486 lines
17 KiB
C++
486 lines
17 KiB
C++
//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ARM specific subclass of TargetSubtargetInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
|
|
#include "ARMCallLowering.h"
|
|
#include "ARMLegalizerInfo.h"
|
|
#include "ARMRegisterBankInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMFrameLowering.h"
|
|
#include "ARMInstrInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "MCTargetDesc/ARMMCTargetDesc.h"
|
|
#include "Thumb1FrameLowering.h"
|
|
#include "Thumb1InstrInfo.h"
|
|
#include "Thumb2InstrInfo.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-subtarget"
|
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#include "ARMGenSubtargetInfo.inc"
|
|
|
|
static cl::opt<bool>
|
|
UseFusedMulOps("arm-use-mulops",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
enum ITMode {
|
|
DefaultIT,
|
|
RestrictedIT,
|
|
NoRestrictedIT
|
|
};
|
|
|
|
static cl::opt<ITMode>
|
|
IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
|
|
cl::ZeroOrMore,
|
|
cl::values(clEnumValN(DefaultIT, "arm-default-it",
|
|
"Generate IT block based on arch"),
|
|
clEnumValN(RestrictedIT, "arm-restrict-it",
|
|
"Disallow deprecated IT based on ARMv8"),
|
|
clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
|
|
"Allow IT blocks based on ARMv7")));
|
|
|
|
/// ForceFastISel - Use the fast-isel, even for subtargets where it is not
|
|
/// currently supported (for testing only).
|
|
static cl::opt<bool>
|
|
ForceFastISel("arm-force-fast-isel",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
|
|
/// so that we can use initializer lists for subtarget initialization.
|
|
ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
|
|
StringRef FS) {
|
|
initializeEnvironment();
|
|
initSubtargetFeatures(CPU, FS);
|
|
return *this;
|
|
}
|
|
|
|
ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
|
|
StringRef FS) {
|
|
ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
|
|
if (STI.isThumb1Only())
|
|
return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
|
|
|
|
return new ARMFrameLowering(STI);
|
|
}
|
|
|
|
ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
|
|
const std::string &FS,
|
|
const ARMBaseTargetMachine &TM, bool IsLittle,
|
|
bool MinSize)
|
|
: ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
|
|
UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize),
|
|
IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM),
|
|
FrameLowering(initializeFrameLowering(CPU, FS)),
|
|
// At this point initializeSubtargetDependencies has been called so
|
|
// we can query directly.
|
|
InstrInfo(isThumb1Only()
|
|
? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
|
|
: !isThumb()
|
|
? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
|
|
: (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
|
|
TLInfo(TM, *this) {
|
|
|
|
CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
|
|
Legalizer.reset(new ARMLegalizerInfo(*this));
|
|
|
|
auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
|
|
|
|
// FIXME: At this point, we can't rely on Subtarget having RBI.
|
|
// It's awkward to mix passing RBI and the Subtarget; should we pass
|
|
// TII/TRI as well?
|
|
InstSelector.reset(createARMInstructionSelector(
|
|
*static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
|
|
|
|
RegBankInfo.reset(RBI);
|
|
}
|
|
|
|
const CallLowering *ARMSubtarget::getCallLowering() const {
|
|
return CallLoweringInfo.get();
|
|
}
|
|
|
|
InstructionSelector *ARMSubtarget::getInstructionSelector() const {
|
|
return InstSelector.get();
|
|
}
|
|
|
|
const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
|
|
return Legalizer.get();
|
|
}
|
|
|
|
const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
|
|
return RegBankInfo.get();
|
|
}
|
|
|
|
bool ARMSubtarget::isXRaySupported() const {
|
|
// We don't currently suppport Thumb, but Windows requires Thumb.
|
|
return hasV6Ops() && hasARMOps() && !isTargetWindows();
|
|
}
|
|
|
|
void ARMSubtarget::initializeEnvironment() {
|
|
// MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
|
|
// directly from it, but we can try to make sure they're consistent when both
|
|
// available.
|
|
UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
|
|
Options.ExceptionModel == ExceptionHandling::None) ||
|
|
Options.ExceptionModel == ExceptionHandling::SjLj;
|
|
assert((!TM.getMCAsmInfo() ||
|
|
(TM.getMCAsmInfo()->getExceptionHandlingType() ==
|
|
ExceptionHandling::SjLj) == UseSjLjEH) &&
|
|
"inconsistent sjlj choice between CodeGen and MC");
|
|
}
|
|
|
|
void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
|
|
if (CPUString.empty()) {
|
|
CPUString = "generic";
|
|
|
|
if (isTargetDarwin()) {
|
|
StringRef ArchName = TargetTriple.getArchName();
|
|
ARM::ArchKind AK = ARM::parseArch(ArchName);
|
|
if (AK == ARM::ArchKind::ARMV7S)
|
|
// Default to the Swift CPU when targeting armv7s/thumbv7s.
|
|
CPUString = "swift";
|
|
else if (AK == ARM::ArchKind::ARMV7K)
|
|
// Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
|
|
// ARMv7k does not use SjLj exception handling.
|
|
CPUString = "cortex-a7";
|
|
}
|
|
}
|
|
|
|
// Insert the architecture feature derived from the target triple into the
|
|
// feature string. This is important for setting features that are implied
|
|
// based on the architecture version.
|
|
std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
|
|
if (!FS.empty()) {
|
|
if (!ArchFS.empty())
|
|
ArchFS = (Twine(ArchFS) + "," + FS).str();
|
|
else
|
|
ArchFS = std::string(FS);
|
|
}
|
|
ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS);
|
|
|
|
// FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
|
|
// Assert this for now to make the change obvious.
|
|
assert(hasV6T2Ops() || !hasThumb2());
|
|
|
|
// Execute only support requires movt support
|
|
if (genExecuteOnly()) {
|
|
NoMovt = false;
|
|
assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
|
|
}
|
|
|
|
// Keep a pointer to static instruction cost data for the specified CPU.
|
|
SchedModel = getSchedModelForCPU(CPUString);
|
|
|
|
// Initialize scheduling itinerary for the specified CPU.
|
|
InstrItins = getInstrItineraryForCPU(CPUString);
|
|
|
|
// FIXME: this is invalid for WindowsCE
|
|
if (isTargetWindows())
|
|
NoARM = true;
|
|
|
|
if (isAAPCS_ABI())
|
|
stackAlignment = Align(8);
|
|
if (isTargetNaCl() || isAAPCS16_ABI())
|
|
stackAlignment = Align(16);
|
|
|
|
// FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
|
|
// emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
|
|
// the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
|
|
// support in the assembler and linker to be used. This would need to be
|
|
// fixed to fully support tail calls in Thumb1.
|
|
//
|
|
// For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M
|
|
// baseline, since the LDM/POP instruction on Thumb doesn't take LR. This
|
|
// means if we need to reload LR, it takes extra instructions, which outweighs
|
|
// the value of the tail call; but here we don't know yet whether LR is going
|
|
// to be used. We take the optimistic approach of generating the tail call and
|
|
// perhaps taking a hit if we need to restore the LR.
|
|
|
|
// Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
|
|
// but we need to make sure there are enough registers; the only valid
|
|
// registers are the 4 used for parameters. We don't currently do this
|
|
// case.
|
|
|
|
SupportsTailCall = !isThumb() || hasV8MBaselineOps();
|
|
|
|
if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
|
|
SupportsTailCall = false;
|
|
|
|
switch (IT) {
|
|
case DefaultIT:
|
|
RestrictIT = hasV8Ops() && !hasMinSize();
|
|
break;
|
|
case RestrictedIT:
|
|
RestrictIT = true;
|
|
break;
|
|
case NoRestrictedIT:
|
|
RestrictIT = false;
|
|
break;
|
|
}
|
|
|
|
// NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
|
|
const FeatureBitset &Bits = getFeatureBits();
|
|
if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
|
|
(Options.UnsafeFPMath || isTargetDarwin()))
|
|
UseNEONForSinglePrecisionFP = true;
|
|
|
|
if (isRWPI())
|
|
ReserveR9 = true;
|
|
|
|
// If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
|
|
if (MVEVectorCostFactor == 0)
|
|
MVEVectorCostFactor = 2;
|
|
|
|
// FIXME: Teach TableGen to deal with these instead of doing it manually here.
|
|
switch (ARMProcFamily) {
|
|
case Others:
|
|
case CortexA5:
|
|
break;
|
|
case CortexA7:
|
|
LdStMultipleTiming = DoubleIssue;
|
|
break;
|
|
case CortexA8:
|
|
LdStMultipleTiming = DoubleIssue;
|
|
break;
|
|
case CortexA9:
|
|
LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
break;
|
|
case CortexA12:
|
|
break;
|
|
case CortexA15:
|
|
MaxInterleaveFactor = 2;
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
PartialUpdateClearance = 12;
|
|
break;
|
|
case CortexA17:
|
|
case CortexA32:
|
|
case CortexA35:
|
|
case CortexA53:
|
|
case CortexA55:
|
|
case CortexA57:
|
|
case CortexA72:
|
|
case CortexA73:
|
|
case CortexA75:
|
|
case CortexA76:
|
|
case CortexA77:
|
|
case CortexA78:
|
|
case CortexA78C:
|
|
case CortexR4:
|
|
case CortexR4F:
|
|
case CortexR5:
|
|
case CortexR7:
|
|
case CortexM3:
|
|
case CortexM7:
|
|
case CortexR52:
|
|
case CortexX1:
|
|
break;
|
|
case Exynos:
|
|
LdStMultipleTiming = SingleIssuePlusExtras;
|
|
MaxInterleaveFactor = 4;
|
|
if (!isThumb())
|
|
PrefLoopLogAlignment = 3;
|
|
break;
|
|
case Kryo:
|
|
break;
|
|
case Krait:
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
break;
|
|
case NeoverseN1:
|
|
case NeoverseN2:
|
|
case NeoverseV1:
|
|
break;
|
|
case Swift:
|
|
MaxInterleaveFactor = 2;
|
|
LdStMultipleTiming = SingleIssuePlusExtras;
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
PartialUpdateClearance = 12;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
|
|
|
|
bool ARMSubtarget::isAPCS_ABI() const {
|
|
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
|
|
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
|
|
}
|
|
bool ARMSubtarget::isAAPCS_ABI() const {
|
|
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
|
|
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
|
|
TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
|
|
}
|
|
bool ARMSubtarget::isAAPCS16_ABI() const {
|
|
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
|
|
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
|
|
}
|
|
|
|
bool ARMSubtarget::isROPI() const {
|
|
return TM.getRelocationModel() == Reloc::ROPI ||
|
|
TM.getRelocationModel() == Reloc::ROPI_RWPI;
|
|
}
|
|
bool ARMSubtarget::isRWPI() const {
|
|
return TM.getRelocationModel() == Reloc::RWPI ||
|
|
TM.getRelocationModel() == Reloc::ROPI_RWPI;
|
|
}
|
|
|
|
bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
|
|
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
|
|
return true;
|
|
|
|
// 32 bit macho has no relocation for a-b if a is undefined, even if b is in
|
|
// the section that is being relocated. This means we have to use o load even
|
|
// for GVs that are known to be local to the dso.
|
|
if (isTargetMachO() && TM.isPositionIndependent() &&
|
|
(GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
|
|
return isTargetELF() && TM.isPositionIndependent() &&
|
|
!TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
|
|
}
|
|
|
|
unsigned ARMSubtarget::getMispredictionPenalty() const {
|
|
return SchedModel.MispredictPenalty;
|
|
}
|
|
|
|
bool ARMSubtarget::enableMachineScheduler() const {
|
|
// The MachineScheduler can increase register usage, so we use more high
|
|
// registers and end up with more T2 instructions that cannot be converted to
|
|
// T1 instructions. At least until we do better at converting to thumb1
|
|
// instructions, on cortex-m at Oz where we are size-paranoid, don't use the
|
|
// Machine scheduler, relying on the DAG register pressure scheduler instead.
|
|
if (isMClass() && hasMinSize())
|
|
return false;
|
|
// Enable the MachineScheduler before register allocation for subtargets
|
|
// with the use-misched feature.
|
|
return useMachineScheduler();
|
|
}
|
|
|
|
bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; }
|
|
|
|
// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
|
|
bool ARMSubtarget::enablePostRAScheduler() const {
|
|
if (enableMachineScheduler())
|
|
return false;
|
|
if (disablePostRAScheduler())
|
|
return false;
|
|
// Thumb1 cores will generally not benefit from post-ra scheduling
|
|
return !isThumb1Only();
|
|
}
|
|
|
|
bool ARMSubtarget::enablePostRAMachineScheduler() const {
|
|
if (!enableMachineScheduler())
|
|
return false;
|
|
if (disablePostRAScheduler())
|
|
return false;
|
|
return !isThumb1Only();
|
|
}
|
|
|
|
bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
|
|
|
|
bool ARMSubtarget::useStride4VFPs() const {
|
|
// For general targets, the prologue can grow when VFPs are allocated with
|
|
// stride 4 (more vpush instructions). But WatchOS uses a compact unwind
|
|
// format which it's more important to get right.
|
|
return isTargetWatchABI() ||
|
|
(useWideStrideVFP() && !OptMinSize);
|
|
}
|
|
|
|
bool ARMSubtarget::useMovt() const {
|
|
// NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
|
|
// immediates as it is inherently position independent, and may be out of
|
|
// range otherwise.
|
|
return !NoMovt && hasV8MBaselineOps() &&
|
|
(isTargetWindows() || !OptMinSize || genExecuteOnly());
|
|
}
|
|
|
|
bool ARMSubtarget::useFastISel() const {
|
|
// Enable fast-isel for any target, for testing only.
|
|
if (ForceFastISel)
|
|
return true;
|
|
|
|
// Limit fast-isel to the targets that are or have been tested.
|
|
if (!hasV6Ops())
|
|
return false;
|
|
|
|
// Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
|
|
return TM.Options.EnableFastISel &&
|
|
((isTargetMachO() && !isThumb1Only()) ||
|
|
(isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
|
|
}
|
|
|
|
unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
|
|
// The GPR register class has multiple possible allocation orders, with
|
|
// tradeoffs preferred by different sub-architectures and optimisation goals.
|
|
// The allocation orders are:
|
|
// 0: (the default tablegen order, not used)
|
|
// 1: r14, r0-r13
|
|
// 2: r0-r7
|
|
// 3: r0-r7, r12, lr, r8-r11
|
|
// Note that the register allocator will change this order so that
|
|
// callee-saved registers are used later, as they require extra work in the
|
|
// prologue/epilogue (though we sometimes override that).
|
|
|
|
// For thumb1-only targets, only the low registers are allocatable.
|
|
if (isThumb1Only())
|
|
return 2;
|
|
|
|
// Allocate low registers first, so we can select more 16-bit instructions.
|
|
// We also (in ignoreCSRForAllocationOrder) override the default behaviour
|
|
// with regards to callee-saved registers, because pushing extra registers is
|
|
// much cheaper (in terms of code size) than using high registers. After
|
|
// that, we allocate r12 (doesn't need to be saved), lr (saving it means we
|
|
// can return with the pop, don't need an extra "bx lr") and then the rest of
|
|
// the high registers.
|
|
if (isThumb2() && MF.getFunction().hasMinSize())
|
|
return 3;
|
|
|
|
// Otherwise, allocate in the default order, using LR first because saving it
|
|
// allows a shorter epilogue sequence.
|
|
return 1;
|
|
}
|
|
|
|
bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
|
|
unsigned PhysReg) const {
|
|
// To minimize code size in Thumb2, we prefer the usage of low regs (lower
|
|
// cost per use) so we can use narrow encoding. By default, caller-saved
|
|
// registers (e.g. lr, r12) are always allocated first, regardless of
|
|
// their cost per use. When optForMinSize, we prefer the low regs even if
|
|
// they are CSR because usually push/pop can be folded into existing ones.
|
|
return isThumb2() && MF.getFunction().hasMinSize() &&
|
|
ARM::GPRRegClass.contains(PhysReg);
|
|
}
|