bool isPowerTwoInRange() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
Value >= Min && Value <= Max;
}
bool isModImm() const { return Kind == k_ModifiedImmediate; }
bool isModImmNot() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getSOImmVal(~Value) != -1;
}
bool isModImmNeg() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return ARM_AM::getSOImmVal(Value) == -1 &&
ARM_AM::getSOImmVal(-Value) != -1;
}
bool isThumbModImmNeg1_7() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int32_t Value = -(int32_t)CE->getValue();
return 0 < Value && Value < 8;
}
bool isThumbModImmNeg8_255() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int32_t Value = -(int32_t)CE->getValue();
return 7 < Value && Value < 256;
}
bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
bool isPostIdxRegShifted() const {
return Kind == k_PostIndexRegister &&
ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
}
bool isPostIdxReg() const {
return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
}
bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
if (!isGPRMem())
return false;
// No offset of any kind.
return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
(alignOK || Memory.Alignment == Alignment);
}
bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
if (!isGPRMem())
return false;
if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
Memory.BaseRegNum))
return false;
// No offset of any kind.
return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
(alignOK || Memory.Alignment == Alignment);
}
bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
if (!isGPRMem())
return false;
if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
Memory.BaseRegNum))
return false;
// No offset of any kind.
return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
(alignOK || Memory.Alignment == Alignment);
}
bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
if (!isGPRMem())
return false;
if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
Memory.BaseRegNum))
return false;
// No offset of any kind.
return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
(alignOK || Memory.Alignment == Alignment);
}
bool isMemPCRelImm12() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Base register must be PC.
if (Memory.BaseRegNum != ARM::PC)
return false;
// Immediate offset in range [-4095, 4095].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val > -4096 && Val < 4096) ||
(Val == std::numeric_limits<int32_t>::min());
}
bool isAlignedMemory() const {
return isMemNoOffset(true);
}
bool isAlignedMemoryNone() const {
return isMemNoOffset(false, 0);
}
bool isDupAlignedMemoryNone() const {
return isMemNoOffset(false, 0);
}
bool isAlignedMemory16() const {
if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
return true;
return isMemNoOffset(false, 0);
}
bool isDupAlignedMemory16() const {
if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
return true;
return isMemNoOffset(false, 0);
}
bool isAlignedMemory32() const {
if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
return true;
return isMemNoOffset(false, 0);
}
bool isDupAlignedMemory32() const {
if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
return true;
return isMemNoOffset(false, 0);
}
bool isAlignedMemory64() const {
if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
return true;
return isMemNoOffset(false, 0);
}
bool isDupAlignedMemory64() const {
if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
return true;
return isMemNoOffset(false, 0);
}
bool isAlignedMemory64or128() const {
if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
return true;
if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
return true;
return isMemNoOffset(false, 0);
}
bool isDupAlignedMemory64or128() const {
if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
return true;
if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
return true;
return isMemNoOffset(false, 0);
}
bool isAlignedMemory64or128or256() const {
if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
return true;
if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
return true;
if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
return true;
return isMemNoOffset(false, 0);
}
bool isAddrMode2() const {
if (!isGPRMem() || Memory.Alignment != 0) return false;
// Check for register offset.
if (Memory.OffsetRegNum) return true;
// Immediate offset in range [-4095, 4095].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val > -4096 && Val < 4096;
}
bool isAM2OffsetImm() const {
if (!isImm()) return false;
// Immediate offset in range [-4095, 4095].
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return (Val == std::numeric_limits<int32_t>::min()) ||
(Val > -4096 && Val < 4096);
}
bool isAddrMode3() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm() && !isa<MCConstantExpr>(getImm()))
return true;
if (!isGPRMem() || Memory.Alignment != 0) return false;
// No shifts are legal for AM3.
if (Memory.ShiftType != ARM_AM::no_shift) return false;
// Check for register offset.
if (Memory.OffsetRegNum) return true;
// Immediate offset in range [-255, 255].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
// The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
// have to check for this too.
return (Val > -256 && Val < 256) ||
Val == std::numeric_limits<int32_t>::min();
}
bool isAM3Offset() const {
if (isPostIdxReg())
return true;
if (!isImm())
return false;
// Immediate offset in range [-255, 255].
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
// Special case, #-0 is std::numeric_limits<int32_t>::min().
return (Val > -256 && Val < 256) ||
Val == std::numeric_limits<int32_t>::min();
}
bool isAddrMode5() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm() && !isa<MCConstantExpr>(getImm()))
return true;
if (!isGPRMem() || Memory.Alignment != 0) return false;
// Check for register offset.
if (Memory.OffsetRegNum) return false;
// Immediate offset in range [-1020, 1020] and a multiple of 4.
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
Val == std::numeric_limits<int32_t>::min();
}
bool isAddrMode5FP16() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm() && !isa<MCConstantExpr>(getImm()))
return true;
if (!isGPRMem() || Memory.Alignment != 0) return false;
// Check for register offset.
if (Memory.OffsetRegNum) return false;
// Immediate offset in range [-510, 510] and a multiple of 2.
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
Val == std::numeric_limits<int32_t>::min();
}
bool isMemTBB() const {
if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
return false;
return true;
}
bool isMemTBH() const {
if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
Memory.Alignment != 0 )
return false;
return true;
}
bool isMemRegOffset() const {
if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
return false;
return true;
}
bool isT2MemRegOffset() const {
if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
return false;
// Only lsl #{0, 1, 2, 3} allowed.
if (Memory.ShiftType == ARM_AM::no_shift)
return true;
if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
return false;
return true;
}
bool isMemThumbRR() const {
// Thumb reg+reg addressing is simple. Just two registers, a base and
// an offset. No shifts, negations or any other complicating factors.
if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
return false;
return isARMLowRegister(Memory.BaseRegNum) &&
(!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
}
bool isMemThumbRIs4() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
return false;
// Immediate offset, multiple of 4 in range [0, 124].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 124 && (Val % 4) == 0;
}
bool isMemThumbRIs2() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
return false;
// Immediate offset, multiple of 4 in range [0, 62].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 62 && (Val % 2) == 0;
}
bool isMemThumbRIs1() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
return false;
// Immediate offset in range [0, 31].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 31;
}
bool isMemThumbSPI() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
return false;
// Immediate offset, multiple of 4 in range [0, 1020].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
}
bool isMemImm8s4Offset() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm() && !isa<MCConstantExpr>(getImm()))
return true;
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset a multiple of 4 in range [-1020, 1020].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
// Special case, #-0 is std::numeric_limits<int32_t>::min().
return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
Val == std::numeric_limits<int32_t>::min();
}
bool isMemImm7s4Offset() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm() && !isa<MCConstantExpr>(getImm()))
return true;
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
Memory.BaseRegNum))
return false;
// Immediate offset a multiple of 4 in range [-508, 508].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
// Special case, #-0 is INT32_MIN.
return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
}
bool isMemImm0_1020s4Offset() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset a multiple of 4 in range [0, 1020].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
}
bool isMemImm8Offset() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Base reg of PC isn't allowed for these encodings.
if (Memory.BaseRegNum == ARM::PC) return false;
// Immediate offset in range [-255, 255].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val == std::numeric_limits<int32_t>::min()) ||
(Val > -256 && Val < 256);
}
template<unsigned Bits, unsigned RegClassID>
bool isMemImm7ShiftedOffset() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
!ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
return false;
// Expect an immediate offset equal to an element of the range
// [-127, 127], shifted left by Bits.
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
// INT32_MIN is a special-case value (indicating the encoding with
// zero offset and the subtract bit set)
if (Val == INT32_MIN)
return true;
unsigned Divisor = 1U << Bits;
// Check that the low bits are zero
if (Val % Divisor != 0)
return false;
// Check that the remaining offset is within range.
Val /= Divisor;
return (Val >= -127 && Val <= 127);
}
template <int shift> bool isMemRegRQOffset() const {
if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0)
return false;
if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
Memory.BaseRegNum))
return false;
if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
Memory.OffsetRegNum))
return false;
if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
return false;
if (shift > 0 &&
(Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
return false;
return true;
}
template <int shift> bool isMemRegQOffset() const {
if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
Memory.BaseRegNum))
return false;
if(!Memory.OffsetImm) return true;
static_assert(shift < 56,
"Such that we dont shift by a value higher than 62");
int64_t Val = Memory.OffsetImm->getValue();
// The value must be a multiple of (1 << shift)
if ((Val & ((1U << shift) - 1)) != 0)
return false;
// And be in the right range, depending on the amount that it is shifted
// by. Shift 0, is equal to 7 unsigned bits, the sign bit is set
// separately.
int64_t Range = (1U << (7+shift)) - 1;
return (Val == INT32_MIN) || (Val > -Range && Val < Range);
}
bool isMemPosImm8Offset() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [0, 255].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return Val >= 0 && Val < 256;
}
bool isMemNegImm8Offset() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Base reg of PC isn't allowed for these encodings.
if (Memory.BaseRegNum == ARM::PC) return false;
// Immediate offset in range [-255, -1].
if (!Memory.OffsetImm) return false;
int64_t Val = Memory.OffsetImm->getValue();
return (Val == std::numeric_limits<int32_t>::min()) ||
(Val > -256 && Val < 0);
}
bool isMemUImm12Offset() const {
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [0, 4095].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val >= 0 && Val < 4096);
}
bool isMemImm12Offset() const {
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm() && !isa<MCConstantExpr>(getImm()))
return true;
if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
return false;
// Immediate offset in range [-4095, 4095].
if (!Memory.OffsetImm) return true;
int64_t Val = Memory.OffsetImm->getValue();
return (Val > -4096 && Val < 4096) ||
(Val == std::numeric_limits<int32_t>::min());
}
bool isConstPoolAsmImm() const {
// Delay processing of Constant Pool Immediate, this will turn into
// a constant. Match no other operand
return (isConstantPoolImm());
}
bool isPostIdxImm8() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return (Val > -256 && Val < 256) ||
(Val == std::numeric_limits<int32_t>::min());
}
bool isPostIdxImm8s4() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Val = CE->getValue();
return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
(Val == std::numeric_limits<int32_t>::min());
}
bool isMSRMask() const { return Kind == k_MSRMask; }
bool isBankedReg() const { return Kind == k_BankedReg; }
bool isProcIFlags() const { return Kind == k_ProcIFlags; }
// NEON operands.
bool isSingleSpacedVectorList() const {
return Kind == k_VectorList && !VectorList.isDoubleSpaced;
}
bool isDoubleSpacedVectorList() const {
return Kind == k_VectorList && VectorList.isDoubleSpaced;
}
bool isVecListOneD() const {
if (!isSingleSpacedVectorList()) return false;
return VectorList.Count == 1;
}
bool isVecListTwoMQ() const {
return isSingleSpacedVectorList() && VectorList.Count == 2 &&
ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
VectorList.RegNum);
}
bool isVecListDPair() const {
if (!isSingleSpacedVectorList()) return false;
return (ARMMCRegisterClasses[ARM::DPairRegClassID]
.contains(VectorList.RegNum));
}
bool isVecListThreeD() const {
if (!isSingleSpacedVectorList()) return false;
return VectorList.Count == 3;
}
bool isVecListFourD() const {
if (!isSingleSpacedVectorList()) return false;
return VectorList.Count == 4;
}
bool isVecListDPairSpaced() const {
if (Kind != k_VectorList) return false;
if (isSingleSpacedVectorList()) return false;
return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
.contains(VectorList.RegNum));
}
bool isVecListThreeQ() const {
if (!isDoubleSpacedVectorList()) return false;
return VectorList.Count == 3;
}
bool isVecListFourQ() const {
if (!isDoubleSpacedVectorList()) return false;
return VectorList.Count == 4;
}
bool isVecListFourMQ() const {
return isSingleSpacedVectorList() && VectorList.Count == 4 &&
ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
VectorList.RegNum);
}
bool isSingleSpacedVectorAllLanes() const {
return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
}
bool isDoubleSpacedVectorAllLanes() const {
return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
}
bool isVecListOneDAllLanes() const {
if (!isSingleSpacedVectorAllLanes()) return false;
return VectorList.Count == 1;
}
bool isVecListDPairAllLanes() const {
if (!isSingleSpacedVectorAllLanes()) return false;
return (ARMMCRegisterClasses[ARM::DPairRegClassID]
.contains(VectorList.RegNum));
}
bool isVecListDPairSpacedAllLanes() const {
if (!isDoubleSpacedVectorAllLanes()) return false;
return VectorList.Count == 2;
}
bool isVecListThreeDAllLanes() const {
if (!isSingleSpacedVectorAllLanes()) return false;
return VectorList.Count == 3;
}
bool isVecListThreeQAllLanes() const {
if (!isDoubleSpacedVectorAllLanes()) return false;
return VectorList.Count == 3;
}
bool isVecListFourDAllLanes() const {
if (!isSingleSpacedVectorAllLanes()) return false;
return VectorList.Count == 4;
}
bool isVecListFourQAllLanes() const {
if (!isDoubleSpacedVectorAllLanes()) return false;
return VectorList.Count == 4;
}
bool isSingleSpacedVectorIndexed() const {
return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
}
bool isDoubleSpacedVectorIndexed() const {
return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
}
bool isVecListOneDByteIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
}
bool isVecListOneDHWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
}
bool isVecListOneDWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
}
bool isVecListTwoDByteIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
}
bool isVecListTwoDHWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
}
bool isVecListTwoQWordIndexed() const {
if (!isDoubleSpacedVectorIndexed()) return false;
return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
}
bool isVecListTwoQHWordIndexed() const {
if (!isDoubleSpacedVectorIndexed()) return false;
return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
}
bool isVecListTwoDWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
}
bool isVecListThreeDByteIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
}
bool isVecListThreeDHWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
}
bool isVecListThreeQWordIndexed() const {
if (!isDoubleSpacedVectorIndexed()) return false;
return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
}
bool isVecListThreeQHWordIndexed() const {
if (!isDoubleSpacedVectorIndexed()) return false;
return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
}
bool isVecListThreeDWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
}
bool isVecListFourDByteIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
}
bool isVecListFourDHWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
}
bool isVecListFourQWordIndexed() const {
if (!isDoubleSpacedVectorIndexed()) return false;
return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
}
bool isVecListFourQHWordIndexed() const {
if (!isDoubleSpacedVectorIndexed()) return false;
return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
}
bool isVecListFourDWordIndexed() const {
if (!isSingleSpacedVectorIndexed()) return false;
return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
}
bool isVectorIndex() const { return Kind == k_VectorIndex; }
template <unsigned NumLanes>
bool isVectorIndexInRange() const {
if (Kind != k_VectorIndex) return false;
return VectorIndex.Val < NumLanes;
}
bool isVectorIndex8() const { return isVectorIndexInRange<8>(); }
bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
template<int PermittedValue, int OtherPermittedValue>
bool isMVEPairVectorIndex() const {
if (Kind != k_VectorIndex) return false;
return VectorIndex.Val == PermittedValue ||
VectorIndex.Val == OtherPermittedValue;
}
bool isNEONi8splat() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
int64_t Value = CE->getValue();
// i8 value splatted across 8 bytes. The immediate is just the 8 byte
// value.
return Value >= 0 && Value < 256;
}
bool isNEONi16splat() const {
if (isNEONByteReplicate(2))
return false; // Leave that for bytes replication and forbid by default.
if (!isImm())
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
unsigned Value = CE->getValue();
return ARM_AM::isNEONi16splat(Value);
}
bool isNEONi16splatNot() const {
if (!isImm())
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
unsigned Value = CE->getValue();
return ARM_AM::isNEONi16splat(~Value & 0xffff);
}
bool isNEONi32splat() const {
if (isNEONByteReplicate(4))
return false; // Leave that for bytes replication and forbid by default.
if (!isImm())
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
unsigned Value = CE->getValue();
return ARM_AM::isNEONi32splat(Value);
}
bool isNEONi32splatNot() const {
if (!isImm())
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
unsigned Value = CE->getValue();
return ARM_AM::isNEONi32splat(~Value);
}
static bool isValidNEONi32vmovImm(int64_t Value) {
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
// for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
return ((Value & 0xffffffffffffff00) == 0) ||
((Value & 0xffffffffffff00ff) == 0) ||
((Value & 0xffffffffff00ffff) == 0) ||
((Value & 0xffffffff00ffffff) == 0) ||
((Value & 0xffffffffffff00ff) == 0xff) ||
((Value & 0xffffffffff00ffff) == 0xffff);
}
bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
assert((Width == 8 || Width == 16 || Width == 32) &&
"Invalid element width");
assert(NumElems * Width <= 64 && "Invalid result width");
if (!isImm())
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE)
return false;
int64_t Value = CE->getValue();
if (!Value)
return false; // Don't bother with zero.
if (Inv)
Value = ~Value;
uint64_t Mask = (1ull << Width) - 1;
uint64_t Elem = Value & Mask;
if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
return false;
if (Width == 32 && !isValidNEONi32vmovImm(Elem))
return false;
for (unsigned i = 1; i < NumElems; ++i) {
Value >>= Width;
if ((Value & Mask) != Elem)
return false;
}
return true;
}
bool isNEONByteReplicate(unsigned NumBytes) const {
return isNEONReplicate(8, NumBytes, false);
}
static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
assert((FromW == 8 || FromW == 16 || FromW == 32) &&
"Invalid source width");
assert((ToW == 16 || ToW == 32 || ToW == 64) &&
"Invalid destination width");
assert(FromW < ToW && "ToW is not less than FromW");
}
template<unsigned FromW, unsigned ToW>
bool isNEONmovReplicate() const {
checkNeonReplicateArgs(FromW, ToW);
if (ToW == 64 && isNEONi64splat())
return false;
return isNEONReplicate(FromW, ToW / FromW, false);
}
template<unsigned FromW, unsigned ToW>
bool isNEONinvReplicate() const {
checkNeonReplicateArgs(FromW, ToW);
return isNEONReplicate(FromW, ToW / FromW, true);
}
bool isNEONi32vmov() const {
if (isNEONByteReplicate(4))
return false; // Let it to be classified as byte-replicate case.
if (!isImm())
return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE)
return false;
return isValidNEONi32vmovImm(CE->getValue());
}
bool isNEONi32vmovNeg() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
return isValidNEONi32vmovImm(~CE->getValue());
}
bool isNEONi64splat() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
uint64_t Value = CE->getValue();
// i64 value with each byte being either 0 or 0xff.
for (unsigned i = 0; i < 8; ++i, Value >>= 8)
if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
return true;
}
template<int64_t Angle, int64_t Remainder>
bool isComplexRotation() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
uint64_t Value = CE->getValue();
return (Value % Angle == Remainder && Value <= 270);
}
bool isMVELongShift() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
// Must be a constant.
if (!CE) return false;
uint64_t Value = CE->getValue();
return Value >= 1 && Value <= 32;
}
bool isMveSaturateOp() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
uint64_t Value = CE->getValue();
return Value == 48 || Value == 64;
}
bool isITCondCodeNoAL() const {
if (!isITCondCode()) return false;
ARMCC::CondCodes CC = getCondCode();
return CC != ARMCC::AL;
}
bool isITCondCodeRestrictedI() const {
if (!isITCondCode())
return false;
ARMCC::CondCodes CC = getCondCode();
return CC == ARMCC::EQ || CC == ARMCC::NE;
}
bool isITCondCodeRestrictedS() const {
if (!isITCondCode())
return false;
ARMCC::CondCodes CC = getCondCode();
return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
CC == ARMCC::GE;
}
bool isITCondCodeRestrictedU() const {
if (!isITCondCode())
return false;
ARMCC::CondCodes CC = getCondCode();
return CC == ARMCC::HS || CC == ARMCC::HI;
}
bool isITCondCodeRestrictedFP() const {
if (!isITCondCode())
return false;
ARMCC::CondCodes CC = getCondCode();
return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
Inst.addOperand(MCOperand::createReg(RegNum));
}
void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
Inst.addOperand(MCOperand::createReg(RegNum));
}
void addVPTPredROperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
addVPTPredNOperands(Inst, N-1);
unsigned RegNum;
if (getVPTPred() == ARMVCC::None) {
RegNum = 0;
} else {
unsigned NextOpIndex = Inst.getNumOperands();
const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
assert(TiedOp >= 0 &&
"Inactive register in vpred_r is not tied to an output!");
RegNum = Inst.getOperand(TiedOp).getReg();
}
Inst.addOperand(MCOperand::createReg(RegNum));
}
void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getCoproc()));
}
void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getCoproc()));
}
void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
}
void addITMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(ITMask.Mask));
}
void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
}
void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
}
void addCCOutOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
assert(isRegShiftedReg() &&
"addRegShiftedRegOperands() on non-RegShiftedReg!");
Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
Inst.addOperand(MCOperand::createImm(
ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
}
void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
assert(isRegShiftedImm() &&
"addRegShiftedImmOperands() on non-RegShiftedImm!");
Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
// Shift of #32 is encoded as 0 where permitted
unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
Inst.addOperand(MCOperand::createImm(
ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
}
void addShifterImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
ShifterImm.Imm));
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ++I)
Inst.addOperand(MCOperand::createReg(*I));
}
void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ++I)
Inst.addOperand(MCOperand::createReg(*I));
}
void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
addRegListOperands(Inst, N);
}
void addRotImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Encoded as val>>3. The printer handles display as 8, 16, 24.
Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
}
void addModImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Support for fixups (MCFixup)
if (isImm())
return addImmOperands(Inst, N);
Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
}
void addModImmNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
Inst.addOperand(MCOperand::createImm(Enc));
}
void addModImmNegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
Inst.addOperand(MCOperand::createImm(Enc));
}
void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint32_t Val = -CE->getValue();
Inst.addOperand(MCOperand::createImm(Val));
}
void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint32_t Val = -CE->getValue();
Inst.addOperand(MCOperand::createImm(Val));
}
void addBitfieldOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// Munge the lsb/width into a bitfield mask.
unsigned lsb = Bitfield.LSB;
unsigned width = Bitfield.Width;
// Make a 32-bit mask w/ the referenced bits clear and all other bits set.
uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
(32 - (lsb + width)));
Inst.addOperand(MCOperand::createImm(Mask));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addFBits16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
}
void addFBits32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
}
void addFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
Inst.addOperand(MCOperand::createImm(Val));
}
void addImm8s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// FIXME: We really want to scale the value here, but the LDRD/STRD
// instruction don't encode operands that way yet.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue()));
}
void addImm7s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
// instruction don't encode operands that way yet.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue()));
}
void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue()));
}
void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue()));
}
void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue()));
}
void addImm7Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue()));
}
void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate is scaled by four in the encoding and is stored
// in the MCInst as such. Lop off the low two bits here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
}
void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate is scaled by four in the encoding and is stored
// in the MCInst as such. Lop off the low two bits here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
}
void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate is scaled by four in the encoding and is stored
// in the MCInst as such. Lop off the low two bits here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
}
void addImm1_16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate-1, and we store in the instruction
// the bits as encoded, so subtract off one here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
}
void addImm1_32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate-1, and we store in the instruction
// the bits as encoded, so subtract off one here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
}
void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The constant encodes as the immediate, except for 32, which encodes as
// zero.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Imm = CE->getValue();
Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
}
void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// An ASR value of 32 encodes as 0, so that's how we want to add it to
// the instruction as well.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
int Val = CE->getValue();
Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
}
void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The operand is actually a t2_so_imm, but we have its bitwise
// negation in the assembly source, so twiddle it here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
}
void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The operand is actually a t2_so_imm, but we have its
// negation in the assembly source, so twiddle it here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
}
void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The operand is actually an imm0_4095, but we have its
// negation in the assembly source, so twiddle it here.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
}
void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
return;
}
const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
Inst.addOperand(MCOperand::createExpr(SR));
}
void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (isImm()) {
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (CE) {
Inst.addOperand(MCOperand::createImm(CE->getValue()));
return;
}
const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
Inst.addOperand(MCOperand::createExpr(SR));
return;
}
assert(isGPRMem() && "Unknown value type!");
assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
}
void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
}
void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
}
void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
}
void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
}
void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
}
void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
}
void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
}
void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
int32_t Imm = Memory.OffsetImm->getValue();
Inst.addOperand(MCOperand::createImm(Imm));
}
void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(isImm() && "Not an immediate!");
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup.
if (!isa<MCConstantExpr>(getImm())) {
Inst.addOperand(MCOperand::createExpr(getImm()));
return;
}
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
int Val = CE->getValue();
Inst.addOperand(MCOperand::createImm(Val));
}
void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Memory.Alignment));
}
void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
addAlignedMemoryOperands(Inst, N);
}
void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
if (!Memory.OffsetRegNum) {
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
} else {
// For register offset, we encode the shift type and negation flag
// here.
Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
Memory.ShiftImm, Memory.ShiftType);
}
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant AM2OffsetImm operand!");
int32_t Val = CE->getValue();
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
Inst.addOperand(MCOperand::createReg(0));
Inst.addOperand(MCOperand::createImm(Val));
}
void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm()) {
Inst.addOperand(MCOperand::createExpr(getImm()));
Inst.addOperand(MCOperand::createReg(0));
Inst.addOperand(MCOperand::createImm(0));
return;
}
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
if (!Memory.OffsetRegNum) {
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM3Opc(AddSub, Val);
} else {
// For register offset, we encode the shift type and negation flag
// here.
Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
}
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
if (Kind == k_PostIndexRegister) {
int32_t Val =
ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
Inst.addOperand(MCOperand::createImm(Val));
return;
}
// Constant offset.
const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
int32_t Val = CE->getValue();
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM3Opc(AddSub, Val);
Inst.addOperand(MCOperand::createReg(0));
Inst.addOperand(MCOperand::createImm(Val));
}
void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm()) {
Inst.addOperand(MCOperand::createExpr(getImm()));
Inst.addOperand(MCOperand::createImm(0));
return;
}
// The lower two bits are always zero and as such are not encoded.
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM5Opc(AddSub, Val);
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm()) {
Inst.addOperand(MCOperand::createExpr(getImm()));
Inst.addOperand(MCOperand::createImm(0));
return;
}
// The lower bit is always zero and as such is not encoded.
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
// Special case for #-0
if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
if (Val < 0) Val = -Val;
Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm()) {
Inst.addOperand(MCOperand::createExpr(getImm()));
Inst.addOperand(MCOperand::createImm(0));
return;
}
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If we have an immediate that's not a constant, treat it as a label
// reference needing a fixup. If it is a constant, it's something else
// and we reject it.
if (isImm()) {
Inst.addOperand(MCOperand::createExpr(getImm()));
Inst.addOperand(MCOperand::createImm(0));
return;
}
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// The lower two bits are always zero and as such are not encoded.
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
}
void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If this is an immediate, it's a label reference.
if (isImm()) {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::createImm(0));
return;
}
// Otherwise, it's a normal memory reg+offset.
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
// If this is an immediate, it's a label reference.
if (isImm()) {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::createImm(0));
return;
}
// Otherwise, it's a normal memory reg+offset.
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// This is container for the immediate that we will create the constant
// pool from
addExpr(Inst, getConstantPoolImm());
}
void addMemTBBOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
}
void addMemTBHOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
}
void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
unsigned Val =
ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
Memory.ShiftImm, Memory.ShiftType);
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
}
void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
}
void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
Inst.addOperand(MCOperand::createImm(Val));
}
void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant post-idx-imm8 operand!");
int Imm = CE->getValue();
bool isAdd = Imm >= 0;
if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
Inst.addOperand(MCOperand::createImm(Imm));
}
void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
assert(CE && "non-constant post-idx-imm8s4 operand!");
int Imm = CE->getValue();
bool isAdd = Imm >= 0;
if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
// Immediate is scaled by 4.
Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
Inst.addOperand(MCOperand::createImm(Imm));
}
void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
}
void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
// The sign, shift type, and shift amount are encoded in a single operand
// using the AM2 encoding helpers.
ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
PostIdxReg.ShiftTy);
Inst.addOperand(MCOperand::createImm(Imm));
}
void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue()));
}
void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
}
void addBankedRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
}
void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
}
void addVecListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
}
void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// When we come here, the VectorList field will identify a range
// of q-registers by its base register and length, and it will
// have already been error-checked to be the expected length of
// range and contain only q-regs in the range q0-q7. So we can
// count on the base register being in the range q0-q6 (for 2
// regs) or q0-q4 (for 4)
//
// The MVE instructions taking a register range of this kind will
// need an operand in the QQPR or QQQQPR class, representing the
// entire range as a unit. So we must translate into that class,
// by finding the index of the base register in the MQPR reg
// class, and returning the super-register at the corresponding
// index in the target class.
const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
const MCRegisterClass *RC_out = (VectorList.Count == 2) ?
&ARMMCRegisterClasses[ARM::QQPRRegClassID] :
&ARMMCRegisterClasses[ARM::QQQQPRRegClassID];
unsigned I, E = RC_out->getNumRegs();
for (I = 0; I < E; I++)
if (RC_in->getRegister(I) == VectorList.RegNum)
break;
assert(I < E && "Invalid vector list start register!");
Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
}
void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
}
void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
// Mask in that this is an i8 splat.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
}
void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
Value = ARM_AM::encodeNEONi16splat(Value);
Inst.addOperand(MCOperand::createImm(Value));
}
void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
Inst.addOperand(MCOperand::createImm(Value));
}
void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
Value = ARM_AM::encodeNEONi32splat(Value);
Inst.addOperand(MCOperand::createImm(Value));
}
void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Value = CE->getValue();
Value = ARM_AM::encodeNEONi32splat(~Value);
Inst.addOperand(MCOperand::createImm(Value));
}
void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
Inst.getOpcode() == ARM::VMOVv16i8) &&
"All instructions that wants to replicate non-zero byte "
"always must be replaced with VMOVv8i8 or VMOVv16i8.");
unsigned Value = CE->getValue();
if (Inv)
Value = ~Value;
unsigned B = Value & 0xff;
B |= 0xe00; // cmode = 0b1110
Inst.addOperand(MCOperand::createImm(B));
}
void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addNEONi8ReplicateOperands(Inst, true);
}
static unsigned encodeNeonVMOVImmediate(unsigned Value) {
if (Value >= 256 && Value <= 0xffff)
Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
else if (Value > 0xffff && Value <= 0xffffff)
Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
else if (Value > 0xffffff)
Value = (Value >> 24) | 0x600;
return Value;
}
void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
Inst.addOperand(MCOperand::createImm(Value));
}
void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addNEONi8ReplicateOperands(Inst, false);
}
void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
Inst.getOpcode() == ARM::VMOVv8i16 ||
Inst.getOpcode() == ARM::VMVNv4i16 ||
Inst.getOpcode() == ARM::VMVNv8i16) &&
"All instructions that want to replicate non-zero half-word "
"always must be replaced with V{MOV,MVN}v{4,8}i16.");
uint64_t Value = CE->getValue();
unsigned Elem = Value & 0xffff;
if (Elem >= 256)
Elem = (Elem >> 8) | 0x200;
Inst.addOperand(MCOperand::createImm(Elem));
}
void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
Inst.addOperand(MCOperand::createImm(Value));
}
void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
Inst.getOpcode() == ARM::VMOVv4i32 ||
Inst.getOpcode() == ARM::VMVNv2i32 ||
Inst.getOpcode() == ARM::VMVNv4i32) &&
"All instructions that want to replicate non-zero word "
"always must be replaced with V{MOV,MVN}v{2,4}i32.");
uint64_t Value = CE->getValue();
unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
Inst.addOperand(MCOperand::createImm(Elem));
}
void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The immediate encodes the type of constant as well as the value.
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Value = CE->getValue();
unsigned Imm = 0;
for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
Imm |= (Value & 1) << i;
}
Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
}
void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
}
void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
}
void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
unsigned Imm = CE->getValue();
assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
}
void print(raw_ostream &OS) const override;
static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
Op->ITMask.Mask = Mask;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_CondCode);
Op->CC.Val = CC;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_VPTPred);
Op->VCC.Val = CC;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
Op->Cop.Val = CopVal;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
Op->Cop.Val = CopVal;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
Op->Cop.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_CCOut);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
Op->RegShiftedReg.ShiftTy = ShTy;
Op->RegShiftedReg.SrcReg = SrcReg;
Op->RegShiftedReg.ShiftReg = ShiftReg;
Op->RegShiftedReg.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
unsigned ShiftImm, SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
Op->RegShiftedImm.ShiftTy = ShTy;
Op->RegShiftedImm.SrcReg = SrcReg;
Op->RegShiftedImm.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
Op->ShifterImm.isASR = isASR;
Op->ShifterImm.Imm = Imm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
Op->RotImm.Imm = Imm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
Op->ModImm.Bits = Bits;
Op->ModImm.Rot = Rot;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
Op->Bitfield.LSB = LSB;
Op->Bitfield.Width = Width;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
SMLoc StartLoc, SMLoc EndLoc) {
assert(Regs.size() > 0 && "RegList contains no registers?");
KindTy Kind = k_RegisterList;
if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
Regs.front().second)) {
if (Regs.back().second == ARM::VPR)
Kind = k_FPDRegisterListWithVPR;
else
Kind = k_DPRRegisterList;
} else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
Regs.front().second)) {
if (Regs.back().second == ARM::VPR)
Kind = k_FPSRegisterListWithVPR;
else
Kind = k_SPRRegisterList;
}
if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
Kind = k_RegisterListWithAPSR;
assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding");
auto Op = std::make_unique<ARMOperand>(Kind);
for (const auto &P : Regs)
Op->Registers.push_back(P.second);
Op->StartLoc = StartLoc;
Op->EndLoc = EndLoc;
return Op;
}
static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
unsigned Count,
bool isDoubleSpaced,
SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_VectorList);
Op->VectorList.RegNum = RegNum;
Op->VectorList.Count = Count;
Op->VectorList.isDoubleSpaced = isDoubleSpaced;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
Op->VectorList.RegNum = RegNum;
Op->VectorList.Count = Count;
Op->VectorList.isDoubleSpaced = isDoubleSpaced;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
bool isDoubleSpaced, SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
Op->VectorList.RegNum = RegNum;
Op->VectorList.Count = Count;
Op->VectorList.LaneIndex = Index;
Op->VectorList.isDoubleSpaced = isDoubleSpaced;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
Op->VectorIndex.Val = Idx;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
auto Op = std::make_unique<ARMOperand>(k_Memory);
Op->Memory.BaseRegNum = BaseRegNum;
Op->Memory.OffsetImm = OffsetImm;
Op->Memory.OffsetRegNum = OffsetRegNum;
Op->Memory.ShiftType = ShiftType;
Op->Memory.ShiftImm = ShiftImm;
Op->Memory.Alignment = Alignment;
Op->Memory.isNegative = isNegative;
Op->StartLoc = S;
Op->EndLoc = E;
Op->AlignmentLoc = AlignmentLoc;
return Op;
}
static std::unique_ptr<ARMOperand>
CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
unsigned ShiftImm, SMLoc S, SMLoc E) {
auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
Op->PostIdxReg.RegNum = RegNum;
Op->PostIdxReg.isAdd = isAdd;
Op->PostIdxReg.ShiftTy = ShiftTy;
Op->PostIdxReg.ShiftImm = ShiftImm;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
Op->MBOpt.Val = Opt;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
Op->ISBOpt.Val = Opt;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand>
CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
Op->TSBOpt.Val = Opt;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
Op->IFlags.Val = IFlags;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_MSRMask);
Op->MMask.Val = MMask;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
auto Op = std::make_unique<ARMOperand>(k_BankedReg);
Op->BankedReg.Val = Reg;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
};
} // end anonymous namespace.
void ARMOperand::print(raw_ostream &OS) const {
auto RegName = [](unsigned Reg) {
if (Reg)
return ARMInstPrinter::getRegisterName(Reg);
else
return "noreg";
};
switch (Kind) {
case k_CondCode:
OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
break;
case k_VPTPred:
OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
break;
case k_CCOut:
OS << "<ccout " << RegName(getReg()) << ">";
break;
case k_ITCondMask: {
static const char *const MaskStr[] = {
"(invalid)", "(tttt)", "(ttt)", "(ttte)",
"(tt)", "(ttet)", "(tte)", "(ttee)",
"(t)", "(tett)", "(tet)", "(tete)",
"(te)", "(teet)", "(tee)", "(teee)",
};
assert((ITMask.Mask & 0xf) == ITMask.Mask);
OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
break;
}
case k_CoprocNum:
OS << "<coprocessor number: " << getCoproc() << ">";
break;
case k_CoprocReg:
OS << "<coprocessor register: " << getCoproc() << ">";
break;
case k_CoprocOption:
OS << "<coprocessor option: " << CoprocOption.Val << ">";
break;
case k_MSRMask:
OS << "<mask: " << getMSRMask() << ">";
break;
case k_BankedReg:
OS << "<banked reg: " << getBankedReg() << ">";
break;
case k_Immediate:
OS << *getImm();
break;
case k_MemBarrierOpt:
OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
break;
case k_InstSyncBarrierOpt:
OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
break;
case k_TraceSyncBarrierOpt:
OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
break;
case k_Memory:
OS << "<memory";
if (Memory.BaseRegNum)
OS << " base:" << RegName(Memory.BaseRegNum);
if (Memory.OffsetImm)
OS << " offset-imm:" << *Memory.OffsetImm;
if (Memory.OffsetRegNum)
OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
<< RegName(Memory.OffsetRegNum);
if (Memory.ShiftType != ARM_AM::no_shift) {
OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
OS << " shift-imm:" << Memory.ShiftImm;
}
if (Memory.Alignment)
OS << " alignment:" << Memory.Alignment;
OS << ">";
break;
case k_PostIndexRegister:
OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
<< RegName(PostIdxReg.RegNum);
if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
<< PostIdxReg.ShiftImm;
OS << ">";
break;
case k_ProcIFlags: {
OS << "<ARM_PROC::";
unsigned IFlags = getProcIFlags();
for (int i=2; i >= 0; --i)
if (IFlags & (1 << i))
OS << ARM_PROC::IFlagsToString(1 << i);
OS << ">";
break;
}
case k_Register:
OS << "<register " << RegName(getReg()) << ">";
break;
case k_ShifterImmediate:
OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
<< " #" << ShifterImm.Imm << ">";
break;
case k_ShiftedRegister:
OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
<< ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
<< RegName(RegShiftedReg.ShiftReg) << ">";
break;
case k_ShiftedImmediate:
OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
<< ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
<< RegShiftedImm.ShiftImm << ">";
break;
case k_RotateImmediate:
OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
break;
case k_ModifiedImmediate:
OS << "<mod_imm #" << ModImm.Bits << ", #"
<< ModImm.Rot << ")>";
break;
case k_ConstantPoolImmediate:
OS << "<constant_pool_imm #" << *getConstantPoolImm();
break;
case k_BitfieldDescriptor:
OS << "<bitfield " << "lsb: " << Bitfield.LSB
<< ", width: " << Bitfield.Width << ">";
break;
case k_RegisterList:
case k_RegisterListWithAPSR:
case k_DPRRegisterList:
case k_SPRRegisterList:
case k_FPSRegisterListWithVPR:
case k_FPDRegisterListWithVPR: {
OS << "<register_list ";
const SmallVectorImpl<unsigned> &RegList = getRegList();
for (SmallVectorImpl<unsigned>::const_iterator
I = RegList.begin(), E = RegList.end(); I != E; ) {
OS << RegName(*I);
if (++I < E) OS << ", ";
}
OS << ">";
break;
}
case k_VectorList:
OS << "<vector_list " << VectorList.Count << " * "
<< RegName(VectorList.RegNum) << ">";
break;
case k_VectorListAllLanes:
OS << "<vector_list(all lanes) " << VectorList.Count << " * "
<< RegName(VectorList.RegNum) << ">";
break;
case k_VectorListIndexed:
OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
<< VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
break;
case k_Token:
OS << "'" << getToken() << "'";
break;
case k_VectorIndex:
OS << "<vectorindex " << getVectorIndex() << ">";
break;
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
bool ARMAsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = tryParseRegister();
return (RegNo == (unsigned)-1);
}
OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
if (ParseRegister(RegNo, StartLoc, EndLoc))
return MatchOperand_NoMatch;
return MatchOperand_Success;
}
/// Try to parse a register name. The token must be an Identifier when called,
/// and if it is a register name the token is eaten and the register number is
/// returned. Otherwise return -1.
int ARMAsmParser::tryParseRegister() {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) return -1;
std::string lowerCase = Tok.getString().lower();
unsigned RegNum = MatchRegisterName(lowerCase);
if (!RegNum) {
RegNum = StringSwitch<unsigned>(lowerCase)
.Case("r13", ARM::SP)
.Case("r14", ARM::LR)
.Case("r15", ARM::PC)
.Case("ip", ARM::R12)
// Additional register name aliases for 'gas' compatibility.
.Case("a1", ARM::R0)
.Case("a2", ARM::R1)
.Case("a3", ARM::R2)
.Case("a4", ARM::R3)
.Case("v1", ARM::R4)
.Case("v2", ARM::R5)
.Case("v3", ARM::R6)
.Case("v4", ARM::R7)
.Case("v5", ARM::R8)
.Case("v6", ARM::R9)
.Case("v7", ARM::R10)
.Case("v8", ARM::R11)
.Case("sb", ARM::R9)
.Case("sl", ARM::R10)
.Case("fp", ARM::R11)
.Default(0);
}
if (!RegNum) {
// Check for aliases registered via .req. Canonicalize to lower case.
// That's more consistent since register names are case insensitive, and
// it's how the original entry was passed in from MC/MCParser/AsmParser.
StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
// If no match, return failure.
if (Entry == RegisterReqs.end())
return -1;
Parser.Lex(); // Eat identifier token.
return Entry->getValue();
}
// Some FPUs only have 16 D registers, so D16-D31 are invalid
if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
return -1;
Parser.Lex(); // Eat identifier token.
return RegNum;
}
// Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
// If a recoverable error occurs, return 1. If an irrecoverable error
// occurs, return -1. An irrecoverable error is one where tokens have been
// consumed in the process of trying to parse the shifter (i.e., when it is
// indeed a shifter operand, but malformed).
int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return -1;
std::string lowerCase = Tok.getString().lower();
ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
.Case("asl", ARM_AM::lsl)
.Case("lsl", ARM_AM::lsl)
.Case("lsr", ARM_AM::lsr)
.Case("asr", ARM_AM::asr)
.Case("ror", ARM_AM::ror)
.Case("rrx", ARM_AM::rrx)
.Default(ARM_AM::no_shift);
if (ShiftTy == ARM_AM::no_shift)
return 1;
Parser.Lex(); // Eat the operator.
// The source register for the shift has already been added to the
// operand list, so we need to pop it off and combine it into the shifted
// register operand instead.
std::unique_ptr<ARMOperand> PrevOp(
(ARMOperand *)Operands.pop_back_val().release());
if (!PrevOp->isReg())
return Error(PrevOp->getStartLoc(), "shift must be of a register");
int SrcReg = PrevOp->getReg();
SMLoc EndLoc;
int64_t Imm = 0;
int ShiftReg = 0;
if (ShiftTy == ARM_AM::rrx) {
// RRX Doesn't have an explicit shift amount. The encoder expects
// the shift register to be the same as the source register. Seems odd,
// but OK.
ShiftReg = SrcReg;
} else {
// Figure out if this is shifted by a constant or a register (for non-RRX).
if (Parser.getTok().is(AsmToken::Hash) ||
Parser.getTok().is(AsmToken::Dollar)) {
Parser.Lex(); // Eat hash.
SMLoc ImmLoc = Parser.getTok().getLoc();
const MCExpr *ShiftExpr = nullptr;
if (getParser().parseExpression(ShiftExpr, EndLoc)) {
Error(ImmLoc, "invalid immediate shift value");
return -1;
}
// The expression must be evaluatable as an immediate.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
if (!CE) {
Error(ImmLoc, "invalid immediate shift value");
return -1;
}
// Range check the immediate.
// lsl, ror: 0 <= imm <= 31
// lsr, asr: 0 <= imm <= 32
Imm = CE->getValue();
if (Imm < 0 ||
((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
Error(ImmLoc, "immediate shift value out of range");
return -1;
}
// shift by zero is a nop. Always send it through as lsl.
// ('as' compatibility)
if (Imm == 0)
ShiftTy = ARM_AM::lsl;
} else if (Parser.getTok().is(AsmToken::Identifier)) {
SMLoc L = Parser.getTok().getLoc();
EndLoc = Parser.getTok().getEndLoc();
ShiftReg = tryParseRegister();
if (ShiftReg == -1) {
Error(L, "expected immediate or register in shift operand");
return -1;
}
} else {
Error(Parser.getTok().getLoc(),
"expected immediate or register in shift operand");
return -1;
}
}
if (ShiftReg && ShiftTy != ARM_AM::rrx)
Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
ShiftReg, Imm,
S, EndLoc));
else
Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
S, EndLoc));
return 0;
}
/// Try to parse a register name. The token must be an Identifier when called.
/// If it's a register, an AsmOperand is created. Another AsmOperand is created
/// if there is a "writeback". 'true' if it's not a register.
///
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc RegStartLoc = Parser.getTok().getLoc();
SMLoc RegEndLoc = Parser.getTok().getEndLoc();
int RegNo = tryParseRegister();
if (RegNo == -1)
return true;
Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
const AsmToken &ExclaimTok = Parser.getTok();
if (ExclaimTok.is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
ExclaimTok.getLoc()));
Parser.Lex(); // Eat exclaim token
return false;
}
// Also check for an index operand. This is only legal for vector registers,
// but that'll get caught OK in operand matching, so we don't need to
// explicitly filter everything else out here.
if (Parser.getTok().is(AsmToken::LBrac)) {
SMLoc SIdx = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE)
return TokError("immediate value expected for vector index");
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(Parser.getTok().getLoc(), "']' expected");
SMLoc E = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
SIdx, E,
getContext()));
}
return false;
}
/// MatchCoprocessorOperandName - Try to parse an coprocessor related
/// instruction with a symbolic operand name.
/// We accept "crN" syntax for GAS compatibility.
/// <operand-name> ::= <prefix><number>
/// If CoprocOp is 'c', then:
/// <prefix> ::= c | cr
/// If CoprocOp is 'p', then :
/// <prefix> ::= p
/// <number> ::= integer in range [0, 15]
static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
// Use the same layout as the tablegen'erated register name matcher. Ugly,
// but efficient.
if (Name.size() < 2 || Name[0] != CoprocOp)
return -1;
Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
switch (Name.size()) {
default: return -1;
case 1:
switch (Name[0]) {
default: return -1;
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
}
case 2:
if (Name[0] != '1')
return -1;
switch (Name[1]) {
default: return -1;
// CP10 and CP11 are VFP/NEON and so vector instructions should be used.
// However, old cores (v5/v6) did use them in that way.
case '0': return 10;
case '1': return 11;
case '2': return 12;
case '3': return 13;
case '4': return 14;
case '5': return 15;
}
}
}
/// parseITCondCode - Try to parse a condition code for an IT instruction.
OperandMatchResultTy
ARMAsmParser::parseITCondCode(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
unsigned CC = ARMCondCodeFromString(Tok.getString());
if (CC == ~0U)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the token.
Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
return MatchOperand_Success;
}
/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
OperandMatchResultTy
ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
if (Num == -1)
return MatchOperand_NoMatch;
if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
return MatchOperand_Success;
}
/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
OperandMatchResultTy
ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
if (Reg == -1)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
return MatchOperand_Success;
}
/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
/// coproc_option : '{' imm0_255 '}'
OperandMatchResultTy
ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
// If this isn't a '{', this isn't a coprocessor immediate operand.
if (Parser.getTok().isNot(AsmToken::LCurly))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the '{'
const MCExpr *Expr;
SMLoc Loc = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
return MatchOperand_ParseFail;
}
int Val = CE->getValue();
// Check for and consume the closing '}'
if (Parser.getTok().isNot(AsmToken::RCurly))
return MatchOperand_ParseFail;
SMLoc E = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat the '}'
Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
return MatchOperand_Success;
}
// For register list parsing, we need to map from raw GPR register numbering
// to the enumeration values. The enumeration values aren't sorted by
// register number due to our using "sp", "lr" and "pc" as canonical names.
static unsigned getNextRegister(unsigned Reg) {
// If this is a GPR, we need to do it manually, otherwise we can rely
// on the sort ordering of the enumeration since the other reg-classes
// are sane.
if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
return Reg + 1;
switch(Reg) {
default: llvm_unreachable("Invalid GPR number!");
case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
}
}
// Insert an <Encoding, Register> pair in an ordered vector. Return true on
// success, or false, if duplicate encoding found.
static bool
insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
unsigned Enc, unsigned Reg) {
Regs.emplace_back(Enc, Reg);
for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
if (J->first == Enc) {
Regs.erase(J.base());
return false;
}
if (J->first < Enc)
break;
std::swap(*I, *J);
}
return true;
}
/// Parse a register list.
bool ARMAsmParser::parseRegisterList(OperandVector &Operands,
bool EnforceOrder) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::LCurly))
return TokError("Token is not a Left Curly Brace");
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat '{' token.
SMLoc RegLoc = Parser.getTok().getLoc();
// Check the first register in the list to see what register class
// this is a list of.
int Reg = tryParseRegister();
if (Reg == -1)
return Error(RegLoc, "register expected");
// The reglist instructions have at most 16 registers, so reserve
// space for that many.
int EReg = 0;
SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
// Allow Q regs and just interpret them as the two D sub-registers.
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
Reg = getDRegFromQReg(Reg);
EReg = MRI->getEncodingValue(Reg);
Registers.emplace_back(EReg, Reg);
++Reg;
}
const MCRegisterClass *RC;
if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
else
return Error(RegLoc, "invalid register in register list");
// Store the register.
EReg = MRI->getEncodingValue(Reg);
Registers.emplace_back(EReg, Reg);
// This starts immediately after the first register token in the list,
// so we can see either a comma or a minus (range separator) as a legal
// next token.
while (Parser.getTok().is(AsmToken::Comma) ||
Parser.getTok().is(AsmToken::Minus)) {
if (Parser.getTok().is(AsmToken::Minus)) {
Parser.Lex(); // Eat the minus.
SMLoc AfterMinusLoc = Parser.getTok().getLoc();
int EndReg = tryParseRegister();
if (EndReg == -1)
return Error(AfterMinusLoc, "register expected");
// Allow Q regs and just interpret them as the two D sub-registers.
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
EndReg = getDRegFromQReg(EndReg) + 1;
// If the register is the same as the start reg, there's nothing
// more to do.
if (Reg == EndReg)
continue;
// The register must be in the same register class as the first.
if (!RC->contains(EndReg))
return Error(AfterMinusLoc, "invalid register in register list");
// Ranges must go from low to high.
if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
return Error(AfterMinusLoc, "bad range in register list");
// Add all the registers in the range to the register list.
while (Reg != EndReg) {
Reg = getNextRegister(Reg);
EReg = MRI->getEncodingValue(Reg);
if (!insertNoDuplicates(Registers, EReg, Reg)) {
Warning(AfterMinusLoc, StringRef("duplicated register (") +
ARMInstPrinter::getRegisterName(Reg) +
") in register list");
}
}
continue;
}
Parser.Lex(); // Eat the comma.
RegLoc = Parser.getTok().getLoc();
int OldReg = Reg;
const AsmToken RegTok = Parser.getTok();
Reg = tryParseRegister();
if (Reg == -1)
return Error(RegLoc, "register expected");
// Allow Q regs and just interpret them as the two D sub-registers.
bool isQReg = false;
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
Reg = getDRegFromQReg(Reg);
isQReg = true;
}
if (!RC->contains(Reg) &&
RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
// switch the register classes, as GPRwithAPSRnospRegClassID is a partial
// subset of GPRRegClassId except it contains APSR as well.
RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
}
if (Reg == ARM::VPR &&
(RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
EReg = MRI->getEncodingValue(Reg);
if (!insertNoDuplicates(Registers, EReg, Reg)) {
Warning(RegLoc, "duplicated register (" + RegTok.getString() +
") in register list");
}
continue;
}
// The register must be in the same register class as the first.
if (!RC->contains(Reg))
return Error(RegLoc, "invalid register in register list");
// In most cases, the list must be monotonically increasing. An
// exception is CLRM, which is order-independent anyway, so
// there's no potential for confusion if you write clrm {r2,r1}
// instead of clrm {r1,r2}.
if (EnforceOrder &&
MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
Warning(RegLoc, "register list not in ascending order");
else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
return Error(RegLoc, "register list not in ascending order");
}
// VFP register lists must also be contiguous.
if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
Reg != OldReg + 1)
return Error(RegLoc, "non-contiguous register range");
EReg = MRI->getEncodingValue(Reg);
if (!insertNoDuplicates(Registers, EReg, Reg)) {
Warning(RegLoc, "duplicated register (" + RegTok.getString() +
") in register list");
}
if (isQReg) {
EReg = MRI->getEncodingValue(++Reg);
Registers.emplace_back(EReg, Reg);
}
}
if (Parser.getTok().isNot(AsmToken::RCurly))
return Error(Parser.getTok().getLoc(), "'}' expected");
SMLoc E = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat '}' token.
// Push the register list operand.
Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
// The ARM system instruction variants for LDM/STM have a '^' token here.
if (Parser.getTok().is(AsmToken::Caret)) {
Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
Parser.Lex(); // Eat '^' token.
}
return false;
}
// Helper function to parse the lane index for vector lists.
OperandMatchResultTy ARMAsmParser::
parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
MCAsmParser &Parser = getParser();
Index = 0; // Always return a defined index value.
if (Parser.getTok().is(AsmToken::LBrac)) {
Parser.Lex(); // Eat the '['.
if (Parser.getTok().is(AsmToken::RBrac)) {
// "Dn[]" is the 'all lanes' syntax.
LaneKind = AllLanes;
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat the ']'.
return MatchOperand_Success;
}
// There's an optional '#' token here. Normally there wouldn't be, but
// inline assemble puts one in, and it's friendly to accept that.
if (Parser.getTok().is(AsmToken::Hash))
Parser.Lex(); // Eat '#' or '$'.
const MCExpr *LaneIndex;
SMLoc Loc = Parser.getTok().getLoc();
if (getParser().parseExpression(LaneIndex)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
if (!CE) {
Error(Loc, "lane index must be empty or an integer");
return MatchOperand_ParseFail;
}
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(Parser.getTok().getLoc(), "']' expected");
return MatchOperand_ParseFail;
}
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat the ']'.
int64_t Val = CE->getValue();
// FIXME: Make this range check context sensitive for .8, .16, .32.
if (Val < 0 || Val > 7) {
Error(Parser.getTok().getLoc(), "lane index out of range");
return MatchOperand_ParseFail;
}
Index = Val;
LaneKind = IndexedLane;
return MatchOperand_Success;
}
LaneKind = NoLanes;
return MatchOperand_Success;
}
// parse a vector register list
OperandMatchResultTy
ARMAsmParser::parseVectorList(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
VectorLaneTy LaneKind;
unsigned LaneIndex;
SMLoc S = Parser.getTok().getLoc();
// As an extension (to match gas), support a plain D register or Q register
// (without encosing curly braces) as a single or double entry list,
// respectively.
if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
SMLoc E = Parser.getTok().getEndLoc();
int Reg = tryParseRegister();
if (Reg == -1)
return MatchOperand_NoMatch;
if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
if (Res != MatchOperand_Success)
return Res;
switch (LaneKind) {
case NoLanes:
Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
break;
case AllLanes:
Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
S, E));
break;
case IndexedLane:
Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
LaneIndex,
false, S, E));
break;
}
return MatchOperand_Success;
}
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
Reg = getDRegFromQReg(Reg);
OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
if (Res != MatchOperand_Success)
return Res;
switch (LaneKind) {
case NoLanes:
Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
&ARMMCRegisterClasses[ARM::DPairRegClassID]);
Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
break;
case AllLanes:
Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
&ARMMCRegisterClasses[ARM::DPairRegClassID]);
Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
S, E));
break;
case IndexedLane:
Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
LaneIndex,
false, S, E));
break;
}
return MatchOperand_Success;
}
Error(S, "vector register expected");
return MatchOperand_ParseFail;
}
if (Parser.getTok().isNot(AsmToken::LCurly))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat '{' token.
SMLoc RegLoc = Parser.getTok().getLoc();
int Reg = tryParseRegister();
if (Reg == -1) {
Error(RegLoc, "register expected");
return MatchOperand_ParseFail;
}
unsigned Count = 1;
int Spacing = 0;
unsigned FirstReg = Reg;
if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
return MatchOperand_ParseFail;
}
// The list is of D registers, but we also allow Q regs and just interpret
// them as the two D sub-registers.
else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
FirstReg = Reg = getDRegFromQReg(Reg);
Spacing = 1; // double-spacing requires explicit D registers, otherwise
// it's ambiguous with four-register single spaced.
++Reg;
++Count;
}
SMLoc E;
if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
return MatchOperand_ParseFail;
while (Parser.getTok().is(AsmToken::Comma) ||
Parser.getTok().is(AsmToken::Minus)) {
if (Parser.getTok().is(AsmToken::Minus)) {
if (!Spacing)
Spacing = 1; // Register range implies a single spaced list.
else if (Spacing == 2) {
Error(Parser.getTok().getLoc(),
"sequential registers in double spaced list");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the minus.
SMLoc AfterMinusLoc = Parser.getTok().getLoc();
int EndReg = tryParseRegister();
if (EndReg == -1) {
Error(AfterMinusLoc, "register expected");
return MatchOperand_ParseFail;
}
// Allow Q regs and just interpret them as the two D sub-registers.
if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
EndReg = getDRegFromQReg(EndReg) + 1;
// If the register is the same as the start reg, there's nothing
// more to do.
if (Reg == EndReg)
continue;
// The register must be in the same register class as the first.
if ((hasMVE() &&
!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
(!hasMVE() &&
!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
Error(AfterMinusLoc, "invalid register in register list");
return MatchOperand_ParseFail;
}
// Ranges must go from low to high.
if (Reg > EndReg) {
Error(AfterMinusLoc, "bad range in register list");
return MatchOperand_ParseFail;
}
// Parse the lane specifier if present.
VectorLaneTy NextLaneKind;
unsigned NextLaneIndex;
if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
MatchOperand_Success)
return MatchOperand_ParseFail;
if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
Error(AfterMinusLoc, "mismatched lane index in register list");
return MatchOperand_ParseFail;
}
// Add all the registers in the range to the register list.
Count += EndReg - Reg;
Reg = EndReg;
continue;
}
Parser.Lex(); // Eat the comma.
RegLoc = Parser.getTok().getLoc();
int OldReg = Reg;
Reg = tryParseRegister();
if (Reg == -1) {
Error(RegLoc, "register expected");
return MatchOperand_ParseFail;
}
if (hasMVE()) {
if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
Error(RegLoc, "vector register in range Q0-Q7 expected");
return MatchOperand_ParseFail;
}
Spacing = 1;
}
// vector register lists must be contiguous.
// It's OK to use the enumeration values directly here rather, as the
// VFP register classes have the enum sorted properly.
//
// The list is of D registers, but we also allow Q regs and just interpret
// them as the two D sub-registers.
else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
if (!Spacing)
Spacing = 1; // Register range implies a single spaced list.
else if (Spacing == 2) {
Error(RegLoc,
"invalid register in double-spaced list (must be 'D' register')");
return MatchOperand_ParseFail;
}
Reg = getDRegFromQReg(Reg);
if (Reg != OldReg + 1) {
Error(RegLoc, "non-contiguous register range");
return MatchOperand_ParseFail;
}
++Reg;
Count += 2;
// Parse the lane specifier if present.
VectorLaneTy NextLaneKind;
unsigned NextLaneIndex;
SMLoc LaneLoc = Parser.getTok().getLoc();
if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
MatchOperand_Success)
return MatchOperand_ParseFail;
if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
Error(LaneLoc, "mismatched lane index in register list");
return MatchOperand_ParseFail;
}
continue;
}
// Normal D register.
// Figure out the register spacing (single or double) of the list if
// we don't know it already.
if (!Spacing)
Spacing = 1 + (Reg == OldReg + 2);
// Just check that it's contiguous and keep going.
if (Reg != OldReg + Spacing) {
Error(RegLoc, "non-contiguous register range");
return MatchOperand_ParseFail;
}
++Count;
// Parse the lane specifier if present.
VectorLaneTy NextLaneKind;
unsigned NextLaneIndex;
SMLoc EndLoc = Parser.getTok().getLoc();
if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
return MatchOperand_ParseFail;
if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
Error(EndLoc, "mismatched lane index in register list");
return MatchOperand_ParseFail;
}
}
if (Parser.getTok().isNot(AsmToken::RCurly)) {
Error(Parser.getTok().getLoc(), "'}' expected");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat '}' token.
switch (LaneKind) {
case NoLanes:
case AllLanes: {
// Two-register operands have been converted to the
// composite register classes.
if (Count == 2 && !hasMVE()) {
const MCRegisterClass *RC = (Spacing == 1) ?
&ARMMCRegisterClasses[ARM::DPairRegClassID] :
&ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
}
auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
ARMOperand::CreateVectorListAllLanes);
Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
break;
}
case IndexedLane:
Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
LaneIndex,
(Spacing == 2),
S, E));
break;
}
return MatchOperand_Success;
}
/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
OperandMatchResultTy
ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
unsigned Opt;
if (Tok.is(AsmToken::Identifier)) {
StringRef OptStr = Tok.getString();
Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
.Case("sy", ARM_MB::SY)
.Case("st", ARM_MB::ST)
.Case("ld", ARM_MB::LD)
.Case("sh", ARM_MB::ISH)
.Case("ish", ARM_MB::ISH)
.Case("shst", ARM_MB::ISHST)
.Case("ishst", ARM_MB::ISHST)
.Case("ishld", ARM_MB::ISHLD)
.Case("nsh", ARM_MB::NSH)
.Case("un", ARM_MB::NSH)
.Case("nshst", ARM_MB::NSHST)
.Case("nshld", ARM_MB::NSHLD)
.Case("unst", ARM_MB::NSHST)
.Case("osh", ARM_MB::OSH)
.Case("oshst", ARM_MB::OSHST)
.Case("oshld", ARM_MB::OSHLD)
.Default(~0U);
// ishld, oshld, nshld and ld are only available from ARMv8.
if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
Opt = ~0U;
if (Opt == ~0U)
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
} else if (Tok.is(AsmToken::Hash) ||
Tok.is(AsmToken::Dollar) ||
Tok.is(AsmToken::Integer)) {
if (Parser.getTok().isNot(AsmToken::Integer))
Parser.Lex(); // Eat '#' or '$'.
SMLoc Loc = Parser.getTok().getLoc();
const MCExpr *MemBarrierID;
if (getParser().parseExpression(MemBarrierID)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
if (!CE) {
Error(Loc, "constant expression expected");
return MatchOperand_ParseFail;
}
int Val = CE->getValue();
if (Val & ~0xf) {
Error(Loc, "immediate value out of range");
return MatchOperand_ParseFail;
}
Opt = ARM_MB::RESERVED_0 + Val;
} else
return MatchOperand_ParseFail;
Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
return MatchOperand_Success;
}
OperandMatchResultTy
ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
if (!Tok.getString().equals_lower("csync"))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
return MatchOperand_Success;
}
/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
OperandMatchResultTy
ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
unsigned Opt;
if (Tok.is(AsmToken::Identifier)) {
StringRef OptStr = Tok.getString();
if (OptStr.equals_lower("sy"))
Opt = ARM_ISB::SY;
else
return MatchOperand_NoMatch;
Parser.Lex(); // Eat identifier token.
} else if (Tok.is(AsmToken::Hash) ||
Tok.is(AsmToken::Dollar) ||
Tok.is(AsmToken::Integer)) {
if (Parser.getTok().isNot(AsmToken::Integer))
Parser.Lex(); // Eat '#' or '$'.
SMLoc Loc = Parser.getTok().getLoc();
const MCExpr *ISBarrierID;
if (getParser().parseExpression(ISBarrierID)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
if (!CE) {
Error(Loc, "constant expression expected");
return MatchOperand_ParseFail;
}
int Val = CE->getValue();
if (Val & ~0xf) {
Error(Loc, "immediate value out of range");
return MatchOperand_ParseFail;
}
Opt = ARM_ISB::RESERVED_0 + Val;
} else
return MatchOperand_ParseFail;
Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
(ARM_ISB::InstSyncBOpt)Opt, S));
return MatchOperand_Success;
}
/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
OperandMatchResultTy
ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
StringRef IFlagsStr = Tok.getString();
// An iflags string of "none" is interpreted to mean that none of the AIF
// bits are set. Not a terribly useful instruction, but a valid encoding.
unsigned IFlags = 0;
if (IFlagsStr != "none") {
for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
.Case("a", ARM_PROC::A)
.Case("i", ARM_PROC::I)
.Case("f", ARM_PROC::F)
.Default(~0U);
// If some specific iflag is already set, it means that some letter is
// present more than once, this is not acceptable.
if (Flag == ~0U || (IFlags & Flag))
return MatchOperand_NoMatch;
IFlags |= Flag;
}
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
return MatchOperand_Success;
}
/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
OperandMatchResultTy
ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Integer)) {
int64_t Val = Tok.getIntVal();
if (Val > 255 || Val < 0) {
return MatchOperand_NoMatch;
}
unsigned SYSmvalue = Val & 0xFF;
Parser.Lex();
Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
return MatchOperand_Success;
}
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
StringRef Mask = Tok.getString();
if (isMClass()) {
auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
return MatchOperand_NoMatch;
unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
return MatchOperand_Success;
}
// Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
size_t Start = 0, Next = Mask.find('_');
StringRef Flags = "";
std::string SpecReg = Mask.slice(Start, Next).lower();
if (Next != StringRef::npos)
Flags = Mask.slice(Next+1, Mask.size());
// FlagsVal contains the complete mask:
// 3-0: Mask
// 4: Special Reg (cpsr, apsr => 0; spsr => 1)
unsigned FlagsVal = 0;
if (SpecReg == "apsr") {
FlagsVal = StringSwitch<unsigned>(Flags)
.Case("nzcvq", 0x8) // same as CPSR_f
.Case("g", 0x4) // same as CPSR_s
.Case("nzcvqg", 0xc) // same as CPSR_fs
.Default(~0U);
if (FlagsVal == ~0U) {
if (!Flags.empty())
return MatchOperand_NoMatch;
else
FlagsVal = 8; // No flag
}
} else if (SpecReg == "cpsr" || SpecReg == "spsr") {
// cpsr_all is an alias for cpsr_fc, as is plain cpsr.
if (Flags == "all" || Flags == "")
Flags = "fc";
for (int i = 0, e = Flags.size(); i != e; ++i) {
unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
.Case("c", 1)
.Case("x", 2)
.Case("s", 4)
.Case("f", 8)
.Default(~0U);
// If some specific flag is already set, it means that some letter is
// present more than once, this is not acceptable.
if (Flag == ~0U || (FlagsVal & Flag))
return MatchOperand_NoMatch;
FlagsVal |= Flag;
}
} else // No match for special register.
return MatchOperand_NoMatch;
// Special register without flags is NOT equivalent to "fc" flags.
// NOTE: This is a divergence from gas' behavior. Uncommenting the following
// two lines would enable gas compatibility at the expense of breaking
// round-tripping.
//
// if (!FlagsVal)
// FlagsVal = 0x9;
// Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
if (SpecReg == "spsr")
FlagsVal |= 16;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
return MatchOperand_Success;
}
/// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
/// use in the MRS/MSR instructions added to support virtualization.
OperandMatchResultTy
ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
StringRef RegName = Tok.getString();
auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
if (!TheReg)
return MatchOperand_NoMatch;
unsigned Encoding = TheReg->Encoding;
Parser.Lex(); // Eat identifier token.
Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
return MatchOperand_Success;
}
OperandMatchResultTy
ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
int High) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), Op + " operand expected.");
return MatchOperand_ParseFail;
}
StringRef ShiftName = Tok.getString();
std::string LowerOp = Op.lower();
std::string UpperOp = Op.upper();
if (ShiftName != LowerOp && ShiftName != UpperOp) {
Error(Parser.getTok().getLoc(), Op + " operand expected.");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat shift type token.
// There must be a '#' and a shift amount.
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *ShiftAmount;
SMLoc Loc = Parser.getTok().getLoc();
SMLoc EndLoc;
if (getParser().parseExpression(ShiftAmount, EndLoc)) {
Error(Loc, "illegal expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(Loc, "constant expression expected");
return MatchOperand_ParseFail;
}
int Val = CE->getValue();
if (Val < Low || Val > High) {
Error(Loc, "immediate value out of range");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
return MatchOperand_Success;
}
OperandMatchResultTy
ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
Error(S, "'be' or 'le' operand expected");
return MatchOperand_ParseFail;
}
int Val = StringSwitch<int>(Tok.getString().lower())
.Case("be", 1)
.Case("le", 0)
.Default(-1);
Parser.Lex(); // Eat the token.
if (Val == -1) {
Error(S, "'be' or 'le' operand expected");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
getContext()),
S, Tok.getEndLoc()));
return MatchOperand_Success;
}
/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
/// instructions. Legal values are:
/// lsl #n 'n' in [0,31]
/// asr #n 'n' in [1,32]
/// n == 32 encoded as n == 0.
OperandMatchResultTy
ARMAsmParser::parseShifterImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier)) {
Error(S, "shift operator 'asr' or 'lsl' expected");
return MatchOperand_ParseFail;
}
StringRef ShiftName = Tok.getString();
bool isASR;
if (ShiftName == "lsl" || ShiftName == "LSL")
isASR = false;
else if (ShiftName == "asr" || ShiftName == "ASR")
isASR = true;
else {
Error(S, "shift operator 'asr' or 'lsl' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the operator.
// A '#' and a shift amount.
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
SMLoc ExLoc = Parser.getTok().getLoc();
const MCExpr *ShiftAmount;
SMLoc EndLoc;
if (getParser().parseExpression(ShiftAmount, EndLoc)) {
Error(ExLoc, "malformed shift expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(ExLoc, "shift amount must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Val = CE->getValue();
if (isASR) {
// Shift amount must be in [1,32]
if (Val < 1 || Val > 32) {
Error(ExLoc, "'asr' shift amount must be in range [1,32]");
return MatchOperand_ParseFail;
}
// asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
if (isThumb() && Val == 32) {
Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
return MatchOperand_ParseFail;
}
if (Val == 32) Val = 0;
} else {
// Shift amount must be in [1,32]
if (Val < 0 || Val > 31) {
Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
return MatchOperand_ParseFail;
}
}
Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
return MatchOperand_Success;
}
/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
/// of instructions. Legal values are:
/// ror #n 'n' in {0, 8, 16, 24}
OperandMatchResultTy
ARMAsmParser::parseRotImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
StringRef ShiftName = Tok.getString();
if (ShiftName != "ror" && ShiftName != "ROR")
return MatchOperand_NoMatch;
Parser.Lex(); // Eat the operator.
// A '#' and a rotate amount.
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
SMLoc ExLoc = Parser.getTok().getLoc();
const MCExpr *ShiftAmount;
SMLoc EndLoc;
if (getParser().parseExpression(ShiftAmount, EndLoc)) {
Error(ExLoc, "malformed rotate expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
if (!CE) {
Error(ExLoc, "rotate amount must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Val = CE->getValue();
// Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
// normally, zero is represented in asm by omitting the rotate operand
// entirely.
if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
return MatchOperand_Success;
}
OperandMatchResultTy
ARMAsmParser::parseModImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
int64_t Imm1, Imm2;
SMLoc S = Parser.getTok().getLoc();
// 1) A mod_imm operand can appear in the place of a register name:
// add r0, #mod_imm
// add r0, r0, #mod_imm
// to correctly handle the latter, we bail out as soon as we see an
// identifier.
//
// 2) Similarly, we do not want to parse into complex operands:
// mov r0, #mod_imm
// mov r0, :lower16:(_foo)
if (Parser.getTok().is(AsmToken::Identifier) ||
Parser.getTok().is(AsmToken::Colon))
return MatchOperand_NoMatch;
// Hash (dollar) is optional as per the ARMARM
if (Parser.getTok().is(AsmToken::Hash) ||
Parser.getTok().is(AsmToken::Dollar)) {
// Avoid parsing into complex operands (#:)
if (Lexer.peekTok().is(AsmToken::Colon))
return MatchOperand_NoMatch;
// Eat the hash (dollar)
Parser.Lex();
}
SMLoc Sx1, Ex1;
Sx1 = Parser.getTok().getLoc();
const MCExpr *Imm1Exp;
if (getParser().parseExpression(Imm1Exp, Ex1)) {
Error(Sx1, "malformed expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
if (CE) {
// Immediate must fit within 32-bits
Imm1 = CE->getValue();
int Enc = ARM_AM::getSOImmVal(Imm1);
if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
// We have a match!
Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
(Enc & 0xF00) >> 7,
Sx1, Ex1));
return MatchOperand_Success;
}
// We have parsed an immediate which is not for us, fallback to a plain
// immediate. This can happen for instruction aliases. For an example,
// ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
// a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
// instruction with a mod_imm operand. The alias is defined such that the
// parser method is shared, that's why we have to do this here.
if (Parser.getTok().is(AsmToken::EndOfStatement)) {
Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
return MatchOperand_Success;
}
} else {
// Operands like #(l1 - l2) can only be evaluated at a later stage (via an
// MCFixup). Fallback to a plain immediate.
Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
return MatchOperand_Success;
}
// From this point onward, we expect the input to be a (#bits, #rot) pair
if (Parser.getTok().isNot(AsmToken::Comma)) {
Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
return MatchOperand_ParseFail;
}
if (Imm1 & ~0xFF) {
Error(Sx1, "immediate operand must a number in the range [0, 255]");
return MatchOperand_ParseFail;
}
// Eat the comma
Parser.Lex();
// Repeat for #rot
SMLoc Sx2, Ex2;
Sx2 = Parser.getTok().getLoc();
// Eat the optional hash (dollar)
if (Parser.getTok().is(AsmToken::Hash) ||
Parser.getTok().is(AsmToken::Dollar))
Parser.Lex();
const MCExpr *Imm2Exp;
if (getParser().parseExpression(Imm2Exp, Ex2)) {
Error(Sx2, "malformed expression");
return MatchOperand_ParseFail;
}
CE = dyn_cast<MCConstantExpr>(Imm2Exp);
if (CE) {
Imm2 = CE->getValue();
if (!(Imm2 & ~0x1E)) {
// We have a match!
Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
return MatchOperand_Success;
}
Error(Sx2, "immediate operand must an even number in the range [0, 30]");
return MatchOperand_ParseFail;
} else {
Error(Sx2, "constant expression expected");
return MatchOperand_ParseFail;
}
}
OperandMatchResultTy
ARMAsmParser::parseBitfield(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
// The bitfield descriptor is really two operands, the LSB and the width.
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *LSBExpr;
SMLoc E = Parser.getTok().getLoc();
if (getParser().parseExpression(LSBExpr)) {
Error(E, "malformed immediate expression");
return MatchOperand_ParseFail;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
if (!CE) {
Error(E, "'lsb' operand must be an immediate");
return MatchOperand_ParseFail;
}
int64_t LSB = CE->getValue();
// The LSB must be in the range [0,31]
if (LSB < 0 || LSB > 31) {
Error(E, "'lsb' operand must be in the range [0,31]");
return MatchOperand_ParseFail;
}
E = Parser.getTok().getLoc();
// Expect another immediate operand.
if (Parser.getTok().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(), "too few operands");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar)) {
Error(Parser.getTok().getLoc(), "'#' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat hash token.
const MCExpr *WidthExpr;
SMLoc EndLoc;
if (getParser().parseExpression(WidthExpr, EndLoc)) {
Error(E, "malformed immediate expression");
return MatchOperand_ParseFail;
}
CE = dyn_cast<MCConstantExpr>(WidthExpr);
if (!CE) {
Error(E, "'width' operand must be an immediate");
return MatchOperand_ParseFail;
}
int64_t Width = CE->getValue();
// The LSB must be in the range [1,32-lsb]
if (Width < 1 || Width > 32 - LSB) {
Error(E, "'width' operand must be in the range [1,32-lsb]");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
return MatchOperand_Success;
}
OperandMatchResultTy
ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
// Check for a post-index addressing register operand. Specifically:
// postidx_reg := '+' register {, shift}
// | '-' register {, shift}
// | register {, shift}
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
MCAsmParser &Parser = getParser();
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
bool haveEaten = false;
bool isAdd = true;
if (Tok.is(AsmToken::Plus)) {
Parser.Lex(); // Eat the '+' token.
haveEaten = true;
} else if (Tok.is(AsmToken::Minus)) {
Parser.Lex(); // Eat the '-' token.
isAdd = false;
haveEaten = true;
}
SMLoc E = Parser.getTok().getEndLoc();
int Reg = tryParseRegister();
if (Reg == -1) {
if (!haveEaten)
return MatchOperand_NoMatch;
Error(Parser.getTok().getLoc(), "register expected");
return MatchOperand_ParseFail;
}
ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
unsigned ShiftImm = 0;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the ','.
if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
return MatchOperand_ParseFail;
// FIXME: Only approximates end...may include intervening whitespace.
E = Parser.getTok().getLoc();
}
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
ShiftImm, S, E));
return MatchOperand_Success;
}
OperandMatchResultTy
ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
// Check for a post-index addressing register operand. Specifically:
// am3offset := '+' register
// | '-' register
// | register
// | # imm
// | # + imm
// | # - imm
// This method must return MatchOperand_NoMatch without consuming any tokens
// in the case where there is no match, as other alternatives take other
// parse methods.
MCAsmParser &Parser = getParser();
AsmToken Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
// Do immediates first, as we always parse those if we have a '#'.
if (Parser.getTok().is(AsmToken::Hash) ||
Parser.getTok().is(AsmToken::Dollar)) {
Parser.Lex(); // Eat '#' or '$'.
// Explicitly look for a '-', as we need to encode negative zero
// differently.
bool isNegative = Parser.getTok().is(AsmToken::Minus);
const MCExpr *Offset;
SMLoc E;
if (getParser().parseExpression(Offset, E))
return MatchOperand_ParseFail;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
if (!CE) {
Error(S, "constant expression expected");
return MatchOperand_ParseFail;
}
// Negative zero is encoded as the flag value
// std::numeric_limits<int32_t>::min().
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
Val = std::numeric_limits<int32_t>::min();
Operands.push_back(
ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
return MatchOperand_Success;
}
bool haveEaten = false;
bool isAdd = true;
if (Tok.is(AsmToken::Plus)) {
Parser.Lex(); // Eat the '+' token.
haveEaten = true;
} else if (Tok.is(AsmToken::Minus)) {
Parser.Lex(); // Eat the '-' token.
isAdd = false;
haveEaten = true;
}
Tok = Parser.getTok();
int Reg = tryParseRegister();
if (Reg == -1) {
if (!haveEaten)
return MatchOperand_NoMatch;
Error(Tok.getLoc(), "register expected");
return MatchOperand_ParseFail;
}
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
0, S, Tok.getEndLoc()));
return MatchOperand_Success;
}
/// Convert parsed operands to MCInst. Needed here because this instruction
/// only has two register operands, but multiplication is commutative so
/// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
const OperandVector &Operands) {
((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
// If we have a three-operand form, make sure to set Rn to be the operand
// that isn't the same as Rd.
unsigned RegOp = 4;
if (Operands.size() == 6 &&
((ARMOperand &)*Operands[4]).getReg() ==
((ARMOperand &)*Operands[3]).getReg())
RegOp = 5;
((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
Inst.addOperand(Inst.getOperand(0));
((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
}
void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
const OperandVector &Operands) {
int CondOp = -1, ImmOp = -1;
switch(Inst.getOpcode()) {
case ARM::tB:
case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
case ARM::t2B:
case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
}
// first decide whether or not the branch should be conditional
// by looking at it's location relative to an IT block
if(inITBlock()) {
// inside an IT block we cannot have any conditional branches. any
// such instructions needs to be converted to unconditional form
switch(Inst.getOpcode()) {
case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
}
} else {
// outside IT blocks we can only have unconditional branches with AL
// condition code or conditional branches with non-AL condition code
unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
switch(Inst.getOpcode()) {
case ARM::tB:
case ARM::tBcc:
Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
break;
case ARM::t2B:
case ARM::t2Bcc:
Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
break;
}
}
// now decide on encoding size based on branch target range
switch(Inst.getOpcode()) {
// classify tB as either t2B or t1B based on range of immediate operand
case ARM::tB: {
ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
Inst.setOpcode(ARM::t2B);
break;
}
// classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
case ARM::tBcc: {
ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
Inst.setOpcode(ARM::t2Bcc);
break;
}
}
((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
}
void ARMAsmParser::cvtMVEVMOVQtoDReg(
MCInst &Inst, const OperandVector &Operands) {
// mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
assert(Operands.size() == 8);
((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
// skip second copy of Qd in Operands[6]
((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
}
/// Parse an ARM memory expression, return false if successful else return true
/// or an error. The first token must be a '[' when called.
bool ARMAsmParser::parseMemory(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S, E;
if (Parser.getTok().isNot(AsmToken::LBrac))
return TokError("Token is not a Left Bracket");
S = Parser.getTok().getLoc();
Parser.Lex(); // Eat left bracket token.
const AsmToken &BaseRegTok = Parser.getTok();
int BaseRegNum = tryParseRegister();
if (BaseRegNum == -1)
return Error(BaseRegTok.getLoc(), "register expected");
// The next token must either be a comma, a colon or a closing bracket.
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
!Tok.is(AsmToken::RBrac))
return Error(Tok.getLoc(), "malformed memory operand");
if (Tok.is(AsmToken::RBrac)) {
E = Tok.getEndLoc();
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
ARM_AM::no_shift, 0, 0, false,
S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand. It's rather odd, but syntactically valid.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
"Lost colon or comma in memory operand?!");
if (Tok.is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
}
// If we have a ':', it's an alignment specifier.
if (Parser.getTok().is(AsmToken::Colon)) {
Parser.Lex(); // Eat the ':'.
E = Parser.getTok().getLoc();
SMLoc AlignmentLoc = Tok.getLoc();
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return true;
// The expression has to be a constant. Memory references with relocations
// don't come through here, as they use the <label> forms of the relevant
// instructions.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
if (!CE)
return Error (E, "constant expression expected");
unsigned Align = 0;
switch (CE->getValue()) {
default:
return Error(E,
"alignment specifier must be 16, 32, 64, 128, or 256 bits");
case 16: Align = 2; break;
case 32: Align = 4; break;
case 64: Align = 8; break;
case 128: Align = 16; break;
case 256: Align = 32; break;
}
// Now we should have the closing ']'
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(Parser.getTok().getLoc(), "']' expected");
E = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat right bracket token.
// Don't worry about range checking the value here. That's handled by
// the is*() predicates.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
ARM_AM::no_shift, 0, Align,
false, S, E, AlignmentLoc));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
// If we have a '#' or '$', it's an immediate offset, else assume it's a
// register offset. Be friendly and also accept a plain integer or expression
// (without a leading hash) for gas compatibility.
if (Parser.getTok().is(AsmToken::Hash) ||
Parser.getTok().is(AsmToken::Dollar) ||
Parser.getTok().is(AsmToken::LParen) ||
Parser.getTok().is(AsmToken::Integer)) {
if (Parser.getTok().is(AsmToken::Hash) ||
Parser.getTok().is(AsmToken::Dollar))
Parser.Lex(); // Eat '#' or '$'
E = Parser.getTok().getLoc();
bool isNegative = getParser().getTok().is(AsmToken::Minus);
const MCExpr *Offset;
if (getParser().parseExpression(Offset))
return true;
// The expression has to be a constant. Memory references with relocations
// don't come through here, as they use the <label> forms of the relevant
// instructions.
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
if (!CE)
return Error (E, "constant expression expected");
// If the constant was #-0, represent it as
// std::numeric_limits<int32_t>::min().
int32_t Val = CE->getValue();
if (isNegative && Val == 0)
CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
getContext());
// Now we should have the closing ']'
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(Parser.getTok().getLoc(), "']' expected");
E = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat right bracket token.
// Don't worry about range checking the value here. That's handled by
// the is*() predicates.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
ARM_AM::no_shift, 0, 0,
false, S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
// The register offset is optionally preceded by a '+' or '-'
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
Parser.Lex(); // Eat the '-'.
} else if (Parser.getTok().is(AsmToken::Plus)) {
// Nothing to do.
Parser.Lex(); // Eat the '+'.
}
E = Parser.getTok().getLoc();
int OffsetRegNum = tryParseRegister();
if (OffsetRegNum == -1)
return Error(E, "register expected");
// If there's a shift operator, handle it.
ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
unsigned ShiftImm = 0;
if (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the ','.
if (parseMemRegOffsetShift(ShiftType, ShiftImm))
return true;
}
// Now we should have the closing ']'
if (Parser.getTok().isNot(AsmToken::RBrac))
return Error(Parser.getTok().getLoc(), "']' expected");
E = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat right bracket token.
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
ShiftType, ShiftImm, 0, isNegative,
S, E));
// If there's a pre-indexing writeback marker, '!', just add it as a token
// operand.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
Parser.Lex(); // Eat the '!'.
}
return false;
}
/// parseMemRegOffsetShift - one of these two:
/// ( lsl | lsr | asr | ror ) , # shift_amount
/// rrx
/// return true if it parses a shift otherwise it returns false.
bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
unsigned &Amount) {
MCAsmParser &Parser = getParser();
SMLoc Loc = Parser.getTok().getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return Error(Loc, "illegal shift operator");
StringRef ShiftName = Tok.getString();
if (ShiftName == "lsl" || ShiftName == "LSL" ||
ShiftName == "asl" || ShiftName == "ASL")
St = ARM_AM::lsl;
else if (ShiftName == "lsr" || ShiftName == "LSR")
St = ARM_AM::lsr;
else if (ShiftName == "asr" || ShiftName == "ASR")
St = ARM_AM::asr;
else if (ShiftName == "ror" || ShiftName == "ROR")
St = ARM_AM::ror;
else if (ShiftName == "rrx" || ShiftName == "RRX")
St = ARM_AM::rrx;
else if (ShiftName == "uxtw" || ShiftName == "UXTW")
St = ARM_AM::uxtw;
else
return Error(Loc, "illegal shift operator");
Parser.Lex(); // Eat shift type token.
// rrx stands alone.
Amount = 0;
if (St != ARM_AM::rrx) {
Loc = Parser.getTok().getLoc();
// A '#' and a shift amount.
const AsmToken &HashTok = Parser.getTok();
if (HashTok.isNot(AsmToken::Hash) &&
HashTok.isNot(AsmToken::Dollar))
return Error(HashTok.getLoc(), "'#' expected");
Parser.Lex(); // Eat hash token.
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return true;
// Range check the immediate.
// lsl, ror: 0 <= imm <= 31
// lsr, asr: 0 <= imm <= 32
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
if (!CE)
return Error(Loc, "shift amount must be an immediate");
int64_t Imm = CE->getValue();
if (Imm < 0 ||
((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
return Error(Loc, "immediate shift value out of range");
// If <ShiftTy> #0, turn it into a no_shift.
if (Imm == 0)
St = ARM_AM::lsl;
// For consistency, treat lsr #32 and asr #32 as having immediate value 0.
if (Imm == 32)
Imm = 0;
Amount = Imm;
}
return false;
}
/// parseFPImm - A floating point immediate expression operand.
OperandMatchResultTy
ARMAsmParser::parseFPImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
// Anything that can accept a floating point constant as an operand
// needs to go through here, as the regular parseExpression is
// integer only.
//
// This routine still creates a generic Immediate operand, containing
// a bitcast of the 64-bit floating point value. The various operands
// that accept floats can check whether the value is valid for them
// via the standard is*() predicates.
SMLoc S = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
// Disambiguate the VMOV forms that can accept an FP immediate.
// vmov.f32 <sreg>, #imm
// vmov.f64 <dreg>, #imm
// vmov.f32 <dreg>, #imm @ vector f32x2
// vmov.f32 <qreg>, #imm @ vector f32x4
//
// There are also the NEON VMOV instructions which expect an
// integer constant. Make sure we don't try to parse an FPImm
// for these:
// vmov.i{8|16|32|64} <dreg|qreg>, #imm
ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
bool isVmovf = TyOp.isToken() &&
(TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
TyOp.getToken() == ".f16");
ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
Mnemonic.getToken() == "fconsts");
if (!(isVmovf || isFconst))
return MatchOperand_NoMatch;
Parser.Lex(); // Eat '#' or '$'.
// Handle negation, as that still comes through as a separate token.
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
Parser.Lex();
}
const AsmToken &Tok = Parser.getTok();
SMLoc Loc = Tok.getLoc();
if (Tok.is(AsmToken::Real) && isVmovf) {
APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
// If we had a '-' in front, toggle the sign bit.
IntVal ^= (uint64_t)isNegative << 31;
Parser.Lex(); // Eat the token.
Operands.push_back(ARMOperand::CreateImm(
MCConstantExpr::create(IntVal, getContext()),
S, Parser.getTok().getLoc()));
return MatchOperand_Success;
}
// Also handle plain integers. Instructions which allow floating point
// immediates also allow a raw encoded 8-bit value.
if (Tok.is(AsmToken::Integer) && isFconst) {
int64_t Val = Tok.getIntVal();
Parser.Lex(); // Eat the token.
if (Val > 255 || Val < 0) {
Error(Loc, "encoded floating point value out of range");
return MatchOperand_ParseFail;
}
float RealVal = ARM_AM::getFPImmFloat(Val);
Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
Operands.push_back(ARMOperand::CreateImm(
MCConstantExpr::create(Val, getContext()), S,
Parser.getTok().getLoc()));
return MatchOperand_Success;
}
Error(Loc, "invalid floating point immediate");
return MatchOperand_ParseFail;
}
/// Parse a arm instruction operand. For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
MCAsmParser &Parser = getParser();
SMLoc S, E;
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Identifier: {
// If we've seen a branch mnemonic, the next operand must be a label. This
// is true even if the label is a register name. So "br r1" means branch to
// label "r1".
bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
if (!ExpectLabel) {
if (!tryParseRegisterWithWriteBack(Operands))
return false;
int Res = tryParseShiftRegister(Operands);
if (Res == 0) // success
return false;
else if (Res == -1) // irrecoverable error
return true;
// If this is VMRS, check for the apsr_nzcv operand.
if (Mnemonic == "vmrs" &&
Parser.getTok().getString().equals_lower("apsr_nzcv")) {
S = Parser.getTok().getLoc();
Parser.Lex();
Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
return false;
}
}
// Fall though for the Identifier case that is not a register or a
// special name.
LLVM_FALLTHROUGH;
}
case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
case AsmToken::Integer: // things like 1f and 2b as a branch targets
case AsmToken::String: // quoted label names.
case AsmToken::Dot: { // . as a branch target
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::LBrac:
return parseMemory(Operands);
case AsmToken::LCurly:
return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
case AsmToken::Dollar:
case AsmToken::Hash: {
// #42 -> immediate
// $ 42 -> immediate
// $foo -> symbol name
// $42 -> symbol name
S = Parser.getTok().getLoc();
// Favor the interpretation of $-prefixed operands as symbol names.
// Cases where immediates are explicitly expected are handled by their
// specific ParseMethod implementations.
auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false);
bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) &&
(AdjacentToken.is(AsmToken::Identifier) ||
AdjacentToken.is(AsmToken::Integer));
if (!ExpectIdentifier) {
// Token is not part of identifier. Drop leading $ or # before parsing
// expression.
Parser.Lex();
}
if (Parser.getTok().isNot(AsmToken::Colon)) {
bool IsNegative = Parser.getTok().is(AsmToken::Minus);
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
if (CE) {
int32_t Val = CE->getValue();
if (IsNegative && Val == 0)
ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
getContext());
}
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
// There can be a trailing '!' on operands that we want as a separate
// '!' Token operand. Handle that here. For example, the compatibility
// alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
if (Parser.getTok().is(AsmToken::Exclaim)) {
Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
Parser.getTok().getLoc()));
Parser.Lex(); // Eat exclaim token
}
return false;
}
// w/ a ':' after the '#', it's just like a plain ':'.
LLVM_FALLTHROUGH;
}
case AsmToken::Colon: {
S = Parser.getTok().getLoc();
// ":lower16:" and ":upper16:" expression prefixes
// FIXME: Check it's an expression prefix,
// e.g. (FOO - :lower16:BAR) isn't legal.
ARMMCExpr::VariantKind RefKind;
if (parsePrefix(RefKind))
return true;
const MCExpr *SubExprVal;
if (getParser().parseExpression(SubExprVal))
return true;
const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
getContext());
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
return false;
}
case AsmToken::Equal: {
S = Parser.getTok().getLoc();
if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
return Error(S, "unexpected token in operand");
Parser.Lex(); // Eat '='
const MCExpr *SubExprVal;
if (getParser().parseExpression(SubExprVal))
return true;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
// execute-only: we assume that assembly programmers know what they are
// doing and allow literal pool creation here
Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
return false;
}
}
}
// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
// :lower16: and :upper16:.
bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
MCAsmParser &Parser = getParser();
RefKind = ARMMCExpr::VK_ARM_None;
// consume an optional '#' (GNU compatibility)
if (getLexer().is(AsmToken::Hash))
Parser.Lex();
// :lower16: and :upper16: modifiers
assert(getLexer().is(AsmToken::Colon) && "expected a :");
Parser.Lex(); // Eat ':'
if (getLexer().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
return true;
}
enum {
COFF = (1 << MCObjectFileInfo::IsCOFF),
ELF = (1 << MCObjectFileInfo::IsELF),
MACHO = (1 << MCObjectFileInfo::IsMachO),
WASM = (1 << MCObjectFileInfo::IsWasm),
};
static const struct PrefixEntry {
const char *Spelling;
ARMMCExpr::VariantKind VariantKind;
uint8_t SupportedFormats;
} PrefixEntries[] = {
{ "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
{ "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
};
StringRef IDVal = Parser.getTok().getIdentifier();
const auto &Prefix =
llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) {
return PE.Spelling == IDVal;
});
if (Prefix == std::end(PrefixEntries)) {
Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
return true;
}
uint8_t CurrentFormat;
switch (getContext().getObjectFileInfo()->getObjectFileType()) {
case MCObjectFileInfo::IsMachO:
CurrentFormat = MACHO;
break;
case MCObjectFileInfo::IsELF:
CurrentFormat = ELF;
break;
case MCObjectFileInfo::IsCOFF:
CurrentFormat = COFF;
break;
case MCObjectFileInfo::IsWasm:
CurrentFormat = WASM;
break;
case MCObjectFileInfo::IsXCOFF:
llvm_unreachable("unexpected object format");
break;
}
if (~Prefix->SupportedFormats & CurrentFormat) {
Error(Parser.getTok().getLoc(),
"cannot represent relocation in the current file format");
return true;
}
RefKind = Prefix->VariantKind;
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "unexpected token after prefix");
return true;
}
Parser.Lex(); // Eat the last ':'
return false;
}
/// Given a mnemonic, split out possible predication code and carry
/// setting letters to form a canonical mnemonic and flags.
//
// FIXME: Would be nice to autogen this.
// FIXME: This is a bit of a maze of special cases.
StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
StringRef ExtraToken,
unsigned &PredicationCode,
unsigned &VPTPredicationCode,
bool &CarrySetting,
unsigned &ProcessorIMod,
StringRef &ITMask) {
PredicationCode = ARMCC::AL;
VPTPredicationCode = ARMVCC::None;
CarrySetting = false;
ProcessorIMod = 0;
// Ignore some mnemonics we know aren't predicated forms.
//
// FIXME: Would be nice to autogen this.
if ((Mnemonic == "movs" && isThumb()) ||
Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
Mnemonic == "bxns" || Mnemonic == "blxns" ||
Mnemonic == "vdot" || Mnemonic == "vmmla" ||
Mnemonic == "vudot" || Mnemonic == "vsdot" ||
Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" ||
Mnemonic == "csel" || Mnemonic == "csinc" ||
Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" ||
Mnemonic == "csetm")
return Mnemonic;
// First, split out any predication code. Ignore mnemonics we know aren't
// predicated but do have a carry-set and so weren't caught above.
if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
Mnemonic != "sbcs" && Mnemonic != "rscs" &&
!(hasMVE() &&
(Mnemonic == "vmine" ||
Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
Mnemonic == "vmvne" || Mnemonic == "vorne" ||
Mnemonic == "vnege" || Mnemonic == "vnegt" ||
Mnemonic == "vmule" || Mnemonic == "vmult" ||
Mnemonic == "vrintne" ||
Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
Mnemonic.startswith("vq")))) {
unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
if (CC != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
PredicationCode = CC;
}
}
// Next, determine if we have a carry setting bit. We explicitly ignore all
// the instructions we know end in 's'.
if (Mnemonic.endswith("s") &&
!(Mnemonic == "cps" || Mnemonic == "mls" ||
Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
Mnemonic == "vmlas" ||
(Mnemonic == "movs" && isThumb()))) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
CarrySetting = true;
}
// The "cps" instruction can have a interrupt mode operand which is glued into
// the mnemonic. Check if this is the case, split it and parse the imod op
if (Mnemonic.startswith("cps")) {
// Split out any imod code.
unsigned IMod =
StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
.Case("ie", ARM_PROC::IE)
.Case("id", ARM_PROC::ID)
.Default(~0U);
if (IMod != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
ProcessorIMod = IMod;
}
}
if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
if (CC != ~0U) {
Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
VPTPredicationCode = CC;
}
return Mnemonic;
}
// The "it" instruction has the condition mask on the end of the mnemonic.
if (Mnemonic.startswith("it")) {
ITMask = Mnemonic.slice(2, Mnemonic.size());
Mnemonic = Mnemonic.slice(0, 2);
}
if (Mnemonic.startswith("vpst")) {
ITMask = Mnemonic.slice(4, Mnemonic.size());
Mnemonic = Mnemonic.slice(0, 4);
}
else if (Mnemonic.startswith("vpt")) {
ITMask = Mnemonic.slice(3, Mnemonic.size());
Mnemonic = Mnemonic.slice(0, 3);
}
return Mnemonic;
}
/// Given a canonical mnemonic, determine if the instruction ever allows
/// inclusion of carry set or predication code operands.
//
// FIXME: It would be nice to autogen this.
void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
StringRef ExtraToken,
StringRef FullInst,
bool &CanAcceptCarrySet,
bool &CanAcceptPredicationCode,
bool &CanAcceptVPTPredicationCode) {
CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
CanAcceptCarrySet =
Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
(!isThumb() &&
(Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
(FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
Mnemonic == "vmovx" || Mnemonic == "vins" ||
Mnemonic == "vudot" || Mnemonic == "vsdot" ||
Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
Mnemonic == "vfmat" || Mnemonic == "vfmab" ||
Mnemonic == "vdot" || Mnemonic == "vmmla" ||
Mnemonic == "sb" || Mnemonic == "ssbb" ||
Mnemonic == "pssbb" || Mnemonic == "vsmmla" ||
Mnemonic == "vummla" || Mnemonic == "vusmmla" ||
Mnemonic == "vusdot" || Mnemonic == "vsudot" ||
Mnemonic == "bfcsel" || Mnemonic == "wls" ||
Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
Mnemonic == "cset" || Mnemonic == "csetm" ||
Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
(hasCDE() && MS.isCDEInstr(Mnemonic) &&
!MS.isITPredicableCDEInstr(Mnemonic)) ||
(hasMVE() &&
(Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
Mnemonic.startswith("letp")))) {
// These mnemonics are never predicable
CanAcceptPredicationCode = false;
} else if (!isThumb()) {
// Some instructions are only predicable in Thumb mode
CanAcceptPredicationCode =
Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
Mnemonic != "stc2" && Mnemonic != "stc2l" &&
Mnemonic != "tsb" &&
!Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
} else if (isThumbOne()) {
if (hasV6MOps())
CanAcceptPredicationCode = Mnemonic != "movs";
else
CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
} else
CanAcceptPredicationCode = true;
}
// Some Thumb instructions have two operand forms that are not
// available as three operand, convert to two operand form if possible.
//
// FIXME: We would really like to be able to tablegen'erate this.
void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
bool CarrySetting,
OperandVector &Operands) {
if (Operands.size() != 6)
return;
const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
if (!Op3.isReg() || !Op4.isReg())
return;
auto Op3Reg = Op3.getReg();
auto Op4Reg = Op4.getReg();
// For most Thumb2 cases we just generate the 3 operand form and reduce
// it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
// won't accept SP or PC so we do the transformation here taking care
// with immediate range in the 'add sp, sp #imm' case.
auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
if (isThumbTwo()) {
if (Mnemonic != "add")
return;
bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
(Op5.isReg() && Op5.getReg() == ARM::PC);
if (!TryTransform) {
TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
(Op5.isReg() && Op5.getReg() == ARM::SP)) &&
!(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
Op5.isImm() && !Op5.isImm0_508s4());
}
if (!TryTransform)
return;
} else if (!isThumbOne())
return;
if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
return;
// If first 2 operands of a 3 operand instruction are the same
// then transform to 2 operand version of the same instruction
// e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
bool Transform = Op3Reg == Op4Reg;
// For communtative operations, we might be able to transform if we swap
// Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
// as tADDrsp.
const ARMOperand *LastOp = &Op5;
bool Swap = false;
if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
((Mnemonic == "add" && Op4Reg != ARM::SP) ||
Mnemonic == "and" || Mnemonic == "eor" ||
Mnemonic == "adc" || Mnemonic == "orr")) {
Swap = true;
LastOp = &Op4;
Transform = true;
}
// If both registers are the same then remove one of them from
// the operand list, with certain exceptions.
if (Transform) {
// Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
// 2 operand forms don't exist.
if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
LastOp->isReg())
Transform = false;
// Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
// 3-bits because the ARMARM says not to.
if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
Transform = false;
}
if (Transform) {
if (Swap)
std::swap(Op4, Op5);
Operands.erase(Operands.begin() + 3);
}
}
bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
OperandVector &Operands) {
// FIXME: This is all horribly hacky. We really need a better way to deal
// with optional operands like this in the matcher table.
// The 'mov' mnemonic is special. One variant has a cc_out operand, while
// another does not. Specifically, the MOVW instruction does not. So we
// special case it here and remove the defaulted (non-setting) cc_out
// operand if that's the instruction we're trying to match.
//
// We do this as post-processing of the explicit operands rather than just
// conditionally adding the cc_out in the first place because we need
// to check the type of the parsed immediate operand.
if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
!static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
return true;
// Register-register 'add' for thumb does not have a cc_out operand
// when there are only two register operands.
if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[4]).isReg() &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
return true;
// Register-register 'add' for thumb does not have a cc_out operand
// when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
// have to check the immediate range here since Thumb2 has a variant
// that can handle a different range and has a cc_out operand.
if (((isThumb() && Mnemonic == "add") ||
(isThumbTwo() && Mnemonic == "sub")) &&
Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[4]).isReg() &&
static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
return true;
// For Thumb2, add/sub immediate does not have a cc_out operand for the
// imm0_4095 variant. That's the least-preferred variant when
// selecting via the generic "add" mnemonic, so to know that we
// should remove the cc_out operand, we have to explicitly check that
// it's not one of the other variants. Ugh.
if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[4]).isReg() &&
static_cast<ARMOperand &>(*Operands[5]).isImm()) {
// Nest conditions rather than one big 'if' statement for readability.
//
// If both registers are low, we're in an IT block, and the immediate is
// in range, we should use encoding T1 instead, which has a cc_out.
if (inITBlock() &&
isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
return false;
// Check against T3. If the second register is the PC, this is an
// alternate form of ADR, which uses encoding T4, so check for that too.
if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
(static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
return false;
// Otherwise, we use encoding T4, which does not have a cc_out
// operand.
return true;
}
// The thumb2 multiply instruction doesn't have a CCOut register, so
// if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
// use the 16-bit encoding or not.
if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[4]).isReg() &&
static_cast<ARMOperand &>(*Operands[5]).isReg() &&
// If the registers aren't low regs, the destination reg isn't the
// same as one of the source regs, or the cc_out operand is zero
// outside of an IT block, we have to use the 32-bit encoding, so
// remove the cc_out operand.
(!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
!isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
!isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
!inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
static_cast<ARMOperand &>(*Operands[5]).getReg() &&
static_cast<ARMOperand &>(*Operands[3]).getReg() !=
static_cast<ARMOperand &>(*Operands[4]).getReg())))
return true;
// Also check the 'mul' syntax variant that doesn't specify an explicit
// destination register.
if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[4]).isReg() &&
// If the registers aren't low regs or the cc_out operand is zero
// outside of an IT block, we have to use the 32-bit encoding, so
// remove the cc_out operand.
(!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
!isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
!inITBlock()))
return true;
// Register-register 'add/sub' for thumb does not have a cc_out operand
// when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
// the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
// right, this will result in better diagnostics (which operand is off)
// anyway.
if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
(Operands.size() == 5 || Operands.size() == 6) &&
static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
(static_cast<ARMOperand &>(*Operands[4]).isImm() ||
(Operands.size() == 6 &&
static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
// Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
return (!(isThumbTwo() &&
(static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
}
// Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
// Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
// Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
(Operands.size() == 5) &&
static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
static_cast<ARMOperand &>(*Operands[4]).isImm()) {
const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
return false; // add.w / sub.w
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
const int64_t Value = CE->getValue();
// Thumb1 imm8 sub / add
if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
return false;
return true; // Thumb2 T4 addw / subw
}
}
return false;
}
bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
OperandVector &Operands) {
// VRINT{Z, X} have a predicate operand in VFP, but not in NEON
unsigned RegIdx = 3;
if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
Mnemonic == "vrintr") &&
(static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
(static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
RegIdx = 4;
if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
(ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
return true;
}
return false;
}
bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
OperandVector &Operands) {
if (!hasMVE() || Operands.size() < 3)
return true;
if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
return true;
if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
return false;
if (Mnemonic.startswith("vmov") &&
!(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
Mnemonic.startswith("vmovx"))) {
for (auto &Operand : Operands) {
if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
((*Operand).isReg() &&
(ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
(*Operand).getReg()) ||
ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
(*Operand).getReg())))) {
return true;
}
}
return false;
} else {
for (auto &Operand : Operands) {
// We check the larger class QPR instead of just the legal class
// MQPR, to more accurately report errors when using Q registers
// outside of the allowed range.
if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
(Operand->isReg() &&
(ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
Operand->getReg()))))
return false;
}
return true;
}
}
static bool isDataTypeToken(StringRef Tok) {
return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
Tok == ".f" || Tok == ".d";
}
// FIXME: This bit should probably be handled via an explicit match class
// in the .td files that matches the suffix instead of having it be
// a literal string token the way it is now.
static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
}
static void applyMnemonicAliases(StringRef &Mnemonic,
const FeatureBitset &Features,
unsigned VariantID);
// The GNU assembler has aliases of ldrd and strd with the second register
// omitted. We don't have a way to do that in tablegen, so fix it up here.
//
// We have to be careful to not emit an invalid Rt2 here, because the rest of
// the assembly parser could then generate confusing diagnostics refering to
// it. If we do find anything that prevents us from doing the transformation we
// bail out, and let the assembly parser report an error on the instruction as
// it is written.
void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
OperandVector &Operands) {
if (Mnemonic != "ldrd" && Mnemonic != "strd")
return;
if (Operands.size() < 4)
return;
ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
if (!Op2.isReg())
return;
if (!Op3.isGPRMem())
return;
const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
if (!GPR.contains(Op2.getReg()))
return;
unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
if (!isThumb() && (RtEncoding & 1)) {
// In ARM mode, the registers must be from an aligned pair, this
// restriction does not apply in Thumb mode.
return;
}
if (Op2.getReg() == ARM::PC)
return;
unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
if (!PairedReg || PairedReg == ARM::PC ||
(PairedReg == ARM::SP && !hasV8Ops()))
return;
Operands.insert(
Operands.begin() + 3,
ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
}
// Dual-register instruction have the following syntax:
// <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
// This function tries to remove <Rdest+1> and replace <Rdest> with a pair
// operand. If the conversion fails an error is diagnosed, and the function
// returns true.
bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic,
OperandVector &Operands) {
assert(MS.isCDEDualRegInstr(Mnemonic));
bool isPredicable =
Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da";
size_t NumPredOps = isPredicable ? 1 : 0;
if (Operands.size() <= 3 + NumPredOps)
return false;
StringRef Op2Diag(
"operand must be an even-numbered register in the range [r0, r10]");
const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps];
if (!Op2.isReg())
return Error(Op2.getStartLoc(), Op2Diag);
unsigned RNext;
unsigned RPair;
switch (Op2.getReg()) {
default:
return Error(Op2.getStartLoc(), Op2Diag);
case ARM::R0:
RNext = ARM::R1;
RPair = ARM::R0_R1;
break;
case ARM::R2:
RNext = ARM::R3;
RPair = ARM::R2_R3;
break;
case ARM::R4:
RNext = ARM::R5;
RPair = ARM::R4_R5;
break;
case ARM::R6:
RNext = ARM::R7;
RPair = ARM::R6_R7;
break;
case ARM::R8:
RNext = ARM::R9;
RPair = ARM::R8_R9;
break;
case ARM::R10:
RNext = ARM::R11;
RPair = ARM::R10_R11;
break;
}
const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps];
if (!Op3.isReg() || Op3.getReg() != RNext)
return Error(Op3.getStartLoc(), "operand must be a consecutive register");
Operands.erase(Operands.begin() + 3 + NumPredOps);
Operands[2 + NumPredOps] =
ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc());
return false;
}
/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
// Apply mnemonic aliases before doing anything else, as the destination
// mnemonic may include suffices and we want to handle them normally.
// The generic tblgen'erated code does this later, at the start of
// MatchInstructionImpl(), but that's too late for aliases that include
// any sort of suffix.
const FeatureBitset &AvailableFeatures = getAvailableFeatures();
unsigned AssemblerDialect = getParser().getAssemblerDialect();
applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
// First check for the ARM-specific .req directive.
if (Parser.getTok().is(AsmToken::Identifier) &&
Parser.getTok().getIdentifier().lower() == ".req") {
parseDirectiveReq(Name, NameLoc);
// We always return 'error' for this, as we're done with this
// statement and don't need to match the 'instruction."
return true;
}
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Mnemonic = Name.slice(Start, Next);
StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
// Split out the predication code and carry setting flag from the mnemonic.
unsigned PredicationCode;
unsigned VPTPredicationCode;
unsigned ProcessorIMod;
bool CarrySetting;
StringRef ITMask;
Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
CarrySetting, ProcessorIMod, ITMask);
// In Thumb1, only the branch (B) instruction can be predicated.
if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
return Error(NameLoc, "conditional execution not supported in Thumb1");
}
Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
// Handle the mask for IT and VPT instructions. In ARMOperand and
// MCOperand, this is stored in a format independent of the
// condition code: the lowest set bit indicates the end of the
// encoding, and above that, a 1 bit indicates 'else', and an 0
// indicates 'then'. E.g.
// IT -> 1000
// ITx -> x100 (ITT -> 0100, ITE -> 1100)
// ITxy -> xy10 (e.g. ITET -> 1010)
// ITxyz -> xyz1 (e.g. ITEET -> 1101)
// Note: See the ARM::PredBlockMask enum in
// /lib/Target/ARM/Utils/ARMBaseInfo.h
if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
Mnemonic.startswith("vpst")) {
SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
SMLoc::getFromPointer(NameLoc.getPointer() + 4);
if (ITMask.size() > 3) {
if (Mnemonic == "it")
return Error(Loc, "too many conditions on IT instruction");
return Error(Loc, "too many conditions on VPT instruction");
}
unsigned Mask = 8;
for (unsigned i = ITMask.size(); i != 0; --i) {
char pos = ITMask[i - 1];
if (pos != 't' && pos != 'e') {
return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
}
Mask >>= 1;
if (ITMask[i - 1] == 'e')
Mask |= 8;
}
Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
}
// FIXME: This is all a pretty gross hack. We should automatically handle
// optional operands like this via tblgen.
// Next, add the CCOut and ConditionCode operands, if needed.
//
// For mnemonics which can ever incorporate a carry setting bit or predication
// code, our matching model involves us always generating CCOut and
// ConditionCode operands to match the mnemonic "as written" and then we let
// the matcher deal with finding the right instruction or generating an
// appropriate error.
bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
// If we had a carry-set on an instruction that can't do that, issue an
// error.
if (!CanAcceptCarrySet && CarrySetting) {
return Error(NameLoc, "instruction '" + Mnemonic +
"' can not set flags, but 's' suffix specified");
}
// If we had a predication code on an instruction that can't do that, issue an
// error.
if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
return Error(NameLoc, "instruction '" + Mnemonic +
"' is not predicable, but condition code specified");
}
// If we had a VPT predication code on an instruction that can't do that, issue an
// error.
if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
return Error(NameLoc, "instruction '" + Mnemonic +
"' is not VPT predicable, but VPT code T/E is specified");
}
// Add the carry setting operand, if necessary.
if (CanAcceptCarrySet) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
Loc));
}
// Add the predication code operand, if necessary.
if (CanAcceptPredicationCode) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
CarrySetting);
Operands.push_back(ARMOperand::CreateCondCode(
ARMCC::CondCodes(PredicationCode), Loc));
}
// Add the VPT predication code operand, if necessary.
// FIXME: We don't add them for the instructions filtered below as these can
// have custom operands which need special parsing. This parsing requires
// the operand to be in the same place in the OperandVector as their
// definition in tblgen. Since these instructions may also have the
// scalar predication operand we do not add the vector one and leave until
// now to fix it up.
if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
!Mnemonic.startswith("vcmp") &&
!(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
CarrySetting);
Operands.push_back(ARMOperand::CreateVPTPred(
ARMVCC::VPTCodes(VPTPredicationCode), Loc));
}
// Add the processor imod operand, if necessary.
if (ProcessorIMod) {
Operands.push_back(ARMOperand::CreateImm(
MCConstantExpr::create(ProcessorIMod, getContext()),
NameLoc, NameLoc));
} else if (Mnemonic == "cps" && isMClass()) {
return Error(NameLoc, "instruction 'cps' requires effect for M-class");
}
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
ExtraToken = Name.slice(Start, Next);
// Some NEON instructions have an optional datatype suffix that is
// completely ignored. Check for that.
if (isDataTypeToken(ExtraToken) &&
doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
continue;
// For for ARM mode generate an error if the .n qualifier is used.
if (ExtraToken == ".n" && !isThumb()) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
"arm mode");
}
// The .n qualifier is always discarded as that is what the tables
// and matcher expect. In ARM mode the .w qualifier has no effect,
// so discard it to avoid errors that can be caused by the matcher.
if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
}
}
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Mnemonic)) {
return true;
}
while (parseOptionalToken(AsmToken::Comma)) {
// Parse and remember the operand.
if (parseOperand(Operands, Mnemonic)) {
return true;
}
}
}
if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
return true;
tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
if (hasCDE() && MS.isCDEInstr(Mnemonic)) {
// Dual-register instructions use even-odd register pairs as their
// destination operand, in assembly such pair is spelled as two
// consecutive registers, without any special syntax. ConvertDualRegOperand
// tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
// It returns true, if an error message has been emitted. If the function
// returns false, the function either succeeded or an error (e.g. missing
// operand) will be diagnosed elsewhere.
if (MS.isCDEDualRegInstr(Mnemonic)) {
bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands);
if (GotError)
return GotError;
}
}
// Some instructions, mostly Thumb, have forms for the same mnemonic that
// do and don't have a cc_out optional-def operand. With some spot-checks
// of the operand list, we can figure out which variant we're trying to
// parse and adjust accordingly before actually matching. We shouldn't ever
// try to remove a cc_out operand that was explicitly set on the
// mnemonic, of course (CarrySetting == true). Reason number #317 the
// table driven matcher doesn't fit well with the ARM instruction set.
if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
Operands.erase(Operands.begin() + 1);
// Some instructions have the same mnemonic, but don't always
// have a predicate. Distinguish them here and delete the
// appropriate predicate if needed. This could be either the scalar
// predication code or the vector predication code.
if (PredicationCode == ARMCC::AL &&
shouldOmitPredicateOperand(Mnemonic, Operands))
Operands.erase(Operands.begin() + 1);
if (hasMVE()) {
if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
// Very nasty hack to deal with the vector predicated variant of vmovlt
// the scalar predicated vmov with condition 'lt'. We can not tell them
// apart until we have parsed their operands.
Operands.erase(Operands.begin() + 1);
Operands.erase(Operands.begin());
SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
Mnemonic.size() - 1 + CarrySetting);
Operands.insert(Operands.begin(),
ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
Operands.insert(Operands.begin(),
ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
} else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
// Another nasty hack to deal with the ambiguity between vcvt with scalar
// predication 'ne' and vcvtn with vector predication 'e'. As above we
// can only distinguish between the two after we have parsed their
// operands.
Operands.erase(Operands.begin() + 1);
Operands.erase(Operands.begin());
SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
Mnemonic.size() - 1 + CarrySetting);
Operands.insert(Operands.begin(),
ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
Operands.insert(Operands.begin(),
ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
} else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
// Another hack, this time to distinguish between scalar predicated vmul
// with 'lt' predication code and the vector instruction vmullt with
// vector predication code "none"
Operands.erase(Operands.begin() + 1);
Operands.erase(Operands.begin());
SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
Operands.insert(Operands.begin(),
ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
}
// For vmov and vcmp, as mentioned earlier, we did not add the vector
// predication code, since these may contain operands that require
// special parsing. So now we have to see if they require vector
// predication and replace the scalar one with the vector predication
// operand if that is the case.
else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
(Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
!Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
!Mnemonic.startswith("vcvtm"))) {
if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
// We could not split the vector predicate off vcvt because it might
// have been the scalar vcvtt instruction. Now we know its a vector
// instruction, we still need to check whether its the vector
// predicated vcvt with 'Then' predication or the vector vcvtt. We can
// distinguish the two based on the suffixes, if it is any of
// ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
Operands.erase(Operands.begin());
SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
VPTPredicationCode = ARMVCC::Then;
Mnemonic = Mnemonic.substr(0, 4);
Operands.insert(Operands.begin(),
ARMOperand::CreateToken(Mnemonic, MLoc));
}
}
Operands.erase(Operands.begin() + 1);
SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
Mnemonic.size() + CarrySetting);
Operands.insert(Operands.begin() + 1,
ARMOperand::CreateVPTPred(
ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
}
} else if (CanAcceptVPTPredicationCode) {
// For all other instructions, make sure only one of the two
// predication operands is left behind, depending on whether we should
// use the vector predication.
if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
if (CanAcceptPredicationCode)
Operands.erase(Operands.begin() + 2);
else
Operands.erase(Operands.begin() + 1);
} else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
Operands.erase(Operands.begin() + 1);
}
}
}
if (VPTPredicationCode != ARMVCC::None) {
bool usedVPTPredicationCode = false;
for (unsigned I = 1; I < Operands.size(); ++I)
if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
usedVPTPredicationCode = true;
if (!usedVPTPredicationCode) {
// If we have a VPT predication code and we haven't just turned it
// into an operand, then it was a mistake for splitMnemonic to
// separate it from the rest of the mnemonic in the first place,
// and this may lead to wrong disassembly (e.g. scalar floating
// point VCMPE is actually a different instruction from VCMP, so
// we mustn't treat them the same). In that situation, glue it
// back on.
Mnemonic = Name.slice(0, Mnemonic.size() + 1);
Operands.erase(Operands.begin());
Operands.insert(Operands.begin(),
ARMOperand::CreateToken(Mnemonic, NameLoc));
}
}
// ARM mode 'blx' need special handling, as the register operand version
// is predicable, but the label operand version is not. So, we can't rely
// on the Mnemonic based checking to correctly figure out when to put
// a k_CondCode operand in the list. If we're trying to match the label
// version, remove the k_CondCode operand here.
if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
static_cast<ARMOperand &>(*Operands[2]).isImm())
Operands.erase(Operands.begin() + 1);
// Adjust operands of ldrexd/strexd to MCK_GPRPair.
// ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
// a single GPRPair reg operand is used in the .td file to replace the two
// GPRs. However, when parsing from asm, the two GRPs cannot be
// automatically
// expressed as a GPRPair, so we have to manually merge them.
// FIXME: We would really like to be able to tablegen'erate this.
if (!isThumb() && Operands.size() > 4 &&
(Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
Mnemonic == "stlexd")) {
bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
unsigned Idx = isLoad ? 2 : 3;
ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
// Adjust only if Op1 and Op2 are GPRs.
if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
MRC.contains(Op2.getReg())) {
unsigned Reg1 = Op1.getReg();
unsigned Reg2 = Op2.getReg();
unsigned Rt = MRI->getEncodingValue(Reg1);
unsigned Rt2 = MRI->getEncodingValue(Reg2);
// Rt2 must be Rt + 1 and Rt must be even.
if (Rt + 1 != Rt2 || (Rt & 1)) {
return Error(Op2.getStartLoc(),
isLoad ? "destination operands must be sequential"
: "source operands must be sequential");
}
unsigned NewReg = MRI->getMatchingSuperReg(
Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
Operands[Idx] =
ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
Operands.erase(Operands.begin() + Idx + 1);
}
}
// GNU Assembler extension (compatibility).
fixupGNULDRDAlias(Mnemonic, Operands);
// FIXME: As said above, this is all a pretty gross hack. This instruction
// does not fit with other "subs" and tblgen.
// Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
// so the Mnemonic is the original name "subs" and delete the predicate
// operand so it will match the table entry.
if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
static_cast<ARMOperand &>(*Operands[3]).isReg() &&
static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
static_cast<ARMOperand &>(*Operands[4]).isReg() &&
static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
static_cast<ARMOperand &>(*Operands[5]).isImm()) {
Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
Operands.erase(Operands.begin() + 1);
}
return false;
}
// Validate context-sensitive operand constraints.
// return 'true' if register list contains non-low GPR registers,
// 'false' otherwise. If Reg is in the register list or is HiReg, set
// 'containsReg' to true.
static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
unsigned Reg, unsigned HiReg,
bool &containsReg) {
containsReg = false;
for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
unsigned OpReg = Inst.getOperand(i).getReg();
if (OpReg == Reg)
containsReg = true;
// Anything other than a low register isn't legal here.
if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
return true;
}
return false;
}
// Check if the specified regisgter is in the register list of the inst,
// starting at the indicated operand number.
static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
unsigned OpReg = Inst.getOperand(i).getReg();
if (OpReg == Reg)
return true;
}
return false;
}
// Return true if instruction has the interesting property of being
// allowed in IT blocks, but not being predicable.
static bool instIsBreakpoint(const MCInst &Inst) {
return Inst.getOpcode() == ARM::tBKPT ||
Inst.getOpcode() == ARM::BKPT ||
Inst.getOpcode() == ARM::tHLT ||
Inst.getOpcode() == ARM::HLT;
}
bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
const OperandVector &Operands,
unsigned ListNo, bool IsARPop) {
const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
if (!IsARPop && ListContainsSP)
return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
"SP may not be in the register list");
else if (ListContainsPC && ListContainsLR)
return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
"PC and LR may not be in the register list simultaneously");
return false;
}
bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
const OperandVector &Operands,
unsigned ListNo) {
const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
if (ListContainsSP && ListContainsPC)
return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
"SP and PC may not be in the register list");
else if (ListContainsSP)
return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
"SP may not be in the register list");
else if (ListContainsPC)
return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
"PC may not be in the register list");
return false;
}
bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
const OperandVector &Operands,
bool Load, bool ARMMode, bool Writeback) {
unsigned RtIndex = Load || !Writeback ? 0 : 1;
unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
if (ARMMode) {
// Rt can't be R14.
if (Rt == 14)
return Error(Operands[3]->getStartLoc(),
"Rt can't be R14");
// Rt must be even-numbered.
if ((Rt & 1) == 1)
return Error(Operands[3]->getStartLoc(),
"Rt must be even-numbered");
// Rt2 must be Rt + 1.
if (Rt2 != Rt + 1) {
if (Load)
return Error(Operands[3]->getStartLoc(),
"destination operands must be sequential");
else
return Error(Operands[3]->getStartLoc(),
"source operands must be sequential");
}
// FIXME: Diagnose m == 15
// FIXME: Diagnose ldrd with m == t || m == t2.
}
if (!ARMMode && Load) {
if (Rt2 == Rt)
return Error(Operands[3]->getStartLoc(),
"destination operands can't be identical");
}
if (Writeback) {
unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
if (Rn == Rt || Rn == Rt2) {
if (Load)
return Error(Operands[3]->getStartLoc(),
"base register needs to be different from destination "
"registers");
else
return Error(Operands[3]->getStartLoc(),
"source register and base register can't be identical");
}
// FIXME: Diagnose ldrd/strd with writeback and n == 15.
// (Except the immediate form of ldrd?)
}
return false;
}
static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
for (unsigned i = 0; i < MCID.NumOperands; ++i) {
if (ARM::isVpred(MCID.OpInfo[i].OperandType))
return i;
}
return -1;
}
static bool isVectorPredicable(const MCInstrDesc &MCID) {
return findFirstVectorPredOperandIdx(MCID) != -1;
}
// FIXME: We would really like to be able to tablegen'erate this.
bool ARMAsmParser::validateInstruction(MCInst &Inst,
const OperandVector &Operands) {
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
SMLoc Loc = Operands[0]->getStartLoc();
// Check the IT block state first.
// NOTE: BKPT and HLT instructions have the interesting property of being
// allowed in IT blocks, but not being predicable. They just always execute.
if (inITBlock() && !instIsBreakpoint(Inst)) {
// The instruction must be predicable.
if (!MCID.isPredicable())
return Error(Loc, "instructions in IT block must be predicable");
ARMCC::CondCodes Cond = ARMCC::CondCodes(
Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
if (Cond != currentITCond()) {
// Find the condition code Operand to get its SMLoc information.
SMLoc CondLoc;
for (unsigned I = 1; I < Operands.size(); ++I)
if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
CondLoc = Operands[I]->getStartLoc();
return Error(CondLoc, "incorrect condition in IT block; got '" +
StringRef(ARMCondCodeToString(Cond)) +
"', but expected '" +
ARMCondCodeToString(currentITCond()) + "'");
}
// Check for non-'al' condition codes outside of the IT block.
} else if (isThumbTwo() && MCID.isPredicable() &&
Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
Inst.getOpcode() != ARM::t2Bcc &&
Inst.getOpcode() != ARM::t2BFic) {
return Error(Loc, "predicated instructions must be in IT block");
} else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
ARMCC::AL) {
return Warning(Loc, "predicated instructions should be in IT block");
} else if (!MCID.isPredicable()) {
// Check the instruction doesn't have a predicate operand anyway
// that it's not allowed to use. Sometimes this happens in order
// to keep instructions the same shape even though one cannot
// legally be predicated, e.g. vmul.f16 vs vmul.f32.
for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
if (MCID.OpInfo[i].isPredicate()) {
if (Inst.getOperand(i).getImm() != ARMCC::AL)
return Error(Loc, "instruction is not predicable");
break;
}
}
}
// PC-setting instructions in an IT block, but not the last instruction of
// the block, are UNPREDICTABLE.
if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
}
if (inVPTBlock() && !instIsBreakpoint(Inst)) {
unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
if (!isVectorPredicable(MCID))
return Error(Loc, "instruction in VPT block must be predicable");
unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
if (Pred != VPTPred) {
SMLoc PredLoc;
for (unsigned I = 1; I < Operands.size(); ++I)
if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
PredLoc = Operands[I]->getStartLoc();
return Error(PredLoc, "incorrect predication in VPT block; got '" +
StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
"', but expected '" +
ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
}
}
else if (isVectorPredicable(MCID) &&
Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
ARMVCC::None)
return Error(Loc, "VPT predicated instructions must be in VPT block");
const unsigned Opcode = Inst.getOpcode();
switch (Opcode) {
case ARM::t2IT: {
// Encoding is unpredictable if it ever results in a notional 'NV'
// predicate. Since we don't parse 'NV' directly this means an 'AL'
// predicate with an "else" mask bit.
unsigned Cond = Inst.getOperand(0).getImm();
unsigned Mask = Inst.getOperand(1).getImm();
// Conditions only allowing a 't' are those with no set bit except
// the lowest-order one that indicates the end of the sequence. In
// other words, powers of 2.
if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
return Error(Loc, "unpredictable IT predicate sequence");
break;
}
case ARM::LDRD:
if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
/*Writeback*/false))
return true;
break;
case ARM::LDRD_PRE:
case ARM::LDRD_POST:
if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
/*Writeback*/true))
return true;
break;
case ARM::t2LDRDi8:
if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
/*Writeback*/false))
return true;
break;
case ARM::t2LDRD_PRE:
case ARM::t2LDRD_POST:
if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
/*Writeback*/true))
return true;
break;
case ARM::t2BXJ: {
const unsigned RmReg = Inst.getOperand(0).getReg();
// Rm = SP is no longer unpredictable in v8-A
if (RmReg == ARM::SP && !hasV8Ops())
return Error(Operands[2]->getStartLoc(),
"r13 (SP) is an unpredictable operand to BXJ");
return false;
}
case ARM::STRD:
if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
/*Writeback*/false))
return true;
break;
case ARM::STRD_PRE:
case ARM::STRD_POST:
if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
/*Writeback*/true))
return true;
break;
case ARM::t2STRD_PRE:
case ARM::t2STRD_POST:
if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
/*Writeback*/true))
return true;
break;
case ARM::STR_PRE_IMM:
case ARM::STR_PRE_REG:
case ARM::t2STR_PRE:
case ARM::STR_POST_IMM:
case ARM::STR_POST_REG:
case ARM::t2STR_POST:
case ARM::STRH_PRE:
case ARM::t2STRH_PRE:
case ARM::STRH_POST:
case ARM::t2STRH_POST:
case ARM::STRB_PRE_IMM:
case ARM::STRB_PRE_REG:
case ARM::t2STRB_PRE:
case ARM::STRB_POST_IMM:
case ARM::STRB_POST_REG:
case ARM::t2STRB_POST: {
// Rt must be different from Rn.
const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
if (Rt == Rn)
return Error(Operands[3]->getStartLoc(),
"source register and base register can't be identical");
return false;
}
case ARM::LDR_PRE_IMM:
case ARM::LDR_PRE_REG:
case ARM::t2LDR_PRE:
case ARM::LDR_POST_IMM:
case ARM::LDR_POST_REG:
case ARM::t2LDR_POST:
case ARM::LDRH_PRE:
case ARM::t2LDRH_PRE:
case ARM::LDRH_POST:
case ARM::t2LDRH_POST:
case ARM::LDRSH_PRE:
case ARM::t2LDRSH_PRE:
case ARM::LDRSH_POST:
case ARM::t2LDRSH_POST:
case ARM::LDRB_PRE_IMM:
case ARM::LDRB_PRE_REG:
case ARM::t2LDRB_PRE:
case ARM::LDRB_POST_IMM:
case ARM::LDRB_POST_REG:
case ARM::t2LDRB_POST:
case ARM::LDRSB_PRE:
case ARM::t2LDRSB_PRE:
case ARM::LDRSB_POST:
case ARM::t2LDRSB_POST: {
// Rt must be different from Rn.
const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
if (Rt == Rn)
return Error(Operands[3]->getStartLoc(),
"destination register and base register can't be identical");
return false;
}
case ARM::MVE_VLDRBU8_rq:
case ARM::MVE_VLDRBU16_rq:
case ARM::MVE_VLDRBS16_rq:
case ARM::MVE_VLDRBU32_rq:
case ARM::MVE_VLDRBS32_rq:
case ARM::MVE_VLDRHU16_rq:
case ARM::MVE_VLDRHU16_rq_u:
case ARM::MVE_VLDRHU32_rq:
case ARM::MVE_VLDRHU32_rq_u:
case ARM::MVE_VLDRHS32_rq:
case ARM::MVE_VLDRHS32_rq_u:
case ARM::MVE_VLDRWU32_rq:
case ARM::MVE_VLDRWU32_rq_u:
case ARM::MVE_VLDRDU64_rq:
case ARM::MVE_VLDRDU64_rq_u:
case ARM::MVE_VLDRWU32_qi:
case ARM::MVE_VLDRWU32_qi_pre:
case ARM::MVE_VLDRDU64_qi:
case ARM::MVE_VLDRDU64_qi_pre: {
// Qd must be different from Qm.
unsigned QdIdx = 0, QmIdx = 2;
bool QmIsPointer = false;
switch (Opcode) {
case ARM::MVE_VLDRWU32_qi:
case ARM::MVE_VLDRDU64_qi:
QmIdx = 1;
QmIsPointer = true;
break;
case ARM::MVE_VLDRWU32_qi_pre:
case ARM::MVE_VLDRDU64_qi_pre:
QdIdx = 1;
QmIsPointer = true;
break;
}
const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
if (Qd == Qm) {
return Error(Operands[3]->getStartLoc(),
Twine("destination vector register and vector ") +
(QmIsPointer ? "pointer" : "offset") +
" register can't be identical");
}
return false;
}
case ARM::SBFX:
case ARM::t2SBFX:
case ARM::UBFX:
case ARM::t2UBFX: {
// Width must be in range [1, 32-lsb].
unsigned LSB = Inst.getOperand(2).getImm();
unsigned Widthm1 = Inst.getOperand(3).getImm();
if (Widthm1 >= 32 - LSB)
return Error(Operands[5]->getStartLoc(),
"bitfield width must be in range [1,32-lsb]");
return false;
}
// Notionally handles ARM::tLDMIA_UPD too.
case ARM::tLDMIA: {
// If we're parsing Thumb2, the .w variant is available and handles
// most cases that are normally illegal for a Thumb1 LDM instruction.
// We'll make the transformation in processInstruction() if necessary.
//
// Thumb LDM instructions are writeback iff the base register is not
// in the register list.
unsigned Rn = Inst.getOperand(0).getReg();
bool HasWritebackToken =
(static_cast<ARMOperand &>(*Operands[3]).isToken() &&
static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
bool ListContainsBase;
if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
"registers must be in range r0-r7");
// If we should have writeback, then there should be a '!' token.
if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
return Error(Operands[2]->getStartLoc(),
"writeback operator '!' expected");
// If we should not have writeback, there must not be a '!'. This is
// true even for the 32-bit wide encodings.
if (ListContainsBase && HasWritebackToken)
return Error(Operands[3]->getStartLoc(),
"writeback operator '!' not allowed when base register "
"in register list");
if (validatetLDMRegList(Inst, Operands, 3))
return true;
break;
}
case ARM::LDMIA_UPD:
case ARM::LDMDB_UPD:
case ARM::LDMIB_UPD:
case ARM::LDMDA_UPD:
// ARM variants loading and updating the same register are only officially
// UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
if (!hasV7Ops())
break;
if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
return Error(Operands.back()->getStartLoc(),
"writeback register not allowed in register list");
break;
case ARM::t2LDMIA:
case ARM::t2LDMDB:
if (validatetLDMRegList(Inst, Operands, 3))
return true;
break;
case ARM::t2STMIA:
case ARM::t2STMDB:
if (validatetSTMRegList(Inst, Operands, 3))
return true;
break;
case ARM::t2LDMIA_UPD:
case ARM::t2LDMDB_UPD:
case ARM::t2STMIA_UPD:
case ARM::t2STMDB_UPD:
if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
return Error(Operands.back()->getStartLoc(),
"writeback register not allowed in register list");
if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
if (validatetLDMRegList(Inst, Operands, 3))
return true;
} else {
if (validatetSTMRegList(Inst, Operands, 3))
return true;
}
break;
case ARM::sysLDMIA_UPD:
case ARM::sysLDMDA_UPD:
case ARM::sysLDMDB_UPD:
case ARM::sysLDMIB_UPD:
if (!listContainsReg(Inst, 3, ARM::PC))
return Error(Operands[4]->getStartLoc(),
"writeback register only allowed on system LDM "
"if PC in register-list");
break;
case ARM::sysSTMIA_UPD:
case ARM::sysSTMDA_UPD:
case ARM::sysSTMDB_UPD:
case ARM::sysSTMIB_UPD:
return Error(Operands[2]->getStartLoc(),
"system STM cannot have writeback register");
case ARM::tMUL:
// The second source operand must be the same register as the destination
// operand.
//
// In this case, we must directly check the parsed operands because the
// cvtThumbMultiply() function is written in such a way that it guarantees
// this first statement is always true for the new Inst. Essentially, the
// destination is unconditionally copied into the second source operand
// without checking to see if it matches what we actually parsed.
if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
((ARMOperand &)*Operands[5]).getReg()) &&
(((ARMOperand &)*Operands[3]).getReg() !=
((ARMOperand &)*Operands[4]).getReg())) {
return Error(Operands[3]->getStartLoc(),
"destination register must match source register");
}
break;
// Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
// so only issue a diagnostic for thumb1. The instructions will be
// switched to the t2 encodings in processInstruction() if necessary.
case ARM::tPOP: {
bool ListContainsBase;
if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
!isThumbTwo())
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or pc");
if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
return true;
break;
}
case ARM::tPUSH: {
bool ListContainsBase;
if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
!isThumbTwo())
return Error(Operands[2]->getStartLoc(),
"registers must be in range r0-r7 or lr");
if (validatetSTMRegList(Inst, Operands, 2))
return true;
break;
}
case ARM::tSTMIA_UPD: {
bool ListContainsBase, InvalidLowList;
InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
0, ListContainsBase);
if (InvalidLowList && !isThumbTwo())
return Error(Operands[4]->getStartLoc(),
"registers must be in range r0-r7");
// This would be converted to a 32-bit stm, but that's not valid if the
// writeback register is in the list.
if (InvalidLowList && ListContainsBase)
return Error(Operands[4]->getStartLoc(),
"writeback operator '!' not allowed when base register "
"in register list");
if (validatetSTMRegList(Inst, Operands, 4))
return true;
break;
}
case ARM::tADDrSP:
// If the non-SP source operand and the destination operand are not the
// same, we need thumb2 (for the wide encoding), or we have an error.
if (!isThumbTwo() &&
Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
return Error(Operands[4]->getStartLoc(),
"source register must be the same as destination");
}
break;
case ARM::t2ADDrr:
case ARM::t2ADDrs:
case ARM::t2SUBrr:
case ARM::t2SUBrs:
if (Inst.getOperand(0).getReg() == ARM::SP &&
Inst.getOperand(1).getReg() != ARM::SP)
return Error(Operands[4]->getStartLoc(),
"source register must be sp if destination is sp");
break;
// Final range checking for Thumb unconditional branch instructions.
case ARM::tB:
if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
return Error(Operands[2]->getStartLoc(), "branch target out of range");
break;
case ARM::t2B: {
int op = (Operands[2]->isImm()) ? 2 : 3;
if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
return Error(Operands[op]->getStartLoc(), "branch target out of range");
break;
}
// Final range checking for Thumb conditional branch instructions.
case ARM::tBcc:
if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
return Error(Operands[2]->getStartLoc(), "branch target out of range");
break;
case ARM::t2Bcc: {
int Op = (Operands[2]->isImm()) ? 2 : 3;
if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
return Error(Operands[Op]->getStartLoc(), "branch target out of range");
break;
}
case ARM::tCBZ:
case ARM::tCBNZ: {
if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
return Error(Operands[2]->getStartLoc(), "branch target out of range");
break;
}
case ARM::MOVi16:
case ARM::MOVTi16:
case ARM::t2MOVi16:
case ARM::t2MOVTi16:
{
// We want to avoid misleadingly allowing something like "mov r0, <symbol>"
// especially when we turn it into a movw and the expression <symbol> does
// not have a :lower16: or :upper16 as part of the expression. We don't
// want the behavior of silently truncating, which can be unexpected and
// lead to bugs that are difficult to find since this is an easy mistake
// to make.
int i = (Operands[3]->isImm()) ? 3 : 4;
ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
if (CE) break;
const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
if (!E) break;
const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
return Error(
Op.getStartLoc(),
"immediate expression for mov requires :lower16: or :upper16");
break;
}
case ARM::HINT:
case ARM::t2HINT: {
unsigned Imm8 = Inst.getOperand(0).getImm();
unsigned Pred = Inst.getOperand(1).getImm();
// ESB is not predicable (pred must be AL). Without the RAS extension, this
// behaves as any other unallocated hint.
if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
"predicable, but condition "
"code specified");
if (Imm8 == 0x14 && Pred != ARMCC::AL)
return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
"predicable, but condition "
"code specified");
break;
}
case ARM::t2BFi:
case ARM::t2BFr:
case ARM::t2BFLi:
case ARM::t2BFLr: {
if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
(Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
return Error(Operands[2]->getStartLoc(),
"branch location out of range or not a multiple of 2");
if (Opcode == ARM::t2BFi) {
if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
return Error(Operands[3]->getStartLoc(),
"branch target out of range or not a multiple of 2");
} else if (Opcode == ARM::t2BFLi) {
if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
return Error(Operands[3]->getStartLoc(),
"branch target out of range or not a multiple of 2");
}
break;
}
case ARM::t2BFic: {
if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
(Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
return Error(Operands[1]->getStartLoc(),
"branch location out of range or not a multiple of 2");
if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
return Error(Operands[2]->getStartLoc(),
"branch target out of range or not a multiple of 2");
assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
"branch location and else branch target should either both be "
"immediates or both labels");
if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
if (Diff != 4 && Diff != 2)
return Error(
Operands[3]->getStartLoc(),
"else branch target must be 2 or 4 greater than the branch location");
}
break;
}
case ARM::t2CLRM: {
for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
if (Inst.getOperand(i).isReg() &&
!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
Inst.getOperand(i).getReg())) {
return Error(Operands[2]->getStartLoc(),
"invalid register in register list. Valid registers are "
"r0-r12, lr/r14 and APSR.");
}
}
break;
}
case ARM::DSB:
case ARM::t2DSB: {
if (Inst.getNumOperands() < 2)
break;
unsigned Option = Inst.getOperand(0).getImm();
unsigned Pred = Inst.getOperand(1).getImm();
// SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
if (Option == 0 && Pred != ARMCC::AL)
return Error(Operands[1]->getStartLoc(),
"instruction 'ssbb' is not predicable, but condition code "
"specified");
if (Option == 4 && Pred != ARMCC::AL)
return Error(Operands[1]->getStartLoc(),
"instruction 'pssbb' is not predicable, but condition code "
"specified");
break;
}
case ARM::VMOVRRS: {
// Source registers must be sequential.
const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
if (Sm1 != Sm + 1)
return Error(Operands[5]->getStartLoc(),
"source operands must be sequential");
break;
}
case ARM::VMOVSRR: {
// Destination registers must be sequential.
const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
if (Sm1 != Sm + 1)
return Error(Operands[3]->getStartLoc(),
"destination operands must be sequential");
break;
}
case ARM::VLDMDIA:
case ARM::VSTMDIA: {
ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
auto &RegList = Op.getRegList();
if (RegList.size() < 1 || RegList.size() > 16)
return Error(Operands[3]->getStartLoc(),
"list of registers must be at least 1 and at most 16");
break;
}
case ARM::MVE_VQDMULLs32bh:
case ARM::MVE_VQDMULLs32th:
case ARM::MVE_VCMULf32:
case ARM::MVE_VMULLBs32:
case ARM::MVE_VMULLTs32:
case ARM::MVE_VMULLBu32:
case ARM::MVE_VMULLTu32: {
if (Operands[3]->getReg() == Operands[4]->getReg()) {
return Error (Operands[3]->getStartLoc(),
"Qd register and Qn register can't be identical");
}
if (Operands[3]->getReg() == Operands[5]->getReg()) {
return Error (Operands[3]->getStartLoc(),
"Qd register and Qm register can't be identical");
}
break;
}
case ARM::MVE_VMOV_rr_q: {
if (Operands[4]->getReg() != Operands[6]->getReg())
return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
break;
}
case ARM::MVE_VMOV_q_rr: {
if (Operands[2]->getReg() != Operands[4]->getReg())
return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
break;
}
case ARM::UMAAL:
case ARM::UMLAL:
case ARM::UMULL:
case ARM::t2UMAAL:
case ARM::t2UMLAL:
case ARM::t2UMULL:
case ARM::SMLAL:
case ARM::SMLALBB:
case ARM::SMLALBT:
case ARM::SMLALD:
case ARM::SMLALDX:
case ARM::SMLALTB:
case ARM::SMLALTT:
case ARM::SMLSLD:
case ARM::SMLSLDX:
case ARM::SMULL:
case ARM::t2SMLAL:
case ARM::t2SMLALBB:
case ARM::t2SMLALBT:
case ARM::t2SMLALD:
case ARM::t2SMLALDX:
case ARM::t2SMLALTB:
case ARM::t2SMLALTT:
case ARM::t2SMLSLD:
case ARM::t2SMLSLDX:
case ARM::t2SMULL: {
unsigned RdHi = Inst.getOperand(0).getReg();
unsigned RdLo = Inst.getOperand(1).getReg();
if(RdHi == RdLo) {
return Error(Loc,
"unpredictable instruction, RdHi and RdLo must be different");
}
break;
}
case ARM::CDE_CX1:
case ARM::CDE_CX1A:
case ARM::CDE_CX1D:
case ARM::CDE_CX1DA:
case ARM::CDE_CX2:
case ARM::CDE_CX2A:
case ARM::CDE_CX2D:
case ARM::CDE_CX2DA:
case ARM::CDE_CX3:
case ARM::CDE_CX3A:
case ARM::CDE_CX3D:
case ARM::CDE_CX3DA:
case ARM::CDE_VCX1_vec:
case ARM::CDE_VCX1_fpsp:
case ARM::CDE_VCX1_fpdp:
case ARM::CDE_VCX1A_vec:
case ARM::CDE_VCX1A_fpsp:
case ARM::CDE_VCX1A_fpdp:
case ARM::CDE_VCX2_vec:
case ARM::CDE_VCX2_fpsp:
case ARM::CDE_VCX2_fpdp:
case ARM::CDE_VCX2A_vec:
case ARM::CDE_VCX2A_fpsp:
case ARM::CDE_VCX2A_fpdp:
case ARM::CDE_VCX3_vec:
case ARM::CDE_VCX3_fpsp:
case ARM::CDE_VCX3_fpdp:
case ARM::CDE_VCX3A_vec:
case ARM::CDE_VCX3A_fpsp:
case ARM::CDE_VCX3A_fpdp: {
assert(Inst.getOperand(1).isImm() &&
"CDE operand 1 must be a coprocessor ID");
int64_t Coproc = Inst.getOperand(1).getImm();
if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI))
return Error(Operands[1]->getStartLoc(),
"coprocessor must be configured as CDE");
else if (Coproc >= 8)
return Error(Operands[1]->getStartLoc(),
"coprocessor must be in the range [p0, p7]");
break;
}
case ARM::t2CDP:
case ARM::t2CDP2:
case ARM::t2LDC2L_OFFSET:
case ARM::t2LDC2L_OPTION:
case ARM::t2LDC2L_POST:
case ARM::t2LDC2L_PRE:
case ARM::t2LDC2_OFFSET:
case ARM::t2LDC2_OPTION:
case ARM::t2LDC2_POST:
case ARM::t2LDC2_PRE:
case ARM::t2LDCL_OFFSET:
case ARM::t2LDCL_OPTION:
case ARM::t2LDCL_POST:
case ARM::t2LDCL_PRE:
case ARM::t2LDC_OFFSET:
case ARM::t2LDC_OPTION:
case ARM::t2LDC_POST:
case ARM::t2LDC_PRE:
case ARM::t2MCR:
case ARM::t2MCR2:
case ARM::t2MCRR:
case ARM::t2MCRR2:
case ARM::t2MRC:
case ARM::t2MRC2:
case ARM::t2MRRC:
case ARM::t2MRRC2:
case ARM::t2STC2L_OFFSET:
case ARM::t2STC2L_OPTION:
case ARM::t2STC2L_POST:
case ARM::t2STC2L_PRE:
case ARM::t2STC2_OFFSET:
case ARM::t2STC2_OPTION:
case ARM::t2STC2_POST:
case ARM::t2STC2_PRE:
case ARM::t2STCL_OFFSET:
case ARM::t2STCL_OPTION:
case ARM::t2STCL_POST:
case ARM::t2STCL_PRE:
case ARM::t2STC_OFFSET:
case ARM::t2STC_OPTION:
case ARM::t2STC_POST:
case ARM::t2STC_PRE: {
unsigned Opcode = Inst.getOpcode();
// Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
// CopInd is the index of the coprocessor operand.
size_t CopInd = 0;
if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2)
CopInd = 2;
else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2)
CopInd = 1;
assert(Inst.getOperand(CopInd).isImm() &&
"Operand must be a coprocessor ID");
int64_t Coproc = Inst.getOperand(CopInd).getImm();
// Operands[2] is the coprocessor operand at syntactic level
if (ARM::isCDECoproc(Coproc, *STI))
return Error(Operands[2]->getStartLoc(),
"coprocessor must be configured as GCP");
break;
}
}
return false;
}
static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
switch(Opc) {
default: llvm_unreachable("unexpected opcode!");
// VST1LN
case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
// VST2LN
case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
// VST3LN
case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
// VST3
case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
// VST4LN
case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
// VST4
case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
}
}
static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
switch(Opc) {
default: llvm_unreachable("unexpected opcode!");
// VLD1LN
case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
// VLD2LN
case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
// VLD3DUP
case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
// VLD3LN
case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
// VLD3
case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
// VLD4LN
case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
// VLD4DUP
case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
// VLD4
case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
}
}
bool ARMAsmParser::processInstruction(MCInst &Inst,
const OperandVector &Operands,
MCStreamer &Out) {
// Check if we have the wide qualifier, because if it's present we
// must avoid selecting a 16-bit thumb instruction.
bool HasWideQualifier = false;
for (auto &Op : Operands) {
ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
HasWideQualifier = true;
break;
}
}
switch (Inst.getOpcode()) {
// Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
case ARM::LDRT_POST:
case ARM::LDRBT_POST: {
const unsigned Opcode =
(Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
: ARM::LDRBT_POST_IMM;
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createReg(0));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
return true;
}
// Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
case ARM::LDRSBTii:
case ARM::LDRHTii:
case ARM::LDRSHTii: {
MCInst TmpInst;
if (Inst.getOpcode() == ARM::LDRSBTii)
TmpInst.setOpcode(ARM::LDRSBTi);
else if (Inst.getOpcode() == ARM::LDRHTii)
TmpInst.setOpcode(ARM::LDRHTi);
else if (Inst.getOpcode() == ARM::LDRSHTii)
TmpInst.setOpcode(ARM::LDRSHTi);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(256));
TmpInst.addOperand(Inst.getOperand(2));
Inst = TmpInst;
return true;
}
// Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
case ARM::STRT_POST:
case ARM::STRBT_POST: {
const unsigned Opcode =
(Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
: ARM::STRBT_POST_IMM;
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createReg(0));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
return true;
}
// Alias for alternate form of 'ADR Rd, #imm' instruction.
case ARM::ADDri: {
if (Inst.getOperand(1).getReg() != ARM::PC ||
Inst.getOperand(5).getReg() != 0 ||
!(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
return false;
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADR);
TmpInst.addOperand(Inst.getOperand(0));
if (Inst.getOperand(2).isImm()) {
// Immediate (mod_imm) will be in its encoded form, we must unencode it
// before passing it to the ADR instruction.
unsigned Enc = Inst.getOperand(2).getImm();
TmpInst.addOperand(MCOperand::createImm(
ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
} else {
// Turn PC-relative expression into absolute expression.
// Reading PC provides the start of the current instruction + 8 and
// the transform to adr is biased by that.
MCSymbol *Dot = getContext().createTempSymbol();
Out.emitLabel(Dot);
const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
MCSymbolRefExpr::VK_None,
getContext());
const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
getContext());
const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
getContext());
TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
}
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
// Aliases for alternate PC+imm syntax of LDR instructions.
case ARM::t2LDRpcrel:
// Select the narrow version if the immediate will fit.
if (Inst.getOperand(1).getImm() > 0 &&
Inst.getOperand(1).getImm() <= 0xff &&
!HasWideQualifier)
Inst.setOpcode(ARM::tLDRpci);
else
Inst.setOpcode(ARM::t2LDRpci);
return true;
case ARM::t2LDRBpcrel:
Inst.setOpcode(ARM::t2LDRBpci);
return true;
case ARM::t2LDRHpcrel:
Inst.setOpcode(ARM::t2LDRHpci);
return true;
case ARM::t2LDRSBpcrel:
Inst.setOpcode(ARM::t2LDRSBpci);
return true;
case ARM::t2LDRSHpcrel:
Inst.setOpcode(ARM::t2LDRSHpci);
return true;
case ARM::LDRConstPool:
case ARM::tLDRConstPool:
case ARM::t2LDRConstPool: {
// Pseudo instruction ldr rt, =immediate is converted to a
// MOV rt, immediate if immediate is known and representable
// otherwise we create a constant pool entry that we load from.
MCInst TmpInst;
if (Inst.getOpcode() == ARM::LDRConstPool)
TmpInst.setOpcode(ARM::LDRi12);
else if (Inst.getOpcode() == ARM::tLDRConstPool)
TmpInst.setOpcode(ARM::tLDRpci);
else if (Inst.getOpcode() == ARM::t2LDRConstPool)
TmpInst.setOpcode(ARM::t2LDRpci);
const ARMOperand &PoolOperand =
(HasWideQualifier ?
static_cast<ARMOperand &>(*Operands[4]) :
static_cast<ARMOperand &>(*Operands[3]));
const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
// If SubExprVal is a constant we may be able to use a MOV
if (isa<MCConstantExpr>(SubExprVal) &&
Inst.getOperand(0).getReg() != ARM::PC &&
Inst.getOperand(0).getReg() != ARM::SP) {
int64_t Value =
(int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
bool UseMov = true;
bool MovHasS = true;
if (Inst.getOpcode() == ARM::LDRConstPool) {
// ARM Constant
if (ARM_AM::getSOImmVal(Value) != -1) {
Value = ARM_AM::getSOImmVal(Value);
TmpInst.setOpcode(ARM::MOVi);
}
else if (ARM_AM::getSOImmVal(~Value) != -1) {
Value = ARM_AM::getSOImmVal(~Value);
TmpInst.setOpcode(ARM::MVNi);
}
else if (hasV6T2Ops() &&
Value >=0 && Value < 65536) {
TmpInst.setOpcode(ARM::MOVi16);
MovHasS = false;
}
else
UseMov = false;
}
else {
// Thumb/Thumb2 Constant
if (hasThumb2() &&
ARM_AM::getT2SOImmVal(Value) != -1)
TmpInst.setOpcode(ARM::t2MOVi);
else if (hasThumb2() &&
ARM_AM::getT2SOImmVal(~Value) != -1) {
TmpInst.setOpcode(ARM::t2MVNi);
Value = ~Value;
}
else if (hasV8MBaseline() &&
Value >=0 && Value < 65536) {
TmpInst.setOpcode(ARM::t2MOVi16);
MovHasS = false;
}
else
UseMov = false;
}
if (UseMov) {
TmpInst.addOperand(Inst.getOperand(0)); // Rt
TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
if (MovHasS)
TmpInst.addOperand(MCOperand::createReg(0)); // S
Inst = TmpInst;
return true;
}
}
// No opportunity to use MOV/MVN create constant pool
const MCExpr *CPLoc =
getTargetStreamer().addConstantPoolEntry(SubExprVal,
PoolOperand.getStartLoc());
TmpInst.addOperand(Inst.getOperand(0)); // Rt
TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
if (TmpInst.getOpcode() == ARM::LDRi12)
TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
Inst = TmpInst;
return true;
}
// Handle NEON VST complex aliases.
case ARM::VST1LNdWB_register_Asm_8:
case ARM::VST1LNdWB_register_Asm_16:
case ARM::VST1LNdWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VST2LNdWB_register_Asm_8:
case ARM::VST2LNdWB_register_Asm_16:
case ARM::VST2LNdWB_register_Asm_32:
case ARM::VST2LNqWB_register_Asm_16:
case ARM::VST2LNqWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VST3LNdWB_register_Asm_8:
case ARM::VST3LNdWB_register_Asm_16:
case ARM::VST3LNdWB_register_Asm_32:
case ARM::VST3LNqWB_register_Asm_16:
case ARM::VST3LNqWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VST4LNdWB_register_Asm_8:
case ARM::VST4LNdWB_register_Asm_16:
case ARM::VST4LNdWB_register_Asm_32:
case ARM::VST4LNqWB_register_Asm_16:
case ARM::VST4LNqWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VST1LNdWB_fixed_Asm_8:
case ARM::VST1LNdWB_fixed_Asm_16:
case ARM::VST1LNdWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VST2LNdWB_fixed_Asm_8:
case ARM::VST2LNdWB_fixed_Asm_16:
case ARM::VST2LNdWB_fixed_Asm_32:
case ARM::VST2LNqWB_fixed_Asm_16:
case ARM::VST2LNqWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VST3LNdWB_fixed_Asm_8:
case ARM::VST3LNdWB_fixed_Asm_16:
case ARM::VST3LNdWB_fixed_Asm_32:
case ARM::VST3LNqWB_fixed_Asm_16:
case ARM::VST3LNqWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VST4LNdWB_fixed_Asm_8:
case ARM::VST4LNdWB_fixed_Asm_16:
case ARM::VST4LNdWB_fixed_Asm_32:
case ARM::VST4LNqWB_fixed_Asm_16:
case ARM::VST4LNqWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VST1LNdAsm_8:
case ARM::VST1LNdAsm_16:
case ARM::VST1LNdAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VST2LNdAsm_8:
case ARM::VST2LNdAsm_16:
case ARM::VST2LNdAsm_32:
case ARM::VST2LNqAsm_16:
case ARM::VST2LNqAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VST3LNdAsm_8:
case ARM::VST3LNdAsm_16:
case ARM::VST3LNdAsm_32:
case ARM::VST3LNqAsm_16:
case ARM::VST3LNqAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VST4LNdAsm_8:
case ARM::VST4LNdAsm_16:
case ARM::VST4LNdAsm_32:
case ARM::VST4LNqAsm_16:
case ARM::VST4LNqAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// Handle NEON VLD complex aliases.
case ARM::VLD1LNdWB_register_Asm_8:
case ARM::VLD1LNdWB_register_Asm_16:
case ARM::VLD1LNdWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VLD2LNdWB_register_Asm_8:
case ARM::VLD2LNdWB_register_Asm_16:
case ARM::VLD2LNdWB_register_Asm_32:
case ARM::VLD2LNqWB_register_Asm_16:
case ARM::VLD2LNqWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VLD3LNdWB_register_Asm_8:
case ARM::VLD3LNdWB_register_Asm_16:
case ARM::VLD3LNdWB_register_Asm_32:
case ARM::VLD3LNqWB_register_Asm_16:
case ARM::VLD3LNqWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VLD4LNdWB_register_Asm_8:
case ARM::VLD4LNdWB_register_Asm_16:
case ARM::VLD4LNdWB_register_Asm_32:
case ARM::VLD4LNqWB_register_Asm_16:
case ARM::VLD4LNqWB_register_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(4)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
case ARM::VLD1LNdWB_fixed_Asm_8:
case ARM::VLD1LNdWB_fixed_Asm_16:
case ARM::VLD1LNdWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VLD2LNdWB_fixed_Asm_8:
case ARM::VLD2LNdWB_fixed_Asm_16:
case ARM::VLD2LNdWB_fixed_Asm_32:
case ARM::VLD2LNqWB_fixed_Asm_16:
case ARM::VLD2LNqWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VLD3LNdWB_fixed_Asm_8:
case ARM::VLD3LNdWB_fixed_Asm_16:
case ARM::VLD3LNdWB_fixed_Asm_32:
case ARM::VLD3LNqWB_fixed_Asm_16:
case ARM::VLD3LNqWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VLD4LNdWB_fixed_Asm_8:
case ARM::VLD4LNdWB_fixed_Asm_16:
case ARM::VLD4LNdWB_fixed_Asm_32:
case ARM::VLD4LNqWB_fixed_Asm_16:
case ARM::VLD4LNqWB_fixed_Asm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VLD1LNdAsm_8:
case ARM::VLD1LNdAsm_16:
case ARM::VLD1LNdAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VLD2LNdAsm_8:
case ARM::VLD2LNdAsm_16:
case ARM::VLD2LNdAsm_32:
case ARM::VLD2LNqAsm_16:
case ARM::VLD2LNqAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VLD3LNdAsm_8:
case ARM::VLD3LNdAsm_16:
case ARM::VLD3LNdAsm_32:
case ARM::VLD3LNqAsm_16:
case ARM::VLD3LNqAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
case ARM::VLD4LNdAsm_8:
case ARM::VLD4LNdAsm_16:
case ARM::VLD4LNdAsm_32:
case ARM::VLD4LNqAsm_16:
case ARM::VLD4LNqAsm_32: {
MCInst TmpInst;
// Shuffle the operands around so the lane index operand is in the
// right place.
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(2)); // Rn
TmpInst.addOperand(Inst.getOperand(3)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // lane
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// VLD3DUP single 3-element structure to all lanes instructions.
case ARM::VLD3DUPdAsm_8:
case ARM::VLD3DUPdAsm_16:
case ARM::VLD3DUPdAsm_32:
case ARM::VLD3DUPqAsm_8:
case ARM::VLD3DUPqAsm_16:
case ARM::VLD3DUPqAsm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD3DUPdWB_fixed_Asm_8:
case ARM::VLD3DUPdWB_fixed_Asm_16:
case ARM::VLD3DUPdWB_fixed_Asm_32:
case ARM::VLD3DUPqWB_fixed_Asm_8:
case ARM::VLD3DUPqWB_fixed_Asm_16:
case ARM::VLD3DUPqWB_fixed_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD3DUPdWB_register_Asm_8:
case ARM::VLD3DUPdWB_register_Asm_16:
case ARM::VLD3DUPdWB_register_Asm_32:
case ARM::VLD3DUPqWB_register_Asm_8:
case ARM::VLD3DUPqWB_register_Asm_16:
case ARM::VLD3DUPqWB_register_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // Rm
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// VLD3 multiple 3-element structure instructions.
case ARM::VLD3dAsm_8:
case ARM::VLD3dAsm_16:
case ARM::VLD3dAsm_32:
case ARM::VLD3qAsm_8:
case ARM::VLD3qAsm_16:
case ARM::VLD3qAsm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD3dWB_fixed_Asm_8:
case ARM::VLD3dWB_fixed_Asm_16:
case ARM::VLD3dWB_fixed_Asm_32:
case ARM::VLD3qWB_fixed_Asm_8:
case ARM::VLD3qWB_fixed_Asm_16:
case ARM::VLD3qWB_fixed_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD3dWB_register_Asm_8:
case ARM::VLD3dWB_register_Asm_16:
case ARM::VLD3dWB_register_Asm_32:
case ARM::VLD3qWB_register_Asm_8:
case ARM::VLD3qWB_register_Asm_16:
case ARM::VLD3qWB_register_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // Rm
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// VLD4DUP single 3-element structure to all lanes instructions.
case ARM::VLD4DUPdAsm_8:
case ARM::VLD4DUPdAsm_16:
case ARM::VLD4DUPdAsm_32:
case ARM::VLD4DUPqAsm_8:
case ARM::VLD4DUPqAsm_16:
case ARM::VLD4DUPqAsm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD4DUPdWB_fixed_Asm_8:
case ARM::VLD4DUPdWB_fixed_Asm_16:
case ARM::VLD4DUPdWB_fixed_Asm_32:
case ARM::VLD4DUPqWB_fixed_Asm_8:
case ARM::VLD4DUPqWB_fixed_Asm_16:
case ARM::VLD4DUPqWB_fixed_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD4DUPdWB_register_Asm_8:
case ARM::VLD4DUPdWB_register_Asm_16:
case ARM::VLD4DUPdWB_register_Asm_32:
case ARM::VLD4DUPqWB_register_Asm_8:
case ARM::VLD4DUPqWB_register_Asm_16:
case ARM::VLD4DUPqWB_register_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // Rm
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// VLD4 multiple 4-element structure instructions.
case ARM::VLD4dAsm_8:
case ARM::VLD4dAsm_16:
case ARM::VLD4dAsm_32:
case ARM::VLD4qAsm_8:
case ARM::VLD4qAsm_16:
case ARM::VLD4qAsm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD4dWB_fixed_Asm_8:
case ARM::VLD4dWB_fixed_Asm_16:
case ARM::VLD4dWB_fixed_Asm_32:
case ARM::VLD4qWB_fixed_Asm_8:
case ARM::VLD4qWB_fixed_Asm_16:
case ARM::VLD4qWB_fixed_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VLD4dWB_register_Asm_8:
case ARM::VLD4dWB_register_Asm_16:
case ARM::VLD4dWB_register_Asm_32:
case ARM::VLD4qWB_register_Asm_8:
case ARM::VLD4qWB_register_Asm_16:
case ARM::VLD4qWB_register_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // Rm
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// VST3 multiple 3-element structure instructions.
case ARM::VST3dAsm_8:
case ARM::VST3dAsm_16:
case ARM::VST3dAsm_32:
case ARM::VST3qAsm_8:
case ARM::VST3qAsm_16:
case ARM::VST3qAsm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VST3dWB_fixed_Asm_8:
case ARM::VST3dWB_fixed_Asm_16:
case ARM::VST3dWB_fixed_Asm_32:
case ARM::VST3qWB_fixed_Asm_8:
case ARM::VST3qWB_fixed_Asm_16:
case ARM::VST3qWB_fixed_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VST3dWB_register_Asm_8:
case ARM::VST3dWB_register_Asm_16:
case ARM::VST3dWB_register_Asm_32:
case ARM::VST3qWB_register_Asm_8:
case ARM::VST3qWB_register_Asm_16:
case ARM::VST3qWB_register_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// VST4 multiple 3-element structure instructions.
case ARM::VST4dAsm_8:
case ARM::VST4dAsm_16:
case ARM::VST4dAsm_32:
case ARM::VST4qAsm_8:
case ARM::VST4qAsm_16:
case ARM::VST4qAsm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VST4dWB_fixed_Asm_8:
case ARM::VST4dWB_fixed_Asm_16:
case ARM::VST4dWB_fixed_Asm_32:
case ARM::VST4qWB_fixed_Asm_8:
case ARM::VST4qWB_fixed_Asm_16:
case ARM::VST4qWB_fixed_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(MCOperand::createReg(0)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::VST4dWB_register_Asm_8:
case ARM::VST4dWB_register_Asm_16:
case ARM::VST4dWB_register_Asm_32:
case ARM::VST4qWB_register_Asm_8:
case ARM::VST4qWB_register_Asm_16:
case ARM::VST4qWB_register_Asm_32: {
MCInst TmpInst;
unsigned Spacing;
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
TmpInst.addOperand(Inst.getOperand(2)); // alignment
TmpInst.addOperand(Inst.getOperand(3)); // Rm
TmpInst.addOperand(Inst.getOperand(0)); // Vd
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 2));
TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
Spacing * 3));
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
// Handle encoding choice for the shift-immediate instructions.
case ARM::t2LSLri:
case ARM::t2LSRri:
case ARM::t2ASRri:
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
!HasWideQualifier) {
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
}
// The Thumb1 operands aren't in the same order. Awesome, eh?
MCInst TmpInst;
TmpInst.setOpcode(NewOpc);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(5));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
return false;
// Handle the Thumb2 mode MOV complex aliases.
case ARM::t2MOVsr:
case ARM::t2MOVSsr: {
// Which instruction to expand to depends on the CCOut operand and
// whether we're in an IT block if the register operands are low
// registers.
bool isNarrow = false;
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
isARMLowRegister(Inst.getOperand(2).getReg()) &&
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
!HasWideQualifier)
isNarrow = true;
MCInst TmpInst;
unsigned newOpc;
switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
default: llvm_unreachable("unexpected opcode!");
case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
}
TmpInst.setOpcode(newOpc);
TmpInst.addOperand(Inst.getOperand(0)); // Rd
if (isNarrow)
TmpInst.addOperand(MCOperand::createReg(
Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // Rm
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
TmpInst.addOperand(Inst.getOperand(5));
if (!isNarrow)
TmpInst.addOperand(MCOperand::createReg(
Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
Inst = TmpInst;
return true;
}
case ARM::t2MOVsi:
case ARM::t2MOVSsi: {
// Which instruction to expand to depends on the CCOut operand and
// whether we're in an IT block if the register operands are low
// registers.
bool isNarrow = false;
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
!HasWideQualifier)
isNarrow = true;
MCInst TmpInst;
unsigned newOpc;
unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
bool isMov = false;
// MOV rd, rm, LSL #0 is actually a MOV instruction
if (Shift == ARM_AM::lsl && Amount == 0) {
isMov = true;
// The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
// MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
// unpredictable in an IT block so the 32-bit encoding T3 has to be used
// instead.
if (inITBlock()) {
isNarrow = false;
}
newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
} else {
switch(Shift) {
default: llvm_unreachable("unexpected opcode!");
case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
}
}
if (Amount == 32) Amount = 0;
TmpInst.setOpcode(newOpc);
TmpInst.addOperand(Inst.getOperand(0)); // Rd
if (isNarrow && !isMov)
TmpInst.addOperand(MCOperand::createReg(
Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
TmpInst.addOperand(Inst.getOperand(1)); // Rn
if (newOpc != ARM::t2RRX && !isMov)
TmpInst.addOperand(MCOperand::createImm(Amount));
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
if (!isNarrow)
TmpInst.addOperand(MCOperand::createReg(
Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
Inst = TmpInst;
return true;
}
// Handle the ARM mode MOV complex aliases.
case ARM::ASRr:
case ARM::LSRr:
case ARM::LSLr:
case ARM::RORr: {
ARM_AM::ShiftOpc ShiftTy;
switch(Inst.getOpcode()) {
default: llvm_unreachable("unexpected opcode!");
case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
case ARM::RORr: ShiftTy = ARM_AM::ror; break;
}
unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVsr);
TmpInst.addOperand(Inst.getOperand(0)); // Rd
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(Inst.getOperand(2)); // Rm
TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
TmpInst.addOperand(Inst.getOperand(5)); // cc_out
Inst = TmpInst;
return true;
}
case ARM::ASRi:
case ARM::LSRi:
case ARM::LSLi:
case ARM::RORi: {
ARM_AM::ShiftOpc ShiftTy;
switch(Inst.getOpcode()) {
default: llvm_unreachable("unexpected opcode!");
case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
case ARM::RORi: ShiftTy = ARM_AM::ror; break;
}
// A shift by zero is a plain MOVr, not a MOVsi.
unsigned Amt = Inst.getOperand(2).getImm();
unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
// A shift by 32 should be encoded as 0 when permitted
if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
Amt = 0;
unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
MCInst TmpInst;
TmpInst.setOpcode(Opc);
TmpInst.addOperand(Inst.getOperand(0)); // Rd
TmpInst.addOperand(Inst.getOperand(1)); // Rn
if (Opc == ARM::MOVsi)
TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
TmpInst.addOperand(Inst.getOperand(4));
TmpInst.addOperand(Inst.getOperand(5)); // cc_out
Inst = TmpInst;
return true;
}
case ARM::RRXi: {
unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVsi);
TmpInst.addOperand(Inst.getOperand(0)); // Rd
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4)); // cc_out
Inst = TmpInst;
return true;
}
case ARM::t2LDMIA_UPD: {
// If this is a load of a single register, then we should use
// a post-indexed LDR instruction instead, per the ARM ARM.
if (Inst.getNumOperands() != 5)
return false;
MCInst TmpInst;
TmpInst.setOpcode(ARM::t2LDR_POST);
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(MCOperand::createImm(4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
return true;
}
case ARM::t2STMDB_UPD: {
// If this is a store of a single register, then we should use
// a pre-indexed STR instruction instead, per the ARM ARM.
if (Inst.getNumOperands() != 5)
return false;
MCInst TmpInst;
TmpInst.setOpcode(ARM::t2STR_PRE);
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(MCOperand::createImm(-4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
return true;
}
case ARM::LDMIA_UPD:
// If this is a load of a single register via a 'pop', then we should use
// a post-indexed LDR instruction instead, per the ARM ARM.
if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
Inst.getNumOperands() == 5) {
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR_POST_IMM);
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(1)); // Rn
TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
TmpInst.addOperand(MCOperand::createImm(4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
return true;
}
break;
case ARM::STMDB_UPD:
// If this is a store of a single register via a 'push', then we should use
// a pre-indexed STR instruction instead, per the ARM ARM.
if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
Inst.getNumOperands() == 5) {
MCInst TmpInst;
TmpInst.setOpcode(ARM::STR_PRE_IMM);
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
TmpInst.addOperand(Inst.getOperand(4)); // Rt
TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
TmpInst.addOperand(MCOperand::createImm(-4));
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
}
break;
case ARM::t2ADDri12:
case ARM::t2SUBri12:
case ARM::t2ADDspImm12:
case ARM::t2SUBspImm12: {
// If the immediate fits for encoding T3 and the generic
// mnemonic was used, encoding T3 is preferred.
const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
if ((Token != "add" && Token != "sub") ||
ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
break;
switch (Inst.getOpcode()) {
case ARM::t2ADDri12:
Inst.setOpcode(ARM::t2ADDri);
break;
case ARM::t2SUBri12:
Inst.setOpcode(ARM::t2SUBri);
break;
case ARM::t2ADDspImm12:
Inst.setOpcode(ARM::t2ADDspImm);
break;
case ARM::t2SUBspImm12:
Inst.setOpcode(ARM::t2SUBspImm);
break;
}
Inst.addOperand(MCOperand::createReg(0)); // cc_out
return true;
}
case ARM::tADDi8:
// If the immediate is in the range 0-7, we want tADDi3 iff Rd was
// explicitly specified. From the ARM ARM: "Encoding T1 is preferred
// to encoding T2 if <Rd> is specified and encoding T2 is preferred
// to encoding T1 if <Rd> is omitted."
if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
Inst.setOpcode(ARM::tADDi3);
return true;
}
break;
case ARM::tSUBi8:
// If the immediate is in the range 0-7, we want tADDi3 iff Rd was
// explicitly specified. From the ARM ARM: "Encoding T1 is preferred
// to encoding T2 if <Rd> is specified and encoding T2 is preferred
// to encoding T1 if <Rd> is omitted."
if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
Inst.setOpcode(ARM::tSUBi3);
return true;
}
break;
case ARM::t2ADDri:
case ARM::t2SUBri: {
// If the destination and first source operand are the same, and
// the flags are compatible with the current IT status, use encoding T2
// instead of T3. For compatibility with the system 'as'. Make sure the
// wide encoding wasn't explicit.
if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
!isARMLowRegister(Inst.getOperand(0).getReg()) ||
(Inst.getOperand(2).isImm() &&
(unsigned)Inst.getOperand(2).getImm() > 255) ||
Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
HasWideQualifier)
break;
MCInst TmpInst;
TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
ARM::tADDi8 : ARM::tSUBi8);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(5));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::t2ADDspImm:
case ARM::t2SUBspImm: {
// Prefer T1 encoding if possible
if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
break;
unsigned V = Inst.getOperand(2).getImm();
if (V & 3 || V > ((1 << 7) - 1) << 2)
break;
MCInst TmpInst;
TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
: ARM::tSUBspi);
TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate
TmpInst.addOperand(Inst.getOperand(3)); // pred
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::t2ADDrr: {
// If the destination and first source operand are the same, and
// there's no setting of the flags, use encoding T2 instead of T3.
// Note that this is only for ADD, not SUB. This mirrors the system
// 'as' behaviour. Also take advantage of ADD being commutative.
// Make sure the wide encoding wasn't explicit.
bool Swap = false;
auto DestReg = Inst.getOperand(0).getReg();
bool Transform = DestReg == Inst.getOperand(1).getReg();
if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
Transform = true;
Swap = true;
}
if (!Transform ||
Inst.getOperand(5).getReg() != 0 ||
HasWideQualifier)
break;
MCInst TmpInst;
TmpInst.setOpcode(ARM::tADDhirr);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
case ARM::tADDrSP:
// If the non-SP source operand and the destination operand are not the
// same, we need to use the 32-bit encoding if it's available.
if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
Inst.setOpcode(ARM::t2ADDrr);
Inst.addOperand(MCOperand::createReg(0)); // cc_out
return true;
}
break;
case ARM::tB:
// A Thumb conditional branch outside of an IT block is a tBcc.
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
Inst.setOpcode(ARM::tBcc);
return true;
}
break;
case ARM::t2B:
// A Thumb2 conditional branch outside of an IT block is a t2Bcc.
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
Inst.setOpcode(ARM::t2Bcc);
return true;
}
break;
case ARM::t2Bcc:
// If the conditional is AL or we're in an IT block, we really want t2B.
if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
Inst.setOpcode(ARM::t2B);
return true;
}
break;
case ARM::tBcc:
// If the conditional is AL, we really want tB.
if (Inst.getOperand(1).getImm() == ARMCC::AL) {
Inst.setOpcode(ARM::tB);
return true;
}
break;
case ARM::tLDMIA: {
// If the register list contains any high registers, or if the writeback
// doesn't match what tLDMIA can do, we need to use the 32-bit encoding
// instead if we're in Thumb2. Otherwise, this should have generated
// an error in validateInstruction().
unsigned Rn = Inst.getOperand(0).getReg();
bool hasWritebackToken =
(static_cast<ARMOperand &>(*Operands[3]).isToken() &&
static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
bool listContainsBase;
if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
(!listContainsBase && !hasWritebackToken) ||
(listContainsBase && hasWritebackToken)) {
// 16-bit encoding isn't sufficient. Switch to the 32-bit version.
assert(isThumbTwo());
Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
// If we're switching to the updating version, we need to insert
// the writeback tied operand.
if (hasWritebackToken)
Inst.insert(Inst.begin(),
MCOperand::createReg(Inst.getOperand(0).getReg()));
return true;
}
break;
}
case ARM::tSTMIA_UPD: {
// If the register list contains any high registers, we need to use
// the 32-bit encoding instead if we're in Thumb2. Otherwise, this
// should have generated an error in validateInstruction().
unsigned Rn = Inst.getOperand(0).getReg();
bool listContainsBase;
if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
// 16-bit encoding isn't sufficient. Switch to the 32-bit version.
assert(isThumbTwo());
Inst.setOpcode(ARM::t2STMIA_UPD);
return true;
}
break;
}
case ARM::tPOP: {
bool listContainsBase;
// If the register list contains any high registers, we need to use
// the 32-bit encoding instead if we're in Thumb2. Otherwise, this
// should have generated an error in validateInstruction().
if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
return false;
assert(isThumbTwo());
Inst.setOpcode(ARM::t2LDMIA_UPD);
// Add the base register and writeback operands.
Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
return true;
}
case ARM::tPUSH: {
bool listContainsBase;
if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
return false;
assert(isThumbTwo());
Inst.setOpcode(ARM::t2STMDB_UPD);
// Add the base register and writeback operands.
Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
return true;
}
case ARM::t2MOVi:
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
(Inst.getOperand(1).isImm() &&
(unsigned)Inst.getOperand(1).getImm() <= 255) &&
Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
!HasWideQualifier) {
// The operands aren't in the same order for tMOVi8...
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(4));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
Inst = TmpInst;
return true;
}
break;
case ARM::t2MOVr:
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
Inst.getOperand(2).getImm() == ARMCC::AL &&
Inst.getOperand(4).getReg() == ARM::CPSR &&
!HasWideQualifier) {
// The operands aren't the same for tMOV[S]r... (no cc_out)
MCInst TmpInst;
unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr;
TmpInst.setOpcode(Op);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
if (Op == ARM::tMOVr) {
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
}
Inst = TmpInst;
return true;
}
break;
case ARM::t2SXTH:
case ARM::t2SXTB:
case ARM::t2UXTH:
case ARM::t2UXTB:
// If we can use the 16-bit encoding and the user didn't explicitly
// request the 32-bit variant, transform it here.
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
Inst.getOperand(2).getImm() == 0 &&
!HasWideQualifier) {
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Illegal opcode!");
case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
}
// The operands aren't the same for thumb1 (no rotate operand).
MCInst TmpInst;
TmpInst.setOpcode(NewOpc);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
break;
case ARM::MOVsi: {
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
// rrx shifts and asr/lsr of #32 is encoded as 0
if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
return false;
if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
// Shifting by zero is accepted as a vanilla 'MOVr'
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVr);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
TmpInst.addOperand(Inst.getOperand(5));
Inst = TmpInst;
return true;
}
return false;
}
case ARM::ANDrsi:
case ARM::ORRrsi:
case ARM::EORrsi:
case ARM::BICrsi:
case ARM::SUBrsi:
case ARM::ADDrsi: {
unsigned newOpc;
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
if (SOpc == ARM_AM::rrx) return false;
switch (Inst.getOpcode()) {
default: llvm_unreachable("unexpected opcode!");
case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
case ARM::EORrsi: newOpc = ARM::EORrr; break;
case ARM::BICrsi: newOpc = ARM::BICrr; break;
case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
}
// If the shift is by zero, use the non-shifted instruction definition.
// The exception is for right shifts, where 0 == 32
if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
!(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
MCInst TmpInst;
TmpInst.setOpcode(newOpc);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(4));
TmpInst.addOperand(Inst.getOperand(5));
TmpInst.addOperand(Inst.getOperand(6));
Inst = TmpInst;
return true;
}
return false;
}
case ARM::ITasm:
case ARM::t2IT: {
// Set up the IT block state according to the IT instruction we just
// matched.
assert(!inITBlock() && "nested IT blocks?!");
startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
Inst.getOperand(1).getImm());
break;
}
case ARM::t2LSLrr:
case ARM::t2LSRrr:
case ARM::t2ASRrr:
case ARM::t2SBCrr:
case ARM::t2RORrr:
case ARM::t2BICrr:
// Assemblers should use the narrow encodings of these instructions when permissible.
if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
isARMLowRegister(Inst.getOperand(2).getReg())) &&
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
!HasWideQualifier) {
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
case ARM::t2RORrr: NewOpc = ARM::tROR; break;
case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
}
MCInst TmpInst;
TmpInst.setOpcode(NewOpc);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(5));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
return false;
case ARM::t2ANDrr:
case ARM::t2EORrr:
case ARM::t2ADCrr:
case ARM::t2ORRrr:
// Assemblers should use the narrow encodings of these instructions when permissible.
// These instructions are special in that they are commutable, so shorter encodings
// are available more often.
if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
isARMLowRegister(Inst.getOperand(2).getReg())) &&
(Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
!HasWideQualifier) {
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
}
MCInst TmpInst;
TmpInst.setOpcode(NewOpc);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(5));
if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
} else {
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(1));
}
TmpInst.addOperand(Inst.getOperand(3));
TmpInst.addOperand(Inst.getOperand(4));
Inst = TmpInst;
return true;
}
return false;
case ARM::MVE_VPST:
case ARM::MVE_VPTv16i8:
case ARM::MVE_VPTv8i16:
case ARM::MVE_VPTv4i32:
case ARM::MVE_VPTv16u8:
case ARM::MVE_VPTv8u16:
case ARM::MVE_VPTv4u32:
case ARM::MVE_VPTv16s8:
case ARM::MVE_VPTv8s16:
case ARM::MVE_VPTv4s32:
case ARM::MVE_VPTv4f32:
case ARM::MVE_VPTv8f16:
case ARM::MVE_VPTv16i8r:
case ARM::MVE_VPTv8i16r:
case ARM::MVE_VPTv4i32r:
case ARM::MVE_VPTv16u8r:
case ARM::MVE_VPTv8u16r:
case ARM::MVE_VPTv4u32r:
case ARM::MVE_VPTv16s8r:
case ARM::MVE_VPTv8s16r:
case ARM::MVE_VPTv4s32r:
case ARM::MVE_VPTv4f32r:
case ARM::MVE_VPTv8f16r: {
assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
MCOperand &MO = Inst.getOperand(0);
VPTState.Mask = MO.getImm();
VPTState.CurPosition = 0;
break;
}
}
return false;
}
unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
// 16-bit thumb arithmetic instructions either require or preclude the 'S'
// suffix depending on whether they're in an IT block or not.
unsigned Opc = Inst.getOpcode();
const MCInstrDesc &MCID = MII.get(Opc);
if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
assert(MCID.hasOptionalDef() &&
"optionally flag setting instruction missing optional def operand");
assert(MCID.NumOperands == Inst.getNumOperands() &&
"operand count mismatch!");
// Find the optional-def operand (cc_out).
unsigned OpNo;
for (OpNo = 0;
!MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
++OpNo)
;
// If we're parsing Thumb1, reject it completely.
if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
return Match_RequiresFlagSetting;
// If we're parsing Thumb2, which form is legal depends on whether we're
// in an IT block.
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
!inITBlock())
return Match_RequiresITBlock;
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
inITBlock())
return Match_RequiresNotITBlock;
// LSL with zero immediate is not allowed in an IT block
if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
return Match_RequiresNotITBlock;
} else if (isThumbOne()) {
// Some high-register supporting Thumb1 encodings only allow both registers
// to be from r0-r7 when in Thumb2.
if (Opc == ARM::tADDhirr && !hasV6MOps() &&
isARMLowRegister(Inst.getOperand(1).getReg()) &&
isARMLowRegister(Inst.getOperand(2).getReg()))
return Match_RequiresThumb2;
// Others only require ARMv6 or later.
else if (Opc == ARM::tMOVr && !hasV6Ops() &&
isARMLowRegister(Inst.getOperand(0).getReg()) &&
isARMLowRegister(Inst.getOperand(1).getReg()))
return Match_RequiresV6;
}
// Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
// than the loop below can handle, so it uses the GPRnopc register class and
// we do SP handling here.
if (Opc == ARM::t2MOVr && !hasV8Ops())
{
// SP as both source and destination is not allowed
if (Inst.getOperand(0).getReg() == ARM::SP &&
Inst.getOperand(1).getReg() == ARM::SP)
return Match_RequiresV8;
// When flags-setting SP as either source or destination is not allowed
if (Inst.getOperand(4).getReg() == ARM::CPSR &&
(Inst.getOperand(0).getReg() == ARM::SP ||
Inst.getOperand(1).getReg() == ARM::SP))
return Match_RequiresV8;
}
switch (Inst.getOpcode()) {
case ARM::VMRS:
case ARM::VMSR:
case ARM::VMRS_FPCXTS:
case ARM::VMRS_FPCXTNS:
case ARM::VMSR_FPCXTS:
case ARM::VMSR_FPCXTNS:
case ARM::VMRS_FPSCR_NZCVQC:
case ARM::VMSR_FPSCR_NZCVQC:
case ARM::FMSTAT:
case ARM::VMRS_VPR:
case ARM::VMRS_P0:
case ARM::VMSR_VPR:
case ARM::VMSR_P0:
// Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
// ARMv8-A.
if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
(isThumb() && !hasV8Ops()))
return Match_InvalidOperand;
break;
case ARM::t2TBB:
case ARM::t2TBH:
// Rn = sp is only allowed with ARMv8-A
if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP))
return Match_RequiresV8;
break;
default:
break;
}
for (unsigned I = 0; I < MCID.NumOperands; ++I)
if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
// rGPRRegClass excludes PC, and also excluded SP before ARMv8
const auto &Op = Inst.getOperand(I);
if (!Op.isReg()) {
// This can happen in awkward cases with tied operands, e.g. a
// writeback load/store with a complex addressing mode in
// which there's an output operand corresponding to the
// updated written-back base register: the Tablegen-generated
// AsmMatcher will have written a placeholder operand to that
// slot in the form of an immediate 0, because it can't
// generate the register part of the complex addressing-mode
// operand ahead of time.
continue;
}
unsigned Reg = Op.getReg();
if ((Reg == ARM::SP) && !hasV8Ops())
return Match_RequiresV8;
else if (Reg == ARM::PC)
return Match_InvalidOperand;
}
return Match_Success;
}
namespace llvm {
template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
return true; // In an assembly source, no need to second-guess
}
} // end namespace llvm
// Returns true if Inst is unpredictable if it is in and IT block, but is not
// the last instruction in the block.
bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
// All branch & call instructions terminate IT blocks with the exception of
// SVC.
if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
return true;
// Any arithmetic instruction which writes to the PC also terminates the IT
// block.
if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
return true;
return false;
}
unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
SmallVectorImpl<NearMissInfo> &NearMisses,
bool MatchingInlineAsm,
bool &EmitInITBlock,
MCStreamer &Out) {
// If we can't use an implicit IT block here, just match as normal.
if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
// Try to match the instruction in an extension of the current IT block (if
// there is one).
if (inImplicitITBlock()) {
extendImplicitITBlock(ITState.Cond);
if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
Match_Success) {
// The match succeded, but we still have to check that the instruction is
// valid in this implicit IT block.
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
if (MCID.isPredicable()) {
ARMCC::CondCodes InstCond =
(ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
.getImm();
ARMCC::CondCodes ITCond = currentITCond();
if (InstCond == ITCond) {
EmitInITBlock = true;
return Match_Success;
} else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
invertCurrentITCondition();
EmitInITBlock = true;
return Match_Success;
}
}
}
rewindImplicitITPosition();
}
// Finish the current IT block, and try to match outside any IT block.
flushPendingInstructions(Out);
unsigned PlainMatchResult =
MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
if (PlainMatchResult == Match_Success) {
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
if (MCID.isPredicable()) {
ARMCC::CondCodes InstCond =
(ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
.getImm();
// Some forms of the branch instruction have their own condition code
// fields, so can be conditionally executed without an IT block.
if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
EmitInITBlock = false;
return Match_Success;
}
if (InstCond == ARMCC::AL) {
EmitInITBlock = false;
return Match_Success;
}
} else {
EmitInITBlock = false;
return Match_Success;
}
}
// Try to match in a new IT block. The matcher doesn't check the actual
// condition, so we create an IT block with a dummy condition, and fix it up
// once we know the actual condition.
startImplicitITBlock();
if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
Match_Success) {
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
if (MCID.isPredicable()) {
ITState.Cond =
(ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
.getImm();
EmitInITBlock = true;
return Match_Success;
}
}
discardImplicitITBlock();
// If none of these succeed, return the error we got when trying to match
// outside any IT blocks.
EmitInITBlock = false;
return PlainMatchResult;
}
static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
unsigned VariantID = 0);
static const char *getSubtargetFeatureName(uint64_t Val);
bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
bool PendConditionalInstruction = false;
SmallVector<NearMissInfo, 4> NearMisses;
MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
PendConditionalInstruction, Out);
switch (MatchResult) {
case Match_Success:
LLVM_DEBUG(dbgs() << "Parsed as: ";
Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
dbgs() << "\n");
// Context sensitive operand constraints aren't handled by the matcher,
// so check them here.
if (validateInstruction(Inst, Operands)) {
// Still progress the IT block, otherwise one wrong condition causes
// nasty cascading errors.
forwardITPosition();
forwardVPTPosition();
return true;
}
{ // processInstruction() updates inITBlock state, we need to save it away
bool wasInITBlock = inITBlock();
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other. E.g.,
// tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
while (processInstruction(Inst, Operands, Out))
LLVM_DEBUG(dbgs() << "Changed to: ";
Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
dbgs() << "\n");
// Only after the instruction is fully processed, we can validate it
if (wasInITBlock && hasV8Ops() && isThumb() &&
!isV8EligibleForIT(&Inst)) {
Warning(IDLoc, "deprecated instruction in IT block");
}
}
// Only move forward at the very end so that everything in validate
// and process gets a consistent answer about whether we're in an IT
// block.
forwardITPosition();
forwardVPTPosition();
// ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
// doesn't actually encode.
if (Inst.getOpcode() == ARM::ITasm)
return false;
Inst.setLoc(IDLoc);
if (PendConditionalInstruction) {
PendingConditionalInsts.push_back(Inst);
if (isITBlockFull() || isITBlockTerminator(Inst))
flushPendingInstructions(Out);
} else {
Out.emitInstruction(Inst, getSTI());
}
return false;
case Match_NearMisses:
ReportNearMisses(NearMisses, IDLoc, Operands);
return true;
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = ARMMnemonicSpellCheck(
((ARMOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "invalid instruction" + Suggestion,
((ARMOperand &)*Operands[0]).getLocRange());
}
}
llvm_unreachable("Implement any new match types added!");
}
/// parseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
const MCObjectFileInfo::Environment Format =
getContext().getObjectFileInfo()->getObjectFileType();
bool IsMachO = Format == MCObjectFileInfo::IsMachO;
bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
std::string IDVal = DirectiveID.getIdentifier().lower();
if (IDVal == ".word")
parseLiteralValues(4, DirectiveID.getLoc());
else if (IDVal == ".short" || IDVal == ".hword")
parseLiteralValues(2, DirectiveID.getLoc());
else if (IDVal == ".thumb")
parseDirectiveThumb(DirectiveID.getLoc());
else if (IDVal == ".arm")
parseDirectiveARM(DirectiveID.getLoc());
else if (IDVal == ".thumb_func")
parseDirectiveThumbFunc(DirectiveID.getLoc());
else if (IDVal == ".code")
parseDirectiveCode(DirectiveID.getLoc());
else if (IDVal == ".syntax")
parseDirectiveSyntax(DirectiveID.getLoc());
else if (IDVal == ".unreq")
parseDirectiveUnreq(DirectiveID.getLoc());
else if (IDVal == ".fnend")
parseDirectiveFnEnd(DirectiveID.getLoc());
else if (IDVal == ".cantunwind")
parseDirectiveCantUnwind(DirectiveID.getLoc());
else if (IDVal == ".personality")
parseDirectivePersonality(DirectiveID.getLoc());
else if (IDVal == ".handlerdata")
parseDirectiveHandlerData(DirectiveID.getLoc());
else if (IDVal == ".setfp")
parseDirectiveSetFP(DirectiveID.getLoc());
else if (IDVal == ".pad")
parseDirectivePad(DirectiveID.getLoc());
else if (IDVal == ".save")
parseDirectiveRegSave(DirectiveID.getLoc(), false);
else if (IDVal == ".vsave")
parseDirectiveRegSave(DirectiveID.getLoc(), true);
else if (IDVal == ".ltorg" || IDVal == ".pool")
parseDirectiveLtorg(DirectiveID.getLoc());
else if (IDVal == ".even")
parseDirectiveEven(DirectiveID.getLoc());
else if (IDVal == ".personalityindex")
parseDirectivePersonalityIndex(DirectiveID.getLoc());
else if (IDVal == ".unwind_raw")
parseDirectiveUnwindRaw(DirectiveID.getLoc());
else if (IDVal == ".movsp")
parseDirectiveMovSP(DirectiveID.getLoc());
else if (IDVal == ".arch_extension")
parseDirectiveArchExtension(DirectiveID.getLoc());
else if (IDVal == ".align")
return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
else if (IDVal == ".thumb_set")
parseDirectiveThumbSet(DirectiveID.getLoc());
else if (IDVal == ".inst")
parseDirectiveInst(DirectiveID.getLoc());
else if (IDVal == ".inst.n")
parseDirectiveInst(DirectiveID.getLoc(), 'n');
else if (IDVal == ".inst.w")
parseDirectiveInst(DirectiveID.getLoc(), 'w');
else if (!IsMachO && !IsCOFF) {
if (IDVal == ".arch")
parseDirectiveArch(DirectiveID.getLoc());
else if (IDVal == ".cpu")
parseDirectiveCPU(DirectiveID.getLoc());
else if (IDVal == ".eabi_attribute")
parseDirectiveEabiAttr(DirectiveID.getLoc());
else if (IDVal == ".fpu")
parseDirectiveFPU(DirectiveID.getLoc());
else if (IDVal == ".fnstart")
parseDirectiveFnStart(DirectiveID.getLoc());
else if (IDVal == ".object_arch")
parseDirectiveObjectArch(DirectiveID.getLoc());
else if (IDVal == ".tlsdescseq")
parseDirectiveTLSDescSeq(DirectiveID.getLoc());
else
return true;
} else
return true;
return false;
}
/// parseLiteralValues
/// ::= .hword expression [, expression]*
/// ::= .short expression [, expression]*
/// ::= .word expression [, expression]*
bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
auto parseOne = [&]() -> bool {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().emitValue(Value, Size, L);
return false;
};
return (parseMany(parseOne));
}
/// parseDirectiveThumb
/// ::= .thumb
bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
check(!hasThumb(), L, "target does not support Thumb mode"))
return true;
if (!isThumb())
SwitchMode();
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
return false;
}
/// parseDirectiveARM
/// ::= .arm
bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
check(!hasARM(), L, "target does not support ARM mode"))
return true;
if (isThumb())
SwitchMode();
getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
return false;
}
void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
// We need to flush the current implicit IT block on a label, because it is
// not legal to branch into an IT block.
flushPendingInstructions(getStreamer());
}
void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
if (NextSymbolIsThumb) {
getParser().getStreamer().emitThumbFunc(Symbol);
NextSymbolIsThumb = false;
}
}
/// parseDirectiveThumbFunc
/// ::= .thumbfunc symbol_name
bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
MCAsmParser &Parser = getParser();
const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
bool IsMachO = Format == MCObjectFileInfo::IsMachO;
// Darwin asm has (optionally) function name after .thumb_func direction
// ELF doesn't
if (IsMachO) {
if (Parser.getTok().is(AsmToken::Identifier) ||
Parser.getTok().is(AsmToken::String)) {
MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
Parser.getTok().getIdentifier());
getParser().getStreamer().emitThumbFunc(Func);
Parser.Lex();
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.thumb_func' directive"))
return true;
return false;
}
}
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.thumb_func' directive"))
return true;
NextSymbolIsThumb = true;
return false;
}
/// parseDirectiveSyntax
/// ::= .syntax unified | divided
bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
Error(L, "unexpected token in .syntax directive");
return false;
}
StringRef Mode = Tok.getString();
Parser.Lex();
if (check(Mode == "divided" || Mode == "DIVIDED", L,
"'.syntax divided' arm assembly not supported") ||
check(Mode != "unified" && Mode != "UNIFIED", L,
"unrecognized syntax mode in .syntax directive") ||
parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return true;
// TODO tell the MC streamer the mode
// getParser().getStreamer().Emit???();
return false;
}
/// parseDirectiveCode
/// ::= .code 16 | 32
bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Integer))
return Error(L, "unexpected token in .code directive");
int64_t Val = Parser.getTok().getIntVal();
if (Val != 16 && Val != 32) {
Error(L, "invalid operand to .code directive");
return false;
}
Parser.Lex();
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return true;
if (Val == 16) {
if (!hasThumb())
return Error(L, "target does not support Thumb mode");
if (!isThumb())
SwitchMode();
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
} else {
if (!hasARM())
return Error(L, "target does not support ARM mode");
if (isThumb())
SwitchMode();
getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
}
return false;
}
/// parseDirectiveReq
/// ::= name .req registername
bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the '.req' token.
unsigned Reg;
SMLoc SRegLoc, ERegLoc;
if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
"register name expected") ||
parseToken(AsmToken::EndOfStatement,
"unexpected input in .req directive."))
return true;
if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
return Error(SRegLoc,
"redefinition of '" + Name + "' does not match original.");
return false;
}
/// parseDirectiveUneq
/// ::= .unreq registername
bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(L, "unexpected input in .unreq directive.");
RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
Parser.Lex(); // Eat the identifier.
if (parseToken(AsmToken::EndOfStatement,
"unexpected input in '.unreq' directive"))
return true;
return false;
}
// After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
// before, if supported by the new target, or emit mapping symbols for the mode
// switch.
void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
if (WasThumb != isThumb()) {
if (WasThumb && hasThumb()) {
// Stay in Thumb mode
SwitchMode();
} else if (!WasThumb && hasARM()) {
// Stay in ARM mode
SwitchMode();
} else {
// Mode switch forced, because the new arch doesn't support the old mode.
getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
: MCAF_Code32);
// Warn about the implcit mode switch. GAS does not switch modes here,
// but instead stays in the old mode, reporting an error on any following
// instructions as the mode does not exist on the target.
Warning(Loc, Twine("new target does not support ") +
(WasThumb ? "thumb" : "arm") + " mode, switching to " +
(!WasThumb ? "thumb" : "arm") + " mode");
}
}
}
/// parseDirectiveArch
/// ::= .arch token
bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
StringRef Arch = getParser().parseStringToEndOfStatement().trim();
ARM::ArchKind ID = ARM::parseArch(Arch);
if (ID == ARM::ArchKind::INVALID)
return Error(L, "Unknown arch name");
bool WasThumb = isThumb();
Triple T;
MCSubtargetInfo &STI = copySTI();
STI.setDefaultFeatures("", /*TuneCPU*/ "",
("+" + ARM::getArchName(ID)).str());
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
FixModeAfterArchChange(WasThumb, L);
getTargetStreamer().emitArch(ID);
return false;
}
/// parseDirectiveEabiAttr
/// ::= .eabi_attribute int, int [, "str"]
/// ::= .eabi_attribute Tag_name, int [, "str"]
bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
MCAsmParser &Parser = getParser();
int64_t Tag;
SMLoc TagLoc;
TagLoc = Parser.getTok().getLoc();
if (Parser.getTok().is(AsmToken::Identifier)) {
StringRef Name = Parser.getTok().getIdentifier();
Optional<unsigned> Ret =
ELFAttrs::attrTypeFromString(Name, ARMBuildAttrs::ARMAttributeTags);
if (!Ret.hasValue()) {
Error(TagLoc, "attribute name not recognised: " + Name);
return false;
}
Tag = Ret.getValue();
Parser.Lex();
} else {
const MCExpr *AttrExpr;
TagLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(AttrExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
if (check(!CE, TagLoc, "expected numeric constant"))
return true;
Tag = CE->getValue();
}
if (Parser.parseToken(AsmToken::Comma, "comma expected"))
return true;
StringRef StringValue = "";
bool IsStringValue = false;
int64_t IntegerValue = 0;
bool IsIntegerValue = false;
if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
IsStringValue = true;
else if (Tag == ARMBuildAttrs::compatibility) {
IsStringValue = true;
IsIntegerValue = true;
} else if (Tag < 32 || Tag % 2 == 0)
IsIntegerValue = true;
else if (Tag % 2 == 1)
IsStringValue = true;
else
llvm_unreachable("invalid tag type");
if (IsIntegerValue) {
const MCExpr *ValueExpr;
SMLoc ValueExprLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(ValueExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
if (!CE)
return Error(ValueExprLoc, "expected numeric constant");
IntegerValue = CE->getValue();
}
if (Tag == ARMBuildAttrs::compatibility) {
if (Parser.parseToken(AsmToken::Comma, "comma expected"))
return true;
}
if (IsStringValue) {
if (Parser.getTok().isNot(AsmToken::String))
return Error(Parser.getTok().getLoc(), "bad string constant");
StringValue = Parser.getTok().getStringContents();
Parser.Lex();
}
if (Parser.parseToken(AsmToken::EndOfStatement,
"unexpected token in '.eabi_attribute' directive"))
return true;
if (IsIntegerValue && IsStringValue) {
assert(Tag == ARMBuildAttrs::compatibility);
getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
} else if (IsIntegerValue)
getTargetStreamer().emitAttribute(Tag, IntegerValue);
else if (IsStringValue)
getTargetStreamer().emitTextAttribute(Tag, StringValue);
return false;
}
/// parseDirectiveCPU
/// ::= .cpu str
bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
StringRef CPU = getParser().parseStringToEndOfStatement().trim();
getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
// FIXME: This is using table-gen data, but should be moved to
// ARMTargetParser once that is table-gen'd.
if (!getSTI().isCPUStringValid(CPU))
return Error(L, "Unknown CPU name");
bool WasThumb = isThumb();
MCSubtargetInfo &STI = copySTI();
STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
FixModeAfterArchChange(WasThumb, L);
return false;
}
/// parseDirectiveFPU
/// ::= .fpu str
bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
SMLoc FPUNameLoc = getTok().getLoc();
StringRef FPU = getParser().parseStringToEndOfStatement().trim();
unsigned ID = ARM::parseFPU(FPU);
std::vector<StringRef> Features;
if (!ARM::getFPUFeatures(ID, Features))
return Error(FPUNameLoc, "Unknown FPU name");
MCSubtargetInfo &STI = copySTI();
for (auto Feature : Features)
STI.ApplyFeatureFlag(Feature);
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
getTargetStreamer().emitFPU(ID);
return false;
}
/// parseDirectiveFnStart
/// ::= .fnstart
bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.fnstart' directive"))
return true;
if (UC.hasFnStart()) {
Error(L, ".fnstart starts before the end of previous one");
UC.emitFnStartLocNotes();
return true;
}
// Reset the unwind directives parser state
UC.reset();
getTargetStreamer().emitFnStart();
UC.recordFnStart(L);
return false;
}
/// parseDirectiveFnEnd
/// ::= .fnend
bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.fnend' directive"))
return true;
// Check the ordering of unwind directives
if (!UC.hasFnStart())
return Error(L, ".fnstart must precede .fnend directive");
// Reset the unwind directives parser state
getTargetStreamer().emitFnEnd();
UC.reset();
return false;
}
/// parseDirectiveCantUnwind
/// ::= .cantunwind
bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.cantunwind' directive"))
return true;
UC.recordCantUnwind(L);
// Check the ordering of unwind directives
if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
return true;
if (UC.hasHandlerData()) {
Error(L, ".cantunwind can't be used with .handlerdata directive");
UC.emitHandlerDataLocNotes();
return true;
}
if (UC.hasPersonality()) {
Error(L, ".cantunwind can't be used with .personality directive");
UC.emitPersonalityLocNotes();
return true;
}
getTargetStreamer().emitCantUnwind();
return false;
}
/// parseDirectivePersonality
/// ::= .personality name
bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
MCAsmParser &Parser = getParser();
bool HasExistingPersonality = UC.hasPersonality();
// Parse the name of the personality routine
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(L, "unexpected input in .personality directive.");
StringRef Name(Parser.getTok().getIdentifier());
Parser.Lex();
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.personality' directive"))
return true;
UC.recordPersonality(L);
// Check the ordering of unwind directives
if (!UC.hasFnStart())
return Error(L, ".fnstart must precede .personality directive");
if (UC.cantUnwind()) {
Error(L, ".personality can't be used with .cantunwind directive");
UC.emitCantUnwindLocNotes();
return true;
}
if (UC.hasHandlerData()) {
Error(L, ".personality must precede .handlerdata directive");
UC.emitHandlerDataLocNotes();
return true;
}
if (HasExistingPersonality) {
Error(L, "multiple personality directives");
UC.emitPersonalityLocNotes();
return true;
}
MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
getTargetStreamer().emitPersonality(PR);
return false;
}
/// parseDirectiveHandlerData
/// ::= .handlerdata
bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.handlerdata' directive"))
return true;
UC.recordHandlerData(L);
// Check the ordering of unwind directives
if (!UC.hasFnStart())
return Error(L, ".fnstart must precede .personality directive");
if (UC.cantUnwind()) {
Error(L, ".handlerdata can't be used with .cantunwind directive");
UC.emitCantUnwindLocNotes();
return true;
}
getTargetStreamer().emitHandlerData();
return false;
}
/// parseDirectiveSetFP
/// ::= .setfp fpreg, spreg [, offset]
bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
MCAsmParser &Parser = getParser();
// Check the ordering of unwind directives
if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
check(UC.hasHandlerData(), L,
".setfp must precede .handlerdata directive"))
return true;
// Parse fpreg
SMLoc FPRegLoc = Parser.getTok().getLoc();
int FPReg = tryParseRegister();
if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
Parser.parseToken(AsmToken::Comma, "comma expected"))
return true;
// Parse spreg
SMLoc SPRegLoc = Parser.getTok().getLoc();
int SPReg = tryParseRegister();
if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
"register should be either $sp or the latest fp register"))
return true;
// Update the frame pointer register
UC.saveFPReg(FPReg);
// Parse offset
int64_t Offset = 0;
if (Parser.parseOptionalToken(AsmToken::Comma)) {
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar))
return Error(Parser.getTok().getLoc(), "'#' expected");
Parser.Lex(); // skip hash token.
const MCExpr *OffsetExpr;
SMLoc ExLoc = Parser.getTok().getLoc();
SMLoc EndLoc;
if (getParser().parseExpression(OffsetExpr, EndLoc))
return Error(ExLoc, "malformed setfp offset");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
if (check(!CE, ExLoc, "setfp offset must be an immediate"))
return true;
Offset = CE->getValue();
}
if (Parser.parseToken(AsmToken::EndOfStatement))
return true;
getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
static_cast<unsigned>(SPReg), Offset);
return false;
}
/// parseDirective
/// ::= .pad offset
bool ARMAsmParser::parseDirectivePad(SMLoc L) {
MCAsmParser &Parser = getParser();
// Check the ordering of unwind directives
if (!UC.hasFnStart())
return Error(L, ".fnstart must precede .pad directive");
if (UC.hasHandlerData())
return Error(L, ".pad must precede .handlerdata directive");
// Parse the offset
if (Parser.getTok().isNot(AsmToken::Hash) &&
Parser.getTok().isNot(AsmToken::Dollar))
return Error(Parser.getTok().getLoc(), "'#' expected");
Parser.Lex(); // skip hash token.
const MCExpr *OffsetExpr;
SMLoc ExLoc = Parser.getTok().getLoc();
SMLoc EndLoc;
if (getParser().parseExpression(OffsetExpr, EndLoc))
return Error(ExLoc, "malformed pad offset");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
if (!CE)
return Error(ExLoc, "pad offset must be an immediate");
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.pad' directive"))
return true;
getTargetStreamer().emitPad(CE->getValue());
return false;
}
/// parseDirectiveRegSave
/// ::= .save { registers }
/// ::= .vsave { registers }
bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
// Check the ordering of unwind directives
if (!UC.hasFnStart())
return Error(L, ".fnstart must precede .save or .vsave directives");
if (UC.hasHandlerData())
return Error(L, ".save or .vsave must precede .handlerdata directive");
// RAII object to make sure parsed operands are deleted.
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
// Parse the register list
if (parseRegisterList(Operands) ||
parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return true;
ARMOperand &Op = (ARMOperand &)*Operands[0];
if (!IsVector && !Op.isRegList())
return Error(L, ".save expects GPR registers");
if (IsVector && !Op.isDPRRegList())
return Error(L, ".vsave expects DPR registers");
getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
return false;
}
/// parseDirectiveInst
/// ::= .inst opcode [, ...]
/// ::= .inst.n opcode [, ...]
/// ::= .inst.w opcode [, ...]
bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
int Width = 4;
if (isThumb()) {
switch (Suffix) {
case 'n':
Width = 2;
break;
case 'w':
break;
default:
Width = 0;
break;
}
} else {
if (Suffix)
return Error(Loc, "width suffixes are invalid in ARM mode");
}
auto parseOne = [&]() -> bool {
const MCExpr *Expr;
if (getParser().parseExpression(Expr))
return true;
const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
if (!Value) {
return Error(Loc, "expected constant expression");
}
char CurSuffix = Suffix;
switch (Width) {
case 2:
if (Value->getValue() > 0xffff)
return Error(Loc, "inst.n operand is too big, use inst.w instead");
break;
case 4:
if (Value->getValue() > 0xffffffff)
return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
" operand is too big");
break;
case 0:
// Thumb mode, no width indicated. Guess from the opcode, if possible.
if (Value->getValue() < 0xe800)
CurSuffix = 'n';
else if (Value->getValue() >= 0xe8000000)
CurSuffix = 'w';
else
return Error(Loc, "cannot determine Thumb instruction size, "
"use inst.n/inst.w instead");
break;
default:
llvm_unreachable("only supported widths are 2 and 4");
}
getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
return false;
};
if (parseOptionalToken(AsmToken::EndOfStatement))
return Error(Loc, "expected expression following directive");
if (parseMany(parseOne))
return true;
return false;
}
/// parseDirectiveLtorg
/// ::= .ltorg | .pool
bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return true;
getTargetStreamer().emitCurrentConstantPool();
return false;
}
bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
const MCSection *Section = getStreamer().getCurrentSectionOnly();
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return true;
if (!Section) {
getStreamer().InitSections(false);
Section = getStreamer().getCurrentSectionOnly();
}
assert(Section && "must have section to emit alignment");
if (Section->UseCodeAlign())
getStreamer().emitCodeAlignment(2);
else
getStreamer().emitValueToAlignment(2);
return false;
}
/// parseDirectivePersonalityIndex
/// ::= .personalityindex index
bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
MCAsmParser &Parser = getParser();
bool HasExistingPersonality = UC.hasPersonality();
const MCExpr *IndexExpression;
SMLoc IndexLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(IndexExpression) ||
parseToken(AsmToken::EndOfStatement,
"unexpected token in '.personalityindex' directive")) {
return true;
}
UC.recordPersonalityIndex(L);
if (!UC.hasFnStart()) {
return Error(L, ".fnstart must precede .personalityindex directive");
}
if (UC.cantUnwind()) {
Error(L, ".personalityindex cannot be used with .cantunwind");
UC.emitCantUnwindLocNotes();
return true;
}
if (UC.hasHandlerData()) {
Error(L, ".personalityindex must precede .handlerdata directive");
UC.emitHandlerDataLocNotes();
return true;
}
if (HasExistingPersonality) {
Error(L, "multiple personality directives");
UC.emitPersonalityLocNotes();
return true;
}
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
if (!CE)
return Error(IndexLoc, "index must be a constant number");
if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
return Error(IndexLoc,
"personality routine index should be in range [0-3]");
getTargetStreamer().emitPersonalityIndex(CE->getValue());
return false;
}
/// parseDirectiveUnwindRaw
/// ::= .unwind_raw offset, opcode [, opcode...]
bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
MCAsmParser &Parser = getParser();
int64_t StackOffset;
const MCExpr *OffsetExpr;
SMLoc OffsetLoc = getLexer().getLoc();
if (!UC.hasFnStart())
return Error(L, ".fnstart must precede .unwind_raw directives");
if (getParser().parseExpression(OffsetExpr))
return Error(OffsetLoc, "expected expression");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
if (!CE)
return Error(OffsetLoc, "offset must be a constant");
StackOffset = CE->getValue();
if (Parser.parseToken(AsmToken::Comma, "expected comma"))
return true;
SmallVector<uint8_t, 16> Opcodes;
auto parseOne = [&]() -> bool {
const MCExpr *OE = nullptr;
SMLoc OpcodeLoc = getLexer().getLoc();
if (check(getLexer().is(AsmToken::EndOfStatement) ||
Parser.parseExpression(OE),
OpcodeLoc, "expected opcode expression"))
return true;
const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
if (!OC)
return Error(OpcodeLoc, "opcode value must be a constant");
const int64_t Opcode = OC->getValue();
if (Opcode & ~0xff)
return Error(OpcodeLoc, "invalid opcode");
Opcodes.push_back(uint8_t(Opcode));
return false;
};
// Must have at least 1 element
SMLoc OpcodeLoc = getLexer().getLoc();
if (parseOptionalToken(AsmToken::EndOfStatement))
return Error(OpcodeLoc, "expected opcode expression");
if (parseMany(parseOne))
return true;
getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
return false;
}
/// parseDirectiveTLSDescSeq
/// ::= .tlsdescseq tls-variable
bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Identifier))
return TokError("expected variable after '.tlsdescseq' directive");
const MCSymbolRefExpr *SRE =
MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
Lex();
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.tlsdescseq' directive"))
return true;
getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
return false;
}
/// parseDirectiveMovSP
/// ::= .movsp reg [, #offset]
bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
MCAsmParser &Parser = getParser();
if (!UC.hasFnStart())
return Error(L, ".fnstart must precede .movsp directives");
if (UC.getFPReg() != ARM::SP)
return Error(L, "unexpected .movsp directive");
SMLoc SPRegLoc = Parser.getTok().getLoc();
int SPReg = tryParseRegister();
if (SPReg == -1)
return Error(SPRegLoc, "register expected");
if (SPReg == ARM::SP || SPReg == ARM::PC)
return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
int64_t Offset = 0;
if (Parser.parseOptionalToken(AsmToken::Comma)) {
if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
return true;
const MCExpr *OffsetExpr;
SMLoc OffsetLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(OffsetExpr))
return Error(OffsetLoc, "malformed offset expression");
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
if (!CE)
return Error(OffsetLoc, "offset must be an immediate constant");
Offset = CE->getValue();
}
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.movsp' directive"))
return true;
getTargetStreamer().emitMovSP(SPReg, Offset);
UC.saveFPReg(SPReg);
return false;
}
/// parseDirectiveObjectArch
/// ::= .object_arch name
bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Identifier))
return Error(getLexer().getLoc(), "unexpected token");
StringRef Arch = Parser.getTok().getString();
SMLoc ArchLoc = Parser.getTok().getLoc();
Lex();
ARM::ArchKind ID = ARM::parseArch(Arch);
if (ID == ARM::ArchKind::INVALID)
return Error(ArchLoc, "unknown architecture '" + Arch + "'");
if (parseToken(AsmToken::EndOfStatement))
return true;
getTargetStreamer().emitObjectArch(ID);
return false;
}
/// parseDirectiveAlign
/// ::= .align
bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
// NOTE: if this is not the end of the statement, fall back to the target
// agnostic handling for this directive which will correctly handle this.
if (parseOptionalToken(AsmToken::EndOfStatement)) {
// '.align' is target specifically handled to mean 2**2 byte alignment.
const MCSection *Section = getStreamer().getCurrentSectionOnly();
assert(Section && "must have section to emit alignment");
if (Section->UseCodeAlign())
getStreamer().emitCodeAlignment(4, 0);
else
getStreamer().emitValueToAlignment(4, 0, 1, 0);
return false;
}
return true;
}
/// parseDirectiveThumbSet
/// ::= .thumb_set name, value
bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
MCAsmParser &Parser = getParser();
StringRef Name;
if (check(Parser.parseIdentifier(Name),
"expected identifier after '.thumb_set'") ||
parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
return true;
MCSymbol *Sym;
const MCExpr *Value;
if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
Parser, Sym, Value))
return true;
getTargetStreamer().emitThumbSet(Sym, Value);
return false;
}
/// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
}
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "ARMGenAsmMatcher.inc"
// Some diagnostics need to vary with subtarget features, so they are handled
// here. For example, the DPR class has either 16 or 32 registers, depending
// on the FPU available.
const char *
ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
switch (MatchError) {
// rGPR contains sp starting with ARMv8.
case Match_rGPR:
return hasV8Ops() ? "operand must be a register in range [r0, r14]"
: "operand must be a register in range [r0, r12] or r14";
// DPR contains 16 registers for some FPUs, and 32 for others.
case Match_DPR:
return hasD32() ? "operand must be a register in range [d0, d31]"
: "operand must be a register in range [d0, d15]";
case Match_DPR_RegList:
return hasD32() ? "operand must be a list of registers in range [d0, d31]"
: "operand must be a list of registers in range [d0, d15]";
// For all other diags, use the static string from tablegen.
default:
return getMatchKindDiag(MatchError);
}
}
// Process the list of near-misses, throwing away ones we don't want to report
// to the user, and converting the rest to a source location and string that
// should be reported.
void
ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
SmallVectorImpl<NearMissMessage> &NearMissesOut,
SMLoc IDLoc, OperandVector &Operands) {
// TODO: If operand didn't match, sub in a dummy one and run target
// predicate, so that we can avoid reporting near-misses that are invalid?
// TODO: Many operand types dont have SuperClasses set, so we report
// redundant ones.
// TODO: Some operands are superclasses of registers (e.g.
// MCK_RegShiftedImm), we don't have any way to represent that currently.
// TODO: This is not all ARM-specific, can some of it be factored out?
// Record some information about near-misses that we have already seen, so
// that we can avoid reporting redundant ones. For example, if there are
// variants of an instruction that take 8- and 16-bit immediates, we want
// to only report the widest one.
std::multimap<unsigned, unsigned> OperandMissesSeen;
SmallSet<FeatureBitset, 4> FeatureMissesSeen;
bool ReportedTooFewOperands = false;
// Process the near-misses in reverse order, so that we see more general ones
// first, and so can avoid emitting more specific ones.
for (NearMissInfo &I : reverse(NearMissesIn)) {
switch (I.getKind()) {
case NearMissInfo::NearMissOperand: {
SMLoc OperandLoc =
((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
const char *OperandDiag =
getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
// If we have already emitted a message for a superclass, don't also report
// the sub-class. We consider all operand classes that we don't have a
// specialised diagnostic for to be equal for the propose of this check,
// so that we don't report the generic error multiple times on the same
// operand.
unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
if (std::any_of(PrevReports.first, PrevReports.second,
[DupCheckMatchClass](
const std::pair<unsigned, unsigned> Pair) {
if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
return Pair.second == DupCheckMatchClass;
else
return isSubclass((MatchClassKind)DupCheckMatchClass,
(MatchClassKind)Pair.second);
}))
break;
OperandMissesSeen.insert(
std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
NearMissMessage Message;
Message.Loc = OperandLoc;
if (OperandDiag) {
Message.Message = OperandDiag;
} else if (I.getOperandClass() == InvalidMatchClass) {
Message.Message = "too many operands for instruction";
} else {
Message.Message = "invalid operand for instruction";
LLVM_DEBUG(
dbgs() << "Missing diagnostic string for operand class "
<< getMatchClassName((MatchClassKind)I.getOperandClass())
<< I.getOperandClass() << ", error " << I.getOperandError()
<< ", opcode " << MII.getName(I.getOpcode()) << "\n");
}
NearMissesOut.emplace_back(Message);
break;
}
case NearMissInfo::NearMissFeature: {
const FeatureBitset &MissingFeatures = I.getFeatures();
// Don't report the same set of features twice.
if (FeatureMissesSeen.count(MissingFeatures))
break;
FeatureMissesSeen.insert(MissingFeatures);
// Special case: don't report a feature set which includes arm-mode for
// targets that don't have ARM mode.
if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
break;
// Don't report any near-misses that both require switching instruction
// set, and adding other subtarget features.
if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
MissingFeatures.count() > 1)
break;
if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
MissingFeatures.count() > 1)
break;
if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
(MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
Feature_IsThumbBit})).any())
break;
if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
break;
NearMissMessage Message;
Message.Loc = IDLoc;
raw_svector_ostream OS(Message.Message);
OS << "instruction requires:";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
if (MissingFeatures.test(i))
OS << ' ' << getSubtargetFeatureName(i);
NearMissesOut.emplace_back(Message);
break;
}
case NearMissInfo::NearMissPredicate: {
NearMissMessage Message;
Message.Loc = IDLoc;
switch (I.getPredicateError()) {
case Match_RequiresNotITBlock:
Message.Message = "flag setting instruction only valid outside IT block";
break;
case Match_RequiresITBlock:
Message.Message = "instruction only valid inside IT block";
break;
case Match_RequiresV6:
Message.Message = "instruction variant requires ARMv6 or later";
break;
case Match_RequiresThumb2:
Message.Message = "instruction variant requires Thumb2";
break;
case Match_RequiresV8:
Message.Message = "instruction variant requires ARMv8 or later";
break;
case Match_RequiresFlagSetting:
Message.Message = "no flag-preserving variant of this instruction available";
break;
case Match_InvalidOperand:
Message.Message = "invalid operand for instruction";
break;
default:
llvm_unreachable("Unhandled target predicate error");
break;
}
NearMissesOut.emplace_back(Message);
break;
}
case NearMissInfo::NearMissTooFewOperands: {
if (!ReportedTooFewOperands) {
SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
NearMissesOut.emplace_back(NearMissMessage{
EndLoc, StringRef("too few operands for instruction")});
ReportedTooFewOperands = true;
}
break;
}
case NearMissInfo::NoNearMiss:
// This should never leave the matcher.
llvm_unreachable("not a near-miss");
break;
}
}
}
void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
SMLoc IDLoc, OperandVector &Operands) {
SmallVector<NearMissMessage, 4> Messages;
FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
if (Messages.size() == 0) {
// No near-misses were found, so the best we can do is "invalid
// instruction".
Error(IDLoc, "invalid instruction");
} else if (Messages.size() == 1) {
// One near miss was found, report it as the sole error.
Error(Messages[0].Loc, Messages[0].Message);
} else {
// More than one near miss, so report a generic "invalid instruction"
// error, followed by notes for each of the near-misses.
Error(IDLoc, "invalid instruction, any one of the following would fix this:");
for (auto &M : Messages) {
Note(M.Loc, M.Message);
}
}
}
/// parseDirectiveArchExtension
/// ::= .arch_extension [no]feature
bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
// FIXME: This structure should be moved inside ARMTargetParser
// when we start to table-generate them, and we can use the ARM
// flags below, that were generated by table-gen.
static const struct {
const uint64_t Kind;
const FeatureBitset ArchCheck;
const FeatureBitset Features;
} Extensions[] = {
{ ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} },
{ ARM::AEK_CRYPTO, {Feature_HasV8Bit},
{ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
{ ARM::AEK_FP, {Feature_HasV8Bit},
{ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
{ (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
{Feature_HasV7Bit, Feature_IsNotMClassBit},
{ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
{ ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit},
{ARM::FeatureMP} },
{ ARM::AEK_SIMD, {Feature_HasV8Bit},
{ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
{ ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} },
// FIXME: Only available in A-class, isel not predicated
{ ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} },
{ ARM::AEK_FP16, {Feature_HasV8_2aBit},
{ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
{ ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} },
{ ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} },
// FIXME: Unsupported extensions.
{ ARM::AEK_OS, {}, {} },
{ ARM::AEK_IWMMXT, {}, {} },
{ ARM::AEK_IWMMXT2, {}, {} },
{ ARM::AEK_MAVERICK, {}, {} },
{ ARM::AEK_XSCALE, {}, {} },
};
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Identifier))
return Error(getLexer().getLoc(), "expected architecture extension name");
StringRef Name = Parser.getTok().getString();
SMLoc ExtLoc = Parser.getTok().getLoc();
Lex();
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.arch_extension' directive"))
return true;
bool EnableFeature = true;
if (Name.startswith_lower("no")) {
EnableFeature = false;
Name = Name.substr(2);
}
uint64_t FeatureKind = ARM::parseArchExt(Name);
if (FeatureKind == ARM::AEK_INVALID)
return Error(ExtLoc, "unknown architectural extension: " + Name);
for (const auto &Extension : Extensions) {
if (Extension.Kind != FeatureKind)
continue;
if (Extension.Features.none())
return Error(ExtLoc, "unsupported architectural extension: " + Name);
if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
return Error(ExtLoc, "architectural extension '" + Name +
"' is not "
"allowed for the current base architecture");
MCSubtargetInfo &STI = copySTI();
if (EnableFeature) {
STI.SetFeatureBitsTransitively(Extension.Features);
} else {
STI.ClearFeatureBitsTransitively(Extension.Features);
}
FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
setAvailableFeatures(Features);
return false;
}
return Error(ExtLoc, "unknown architectural extension: " + Name);
}
// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
// If the kind is a token for a literal immediate, check if our asm
// operand matches. This is for InstAliases which have a fixed-value
// immediate in the syntax.
switch (Kind) {
default: break;
case MCK__HASH_0:
if (Op.isImm())
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
if (CE->getValue() == 0)
return Match_Success;
break;
case MCK__HASH_8:
if (Op.isImm())
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
if (CE->getValue() == 8)
return Match_Success;
break;
case MCK__HASH_16:
if (Op.isImm())
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
if (CE->getValue() == 16)
return Match_Success;
break;
case MCK_ModImm:
if (Op.isImm()) {
const MCExpr *SOExpr = Op.getImm();
int64_t Value;
if (!SOExpr->evaluateAsAbsolute(Value))
return Match_Success;
assert((Value >= std::numeric_limits<int32_t>::min() &&
Value <= std::numeric_limits<uint32_t>::max()) &&
"expression value must be representable in 32 bits");
}
break;
case MCK_rGPR:
if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
return Match_Success;
return Match_rGPR;
case MCK_GPRPair:
if (Op.isReg() &&
MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
return Match_Success;
break;
}
return Match_InvalidOperand;
}
bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
StringRef ExtraToken) {
if (!hasMVE())
return false;
return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
Mnemonic.startswith("vqabs") ||
(Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
Mnemonic.startswith("vldrb") ||
(Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
(Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
Mnemonic.startswith("vcvt") ||
MS.isVPTPredicableCDEInstr(Mnemonic) ||
(Mnemonic.startswith("vmov") &&
!(ExtraToken == ".f16" || ExtraToken == ".32" ||
ExtraToken == ".16" || ExtraToken == ".8"));
}