llvm-for-llvmta/lib/Target/AMDGPU/Utils/AMDGPUPALMetadata.cpp

816 lines
30 KiB
C++

//===-- AMDGPUPALMetadata.cpp - Accumulate and print AMDGPU PAL metadata -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This class has methods called by AMDGPUAsmPrinter to accumulate and print
/// the PAL metadata.
//
//===----------------------------------------------------------------------===//
//
#include "AMDGPUPALMetadata.h"
#include "AMDGPUPTNote.h"
#include "SIDefines.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/AMDGPUMetadata.h"
#include "llvm/Support/EndianStream.h"
using namespace llvm;
using namespace llvm::AMDGPU;
// Read the PAL metadata from IR metadata, where it was put by the frontend.
void AMDGPUPALMetadata::readFromIR(Module &M) {
auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata.msgpack");
if (NamedMD && NamedMD->getNumOperands()) {
// This is the new msgpack format for metadata. It is a NamedMD containing
// an MDTuple containing an MDString containing the msgpack data.
BlobType = ELF::NT_AMDGPU_METADATA;
auto MDN = dyn_cast<MDTuple>(NamedMD->getOperand(0));
if (MDN && MDN->getNumOperands()) {
if (auto MDS = dyn_cast<MDString>(MDN->getOperand(0)))
setFromMsgPackBlob(MDS->getString());
}
return;
}
BlobType = ELF::NT_AMD_AMDGPU_PAL_METADATA;
NamedMD = M.getNamedMetadata("amdgpu.pal.metadata");
if (!NamedMD || !NamedMD->getNumOperands()) {
// Emit msgpack metadata by default
BlobType = ELF::NT_AMDGPU_METADATA;
return;
}
// This is the old reg=value pair format for metadata. It is a NamedMD
// containing an MDTuple containing a number of MDNodes each of which is an
// integer value, and each two integer values forms a key=value pair that we
// store as Registers[key]=value in the map.
auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0));
if (!Tuple)
return;
for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) {
auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I));
auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1));
if (!Key || !Val)
continue;
setRegister(Key->getZExtValue(), Val->getZExtValue());
}
}
// Set PAL metadata from a binary blob from the applicable .note record.
// Returns false if bad format. Blob must remain valid for the lifetime of the
// Metadata.
bool AMDGPUPALMetadata::setFromBlob(unsigned Type, StringRef Blob) {
BlobType = Type;
if (Type == ELF::NT_AMD_AMDGPU_PAL_METADATA)
return setFromLegacyBlob(Blob);
return setFromMsgPackBlob(Blob);
}
// Set PAL metadata from legacy (array of key=value pairs) blob.
bool AMDGPUPALMetadata::setFromLegacyBlob(StringRef Blob) {
auto Data = reinterpret_cast<const uint32_t *>(Blob.data());
for (unsigned I = 0; I != Blob.size() / sizeof(uint32_t) / 2; ++I)
setRegister(Data[I * 2], Data[I * 2 + 1]);
return true;
}
// Set PAL metadata from msgpack blob.
bool AMDGPUPALMetadata::setFromMsgPackBlob(StringRef Blob) {
msgpack::Reader Reader(Blob);
return MsgPackDoc.readFromBlob(Blob, /*Multi=*/false);
}
// Given the calling convention, calculate the register number for rsrc1. In
// principle the register number could change in future hardware, but we know
// it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so
// we can use fixed values.
static unsigned getRsrc1Reg(CallingConv::ID CC) {
switch (CC) {
default:
return PALMD::R_2E12_COMPUTE_PGM_RSRC1;
case CallingConv::AMDGPU_LS:
return PALMD::R_2D4A_SPI_SHADER_PGM_RSRC1_LS;
case CallingConv::AMDGPU_HS:
return PALMD::R_2D0A_SPI_SHADER_PGM_RSRC1_HS;
case CallingConv::AMDGPU_ES:
return PALMD::R_2CCA_SPI_SHADER_PGM_RSRC1_ES;
case CallingConv::AMDGPU_GS:
return PALMD::R_2C8A_SPI_SHADER_PGM_RSRC1_GS;
case CallingConv::AMDGPU_VS:
return PALMD::R_2C4A_SPI_SHADER_PGM_RSRC1_VS;
case CallingConv::AMDGPU_PS:
return PALMD::R_2C0A_SPI_SHADER_PGM_RSRC1_PS;
}
}
// Calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used
// with a constant offset to access any non-register shader-specific PAL
// metadata key.
static unsigned getScratchSizeKey(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_PS:
return PALMD::Key::PS_SCRATCH_SIZE;
case CallingConv::AMDGPU_VS:
return PALMD::Key::VS_SCRATCH_SIZE;
case CallingConv::AMDGPU_GS:
return PALMD::Key::GS_SCRATCH_SIZE;
case CallingConv::AMDGPU_ES:
return PALMD::Key::ES_SCRATCH_SIZE;
case CallingConv::AMDGPU_HS:
return PALMD::Key::HS_SCRATCH_SIZE;
case CallingConv::AMDGPU_LS:
return PALMD::Key::LS_SCRATCH_SIZE;
default:
return PALMD::Key::CS_SCRATCH_SIZE;
}
}
// Set the rsrc1 register in the metadata for a particular shader stage.
// In fact this ORs the value into any previous setting of the register.
void AMDGPUPALMetadata::setRsrc1(CallingConv::ID CC, unsigned Val) {
setRegister(getRsrc1Reg(CC), Val);
}
// Set the rsrc2 register in the metadata for a particular shader stage.
// In fact this ORs the value into any previous setting of the register.
void AMDGPUPALMetadata::setRsrc2(CallingConv::ID CC, unsigned Val) {
setRegister(getRsrc1Reg(CC) + 1, Val);
}
// Set the SPI_PS_INPUT_ENA register in the metadata.
// In fact this ORs the value into any previous setting of the register.
void AMDGPUPALMetadata::setSpiPsInputEna(unsigned Val) {
setRegister(PALMD::R_A1B3_SPI_PS_INPUT_ENA, Val);
}
// Set the SPI_PS_INPUT_ADDR register in the metadata.
// In fact this ORs the value into any previous setting of the register.
void AMDGPUPALMetadata::setSpiPsInputAddr(unsigned Val) {
setRegister(PALMD::R_A1B4_SPI_PS_INPUT_ADDR, Val);
}
// Get a register from the metadata, or 0 if not currently set.
unsigned AMDGPUPALMetadata::getRegister(unsigned Reg) {
auto Regs = getRegisters();
auto It = Regs.find(MsgPackDoc.getNode(Reg));
if (It == Regs.end())
return 0;
auto N = It->second;
if (N.getKind() != msgpack::Type::UInt)
return 0;
return N.getUInt();
}
// Set a register in the metadata.
// In fact this ORs the value into any previous setting of the register.
void AMDGPUPALMetadata::setRegister(unsigned Reg, unsigned Val) {
if (!isLegacy()) {
// In the new MsgPack format, ignore register numbered >= 0x10000000. It
// is a PAL ABI pseudo-register in the old non-MsgPack format.
if (Reg >= 0x10000000)
return;
}
auto &N = getRegisters()[MsgPackDoc.getNode(Reg)];
if (N.getKind() == msgpack::Type::UInt)
Val |= N.getUInt();
N = N.getDocument()->getNode(Val);
}
// Set the entry point name for one shader.
void AMDGPUPALMetadata::setEntryPoint(unsigned CC, StringRef Name) {
if (isLegacy())
return;
// Msgpack format.
getHwStage(CC)[".entry_point"] = MsgPackDoc.getNode(Name, /*Copy=*/true);
}
// Set the number of used vgprs in the metadata. This is an optional
// advisory record for logging etc; wave dispatch actually uses the rsrc1
// register for the shader stage to determine the number of vgprs to
// allocate.
void AMDGPUPALMetadata::setNumUsedVgprs(CallingConv::ID CC, unsigned Val) {
if (isLegacy()) {
// Old non-msgpack format.
unsigned NumUsedVgprsKey = getScratchSizeKey(CC) +
PALMD::Key::VS_NUM_USED_VGPRS -
PALMD::Key::VS_SCRATCH_SIZE;
setRegister(NumUsedVgprsKey, Val);
return;
}
// Msgpack format.
getHwStage(CC)[".vgpr_count"] = MsgPackDoc.getNode(Val);
}
// Set the number of used sgprs in the metadata. This is an optional advisory
// record for logging etc; wave dispatch actually uses the rsrc1 register for
// the shader stage to determine the number of sgprs to allocate.
void AMDGPUPALMetadata::setNumUsedSgprs(CallingConv::ID CC, unsigned Val) {
if (isLegacy()) {
// Old non-msgpack format.
unsigned NumUsedSgprsKey = getScratchSizeKey(CC) +
PALMD::Key::VS_NUM_USED_SGPRS -
PALMD::Key::VS_SCRATCH_SIZE;
setRegister(NumUsedSgprsKey, Val);
return;
}
// Msgpack format.
getHwStage(CC)[".sgpr_count"] = MsgPackDoc.getNode(Val);
}
// Set the scratch size in the metadata.
void AMDGPUPALMetadata::setScratchSize(CallingConv::ID CC, unsigned Val) {
if (isLegacy()) {
// Old non-msgpack format.
setRegister(getScratchSizeKey(CC), Val);
return;
}
// Msgpack format.
getHwStage(CC)[".scratch_memory_size"] = MsgPackDoc.getNode(Val);
}
// Set the stack frame size of a function in the metadata.
void AMDGPUPALMetadata::setFunctionScratchSize(const MachineFunction &MF,
unsigned Val) {
auto Node = getShaderFunction(MF.getFunction().getName());
Node[".stack_frame_size_in_bytes"] = MsgPackDoc.getNode(Val);
}
// Set the hardware register bit in PAL metadata to enable wave32 on the
// shader of the given calling convention.
void AMDGPUPALMetadata::setWave32(unsigned CC) {
switch (CC) {
case CallingConv::AMDGPU_HS:
setRegister(PALMD::R_A2D5_VGT_SHADER_STAGES_EN, S_028B54_HS_W32_EN(1));
break;
case CallingConv::AMDGPU_GS:
setRegister(PALMD::R_A2D5_VGT_SHADER_STAGES_EN, S_028B54_GS_W32_EN(1));
break;
case CallingConv::AMDGPU_VS:
setRegister(PALMD::R_A2D5_VGT_SHADER_STAGES_EN, S_028B54_VS_W32_EN(1));
break;
case CallingConv::AMDGPU_PS:
setRegister(PALMD::R_A1B6_SPI_PS_IN_CONTROL, S_0286D8_PS_W32_EN(1));
break;
case CallingConv::AMDGPU_CS:
setRegister(PALMD::R_2E00_COMPUTE_DISPATCH_INITIATOR,
S_00B800_CS_W32_EN(1));
break;
}
}
// Convert a register number to name, for display by toString().
// Returns nullptr if none.
static const char *getRegisterName(unsigned RegNum) {
// Table of registers.
static const struct RegInfo {
unsigned Num;
const char *Name;
} RegInfoTable[] = {
// Registers that code generation sets/modifies metadata for.
{PALMD::R_2C4A_SPI_SHADER_PGM_RSRC1_VS, "SPI_SHADER_PGM_RSRC1_VS"},
{PALMD::R_2C4A_SPI_SHADER_PGM_RSRC1_VS + 1, "SPI_SHADER_PGM_RSRC2_VS"},
{PALMD::R_2D4A_SPI_SHADER_PGM_RSRC1_LS, "SPI_SHADER_PGM_RSRC1_LS"},
{PALMD::R_2D4A_SPI_SHADER_PGM_RSRC1_LS + 1, "SPI_SHADER_PGM_RSRC2_LS"},
{PALMD::R_2D0A_SPI_SHADER_PGM_RSRC1_HS, "SPI_SHADER_PGM_RSRC1_HS"},
{PALMD::R_2D0A_SPI_SHADER_PGM_RSRC1_HS + 1, "SPI_SHADER_PGM_RSRC2_HS"},
{PALMD::R_2CCA_SPI_SHADER_PGM_RSRC1_ES, "SPI_SHADER_PGM_RSRC1_ES"},
{PALMD::R_2CCA_SPI_SHADER_PGM_RSRC1_ES + 1, "SPI_SHADER_PGM_RSRC2_ES"},
{PALMD::R_2C8A_SPI_SHADER_PGM_RSRC1_GS, "SPI_SHADER_PGM_RSRC1_GS"},
{PALMD::R_2C8A_SPI_SHADER_PGM_RSRC1_GS + 1, "SPI_SHADER_PGM_RSRC2_GS"},
{PALMD::R_2E00_COMPUTE_DISPATCH_INITIATOR, "COMPUTE_DISPATCH_INITIATOR"},
{PALMD::R_2E12_COMPUTE_PGM_RSRC1, "COMPUTE_PGM_RSRC1"},
{PALMD::R_2E12_COMPUTE_PGM_RSRC1 + 1, "COMPUTE_PGM_RSRC2"},
{PALMD::R_2C0A_SPI_SHADER_PGM_RSRC1_PS, "SPI_SHADER_PGM_RSRC1_PS"},
{PALMD::R_2C0A_SPI_SHADER_PGM_RSRC1_PS + 1, "SPI_SHADER_PGM_RSRC2_PS"},
{PALMD::R_A1B3_SPI_PS_INPUT_ENA, "SPI_PS_INPUT_ENA"},
{PALMD::R_A1B4_SPI_PS_INPUT_ADDR, "SPI_PS_INPUT_ADDR"},
{PALMD::R_A1B6_SPI_PS_IN_CONTROL, "SPI_PS_IN_CONTROL"},
{PALMD::R_A2D5_VGT_SHADER_STAGES_EN, "VGT_SHADER_STAGES_EN"},
// Registers not known to code generation.
{0x2c07, "SPI_SHADER_PGM_RSRC3_PS"},
{0x2c46, "SPI_SHADER_PGM_RSRC3_VS"},
{0x2c87, "SPI_SHADER_PGM_RSRC3_GS"},
{0x2cc7, "SPI_SHADER_PGM_RSRC3_ES"},
{0x2d07, "SPI_SHADER_PGM_RSRC3_HS"},
{0x2d47, "SPI_SHADER_PGM_RSRC3_LS"},
{0xa1c3, "SPI_SHADER_POS_FORMAT"},
{0xa1b1, "SPI_VS_OUT_CONFIG"},
{0xa207, "PA_CL_VS_OUT_CNTL"},
{0xa204, "PA_CL_CLIP_CNTL"},
{0xa206, "PA_CL_VTE_CNTL"},
{0xa2f9, "PA_SU_VTX_CNTL"},
{0xa293, "PA_SC_MODE_CNTL_1"},
{0xa2a1, "VGT_PRIMITIVEID_EN"},
{0x2c81, "SPI_SHADER_PGM_RSRC4_GS"},
{0x2e18, "COMPUTE_TMPRING_SIZE"},
{0xa1b5, "SPI_INTERP_CONTROL_0"},
{0xa1ba, "SPI_TMPRING_SIZE"},
{0xa1c4, "SPI_SHADER_Z_FORMAT"},
{0xa1c5, "SPI_SHADER_COL_FORMAT"},
{0xa203, "DB_SHADER_CONTROL"},
{0xa08f, "CB_SHADER_MASK"},
{0xa191, "SPI_PS_INPUT_CNTL_0"},
{0xa192, "SPI_PS_INPUT_CNTL_1"},
{0xa193, "SPI_PS_INPUT_CNTL_2"},
{0xa194, "SPI_PS_INPUT_CNTL_3"},
{0xa195, "SPI_PS_INPUT_CNTL_4"},
{0xa196, "SPI_PS_INPUT_CNTL_5"},
{0xa197, "SPI_PS_INPUT_CNTL_6"},
{0xa198, "SPI_PS_INPUT_CNTL_7"},
{0xa199, "SPI_PS_INPUT_CNTL_8"},
{0xa19a, "SPI_PS_INPUT_CNTL_9"},
{0xa19b, "SPI_PS_INPUT_CNTL_10"},
{0xa19c, "SPI_PS_INPUT_CNTL_11"},
{0xa19d, "SPI_PS_INPUT_CNTL_12"},
{0xa19e, "SPI_PS_INPUT_CNTL_13"},
{0xa19f, "SPI_PS_INPUT_CNTL_14"},
{0xa1a0, "SPI_PS_INPUT_CNTL_15"},
{0xa1a1, "SPI_PS_INPUT_CNTL_16"},
{0xa1a2, "SPI_PS_INPUT_CNTL_17"},
{0xa1a3, "SPI_PS_INPUT_CNTL_18"},
{0xa1a4, "SPI_PS_INPUT_CNTL_19"},
{0xa1a5, "SPI_PS_INPUT_CNTL_20"},
{0xa1a6, "SPI_PS_INPUT_CNTL_21"},
{0xa1a7, "SPI_PS_INPUT_CNTL_22"},
{0xa1a8, "SPI_PS_INPUT_CNTL_23"},
{0xa1a9, "SPI_PS_INPUT_CNTL_24"},
{0xa1aa, "SPI_PS_INPUT_CNTL_25"},
{0xa1ab, "SPI_PS_INPUT_CNTL_26"},
{0xa1ac, "SPI_PS_INPUT_CNTL_27"},
{0xa1ad, "SPI_PS_INPUT_CNTL_28"},
{0xa1ae, "SPI_PS_INPUT_CNTL_29"},
{0xa1af, "SPI_PS_INPUT_CNTL_30"},
{0xa1b0, "SPI_PS_INPUT_CNTL_31"},
{0xa2ce, "VGT_GS_MAX_VERT_OUT"},
{0xa2ab, "VGT_ESGS_RING_ITEMSIZE"},
{0xa290, "VGT_GS_MODE"},
{0xa291, "VGT_GS_ONCHIP_CNTL"},
{0xa2d7, "VGT_GS_VERT_ITEMSIZE"},
{0xa2d8, "VGT_GS_VERT_ITEMSIZE_1"},
{0xa2d9, "VGT_GS_VERT_ITEMSIZE_2"},
{0xa2da, "VGT_GS_VERT_ITEMSIZE_3"},
{0xa298, "VGT_GSVS_RING_OFFSET_1"},
{0xa299, "VGT_GSVS_RING_OFFSET_2"},
{0xa29a, "VGT_GSVS_RING_OFFSET_3"},
{0xa2e4, "VGT_GS_INSTANCE_CNT"},
{0xa297, "VGT_GS_PER_VS"},
{0xa29b, "VGT_GS_OUT_PRIM_TYPE"},
{0xa2ac, "VGT_GSVS_RING_ITEMSIZE"},
{0xa2ad, "VGT_REUSE_OFF"},
{0xa1b8, "SPI_BARYC_CNTL"},
{0x2c4c, "SPI_SHADER_USER_DATA_VS_0"},
{0x2c4d, "SPI_SHADER_USER_DATA_VS_1"},
{0x2c4e, "SPI_SHADER_USER_DATA_VS_2"},
{0x2c4f, "SPI_SHADER_USER_DATA_VS_3"},
{0x2c50, "SPI_SHADER_USER_DATA_VS_4"},
{0x2c51, "SPI_SHADER_USER_DATA_VS_5"},
{0x2c52, "SPI_SHADER_USER_DATA_VS_6"},
{0x2c53, "SPI_SHADER_USER_DATA_VS_7"},
{0x2c54, "SPI_SHADER_USER_DATA_VS_8"},
{0x2c55, "SPI_SHADER_USER_DATA_VS_9"},
{0x2c56, "SPI_SHADER_USER_DATA_VS_10"},
{0x2c57, "SPI_SHADER_USER_DATA_VS_11"},
{0x2c58, "SPI_SHADER_USER_DATA_VS_12"},
{0x2c59, "SPI_SHADER_USER_DATA_VS_13"},
{0x2c5a, "SPI_SHADER_USER_DATA_VS_14"},
{0x2c5b, "SPI_SHADER_USER_DATA_VS_15"},
{0x2c5c, "SPI_SHADER_USER_DATA_VS_16"},
{0x2c5d, "SPI_SHADER_USER_DATA_VS_17"},
{0x2c5e, "SPI_SHADER_USER_DATA_VS_18"},
{0x2c5f, "SPI_SHADER_USER_DATA_VS_19"},
{0x2c60, "SPI_SHADER_USER_DATA_VS_20"},
{0x2c61, "SPI_SHADER_USER_DATA_VS_21"},
{0x2c62, "SPI_SHADER_USER_DATA_VS_22"},
{0x2c63, "SPI_SHADER_USER_DATA_VS_23"},
{0x2c64, "SPI_SHADER_USER_DATA_VS_24"},
{0x2c65, "SPI_SHADER_USER_DATA_VS_25"},
{0x2c66, "SPI_SHADER_USER_DATA_VS_26"},
{0x2c67, "SPI_SHADER_USER_DATA_VS_27"},
{0x2c68, "SPI_SHADER_USER_DATA_VS_28"},
{0x2c69, "SPI_SHADER_USER_DATA_VS_29"},
{0x2c6a, "SPI_SHADER_USER_DATA_VS_30"},
{0x2c6b, "SPI_SHADER_USER_DATA_VS_31"},
{0x2c8c, "SPI_SHADER_USER_DATA_GS_0"},
{0x2c8d, "SPI_SHADER_USER_DATA_GS_1"},
{0x2c8e, "SPI_SHADER_USER_DATA_GS_2"},
{0x2c8f, "SPI_SHADER_USER_DATA_GS_3"},
{0x2c90, "SPI_SHADER_USER_DATA_GS_4"},
{0x2c91, "SPI_SHADER_USER_DATA_GS_5"},
{0x2c92, "SPI_SHADER_USER_DATA_GS_6"},
{0x2c93, "SPI_SHADER_USER_DATA_GS_7"},
{0x2c94, "SPI_SHADER_USER_DATA_GS_8"},
{0x2c95, "SPI_SHADER_USER_DATA_GS_9"},
{0x2c96, "SPI_SHADER_USER_DATA_GS_10"},
{0x2c97, "SPI_SHADER_USER_DATA_GS_11"},
{0x2c98, "SPI_SHADER_USER_DATA_GS_12"},
{0x2c99, "SPI_SHADER_USER_DATA_GS_13"},
{0x2c9a, "SPI_SHADER_USER_DATA_GS_14"},
{0x2c9b, "SPI_SHADER_USER_DATA_GS_15"},
{0x2c9c, "SPI_SHADER_USER_DATA_GS_16"},
{0x2c9d, "SPI_SHADER_USER_DATA_GS_17"},
{0x2c9e, "SPI_SHADER_USER_DATA_GS_18"},
{0x2c9f, "SPI_SHADER_USER_DATA_GS_19"},
{0x2ca0, "SPI_SHADER_USER_DATA_GS_20"},
{0x2ca1, "SPI_SHADER_USER_DATA_GS_21"},
{0x2ca2, "SPI_SHADER_USER_DATA_GS_22"},
{0x2ca3, "SPI_SHADER_USER_DATA_GS_23"},
{0x2ca4, "SPI_SHADER_USER_DATA_GS_24"},
{0x2ca5, "SPI_SHADER_USER_DATA_GS_25"},
{0x2ca6, "SPI_SHADER_USER_DATA_GS_26"},
{0x2ca7, "SPI_SHADER_USER_DATA_GS_27"},
{0x2ca8, "SPI_SHADER_USER_DATA_GS_28"},
{0x2ca9, "SPI_SHADER_USER_DATA_GS_29"},
{0x2caa, "SPI_SHADER_USER_DATA_GS_30"},
{0x2cab, "SPI_SHADER_USER_DATA_GS_31"},
{0x2ccc, "SPI_SHADER_USER_DATA_ES_0"},
{0x2ccd, "SPI_SHADER_USER_DATA_ES_1"},
{0x2cce, "SPI_SHADER_USER_DATA_ES_2"},
{0x2ccf, "SPI_SHADER_USER_DATA_ES_3"},
{0x2cd0, "SPI_SHADER_USER_DATA_ES_4"},
{0x2cd1, "SPI_SHADER_USER_DATA_ES_5"},
{0x2cd2, "SPI_SHADER_USER_DATA_ES_6"},
{0x2cd3, "SPI_SHADER_USER_DATA_ES_7"},
{0x2cd4, "SPI_SHADER_USER_DATA_ES_8"},
{0x2cd5, "SPI_SHADER_USER_DATA_ES_9"},
{0x2cd6, "SPI_SHADER_USER_DATA_ES_10"},
{0x2cd7, "SPI_SHADER_USER_DATA_ES_11"},
{0x2cd8, "SPI_SHADER_USER_DATA_ES_12"},
{0x2cd9, "SPI_SHADER_USER_DATA_ES_13"},
{0x2cda, "SPI_SHADER_USER_DATA_ES_14"},
{0x2cdb, "SPI_SHADER_USER_DATA_ES_15"},
{0x2cdc, "SPI_SHADER_USER_DATA_ES_16"},
{0x2cdd, "SPI_SHADER_USER_DATA_ES_17"},
{0x2cde, "SPI_SHADER_USER_DATA_ES_18"},
{0x2cdf, "SPI_SHADER_USER_DATA_ES_19"},
{0x2ce0, "SPI_SHADER_USER_DATA_ES_20"},
{0x2ce1, "SPI_SHADER_USER_DATA_ES_21"},
{0x2ce2, "SPI_SHADER_USER_DATA_ES_22"},
{0x2ce3, "SPI_SHADER_USER_DATA_ES_23"},
{0x2ce4, "SPI_SHADER_USER_DATA_ES_24"},
{0x2ce5, "SPI_SHADER_USER_DATA_ES_25"},
{0x2ce6, "SPI_SHADER_USER_DATA_ES_26"},
{0x2ce7, "SPI_SHADER_USER_DATA_ES_27"},
{0x2ce8, "SPI_SHADER_USER_DATA_ES_28"},
{0x2ce9, "SPI_SHADER_USER_DATA_ES_29"},
{0x2cea, "SPI_SHADER_USER_DATA_ES_30"},
{0x2ceb, "SPI_SHADER_USER_DATA_ES_31"},
{0x2c0c, "SPI_SHADER_USER_DATA_PS_0"},
{0x2c0d, "SPI_SHADER_USER_DATA_PS_1"},
{0x2c0e, "SPI_SHADER_USER_DATA_PS_2"},
{0x2c0f, "SPI_SHADER_USER_DATA_PS_3"},
{0x2c10, "SPI_SHADER_USER_DATA_PS_4"},
{0x2c11, "SPI_SHADER_USER_DATA_PS_5"},
{0x2c12, "SPI_SHADER_USER_DATA_PS_6"},
{0x2c13, "SPI_SHADER_USER_DATA_PS_7"},
{0x2c14, "SPI_SHADER_USER_DATA_PS_8"},
{0x2c15, "SPI_SHADER_USER_DATA_PS_9"},
{0x2c16, "SPI_SHADER_USER_DATA_PS_10"},
{0x2c17, "SPI_SHADER_USER_DATA_PS_11"},
{0x2c18, "SPI_SHADER_USER_DATA_PS_12"},
{0x2c19, "SPI_SHADER_USER_DATA_PS_13"},
{0x2c1a, "SPI_SHADER_USER_DATA_PS_14"},
{0x2c1b, "SPI_SHADER_USER_DATA_PS_15"},
{0x2c1c, "SPI_SHADER_USER_DATA_PS_16"},
{0x2c1d, "SPI_SHADER_USER_DATA_PS_17"},
{0x2c1e, "SPI_SHADER_USER_DATA_PS_18"},
{0x2c1f, "SPI_SHADER_USER_DATA_PS_19"},
{0x2c20, "SPI_SHADER_USER_DATA_PS_20"},
{0x2c21, "SPI_SHADER_USER_DATA_PS_21"},
{0x2c22, "SPI_SHADER_USER_DATA_PS_22"},
{0x2c23, "SPI_SHADER_USER_DATA_PS_23"},
{0x2c24, "SPI_SHADER_USER_DATA_PS_24"},
{0x2c25, "SPI_SHADER_USER_DATA_PS_25"},
{0x2c26, "SPI_SHADER_USER_DATA_PS_26"},
{0x2c27, "SPI_SHADER_USER_DATA_PS_27"},
{0x2c28, "SPI_SHADER_USER_DATA_PS_28"},
{0x2c29, "SPI_SHADER_USER_DATA_PS_29"},
{0x2c2a, "SPI_SHADER_USER_DATA_PS_30"},
{0x2c2b, "SPI_SHADER_USER_DATA_PS_31"},
{0x2e40, "COMPUTE_USER_DATA_0"},
{0x2e41, "COMPUTE_USER_DATA_1"},
{0x2e42, "COMPUTE_USER_DATA_2"},
{0x2e43, "COMPUTE_USER_DATA_3"},
{0x2e44, "COMPUTE_USER_DATA_4"},
{0x2e45, "COMPUTE_USER_DATA_5"},
{0x2e46, "COMPUTE_USER_DATA_6"},
{0x2e47, "COMPUTE_USER_DATA_7"},
{0x2e48, "COMPUTE_USER_DATA_8"},
{0x2e49, "COMPUTE_USER_DATA_9"},
{0x2e4a, "COMPUTE_USER_DATA_10"},
{0x2e4b, "COMPUTE_USER_DATA_11"},
{0x2e4c, "COMPUTE_USER_DATA_12"},
{0x2e4d, "COMPUTE_USER_DATA_13"},
{0x2e4e, "COMPUTE_USER_DATA_14"},
{0x2e4f, "COMPUTE_USER_DATA_15"},
{0x2e07, "COMPUTE_NUM_THREAD_X"},
{0x2e08, "COMPUTE_NUM_THREAD_Y"},
{0x2e09, "COMPUTE_NUM_THREAD_Z"},
{0xa2db, "VGT_TF_PARAM"},
{0xa2d6, "VGT_LS_HS_CONFIG"},
{0xa287, "VGT_HOS_MIN_TESS_LEVEL"},
{0xa286, "VGT_HOS_MAX_TESS_LEVEL"},
{0xa2f8, "PA_SC_AA_CONFIG"},
{0xa310, "PA_SC_SHADER_CONTROL"},
{0xa313, "PA_SC_CONSERVATIVE_RASTERIZATION_CNTL"},
{0x2d0c, "SPI_SHADER_USER_DATA_HS_0"},
{0x2d0d, "SPI_SHADER_USER_DATA_HS_1"},
{0x2d0e, "SPI_SHADER_USER_DATA_HS_2"},
{0x2d0f, "SPI_SHADER_USER_DATA_HS_3"},
{0x2d10, "SPI_SHADER_USER_DATA_HS_4"},
{0x2d11, "SPI_SHADER_USER_DATA_HS_5"},
{0x2d12, "SPI_SHADER_USER_DATA_HS_6"},
{0x2d13, "SPI_SHADER_USER_DATA_HS_7"},
{0x2d14, "SPI_SHADER_USER_DATA_HS_8"},
{0x2d15, "SPI_SHADER_USER_DATA_HS_9"},
{0x2d16, "SPI_SHADER_USER_DATA_HS_10"},
{0x2d17, "SPI_SHADER_USER_DATA_HS_11"},
{0x2d18, "SPI_SHADER_USER_DATA_HS_12"},
{0x2d19, "SPI_SHADER_USER_DATA_HS_13"},
{0x2d1a, "SPI_SHADER_USER_DATA_HS_14"},
{0x2d1b, "SPI_SHADER_USER_DATA_HS_15"},
{0x2d1c, "SPI_SHADER_USER_DATA_HS_16"},
{0x2d1d, "SPI_SHADER_USER_DATA_HS_17"},
{0x2d1e, "SPI_SHADER_USER_DATA_HS_18"},
{0x2d1f, "SPI_SHADER_USER_DATA_HS_19"},
{0x2d20, "SPI_SHADER_USER_DATA_HS_20"},
{0x2d21, "SPI_SHADER_USER_DATA_HS_21"},
{0x2d22, "SPI_SHADER_USER_DATA_HS_22"},
{0x2d23, "SPI_SHADER_USER_DATA_HS_23"},
{0x2d24, "SPI_SHADER_USER_DATA_HS_24"},
{0x2d25, "SPI_SHADER_USER_DATA_HS_25"},
{0x2d26, "SPI_SHADER_USER_DATA_HS_26"},
{0x2d27, "SPI_SHADER_USER_DATA_HS_27"},
{0x2d28, "SPI_SHADER_USER_DATA_HS_28"},
{0x2d29, "SPI_SHADER_USER_DATA_HS_29"},
{0x2d2a, "SPI_SHADER_USER_DATA_HS_30"},
{0x2d2b, "SPI_SHADER_USER_DATA_HS_31"},
{0x2d4c, "SPI_SHADER_USER_DATA_LS_0"},
{0x2d4d, "SPI_SHADER_USER_DATA_LS_1"},
{0x2d4e, "SPI_SHADER_USER_DATA_LS_2"},
{0x2d4f, "SPI_SHADER_USER_DATA_LS_3"},
{0x2d50, "SPI_SHADER_USER_DATA_LS_4"},
{0x2d51, "SPI_SHADER_USER_DATA_LS_5"},
{0x2d52, "SPI_SHADER_USER_DATA_LS_6"},
{0x2d53, "SPI_SHADER_USER_DATA_LS_7"},
{0x2d54, "SPI_SHADER_USER_DATA_LS_8"},
{0x2d55, "SPI_SHADER_USER_DATA_LS_9"},
{0x2d56, "SPI_SHADER_USER_DATA_LS_10"},
{0x2d57, "SPI_SHADER_USER_DATA_LS_11"},
{0x2d58, "SPI_SHADER_USER_DATA_LS_12"},
{0x2d59, "SPI_SHADER_USER_DATA_LS_13"},
{0x2d5a, "SPI_SHADER_USER_DATA_LS_14"},
{0x2d5b, "SPI_SHADER_USER_DATA_LS_15"},
{0xa2aa, "IA_MULTI_VGT_PARAM"},
{0xa2a5, "VGT_GS_MAX_PRIMS_PER_SUBGROUP"},
{0xa2e6, "VGT_STRMOUT_BUFFER_CONFIG"},
{0xa2e5, "VGT_STRMOUT_CONFIG"},
{0xa2b5, "VGT_STRMOUT_VTX_STRIDE_0"},
{0xa2b9, "VGT_STRMOUT_VTX_STRIDE_1"},
{0xa2bd, "VGT_STRMOUT_VTX_STRIDE_2"},
{0xa2c1, "VGT_STRMOUT_VTX_STRIDE_3"},
{0xa316, "VGT_VERTEX_REUSE_BLOCK_CNTL"},
{0, nullptr}};
auto Entry = RegInfoTable;
for (; Entry->Num && Entry->Num != RegNum; ++Entry)
;
return Entry->Name;
}
// Convert the accumulated PAL metadata into an asm directive.
void AMDGPUPALMetadata::toString(std::string &String) {
String.clear();
if (!BlobType)
return;
raw_string_ostream Stream(String);
if (isLegacy()) {
if (MsgPackDoc.getRoot().getKind() == msgpack::Type::Nil)
return;
// Old linear reg=val format.
Stream << '\t' << AMDGPU::PALMD::AssemblerDirective << ' ';
auto Regs = getRegisters();
for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I) {
if (I != Regs.begin())
Stream << ',';
unsigned Reg = I->first.getUInt();
unsigned Val = I->second.getUInt();
Stream << "0x" << Twine::utohexstr(Reg) << ",0x" << Twine::utohexstr(Val);
}
Stream << '\n';
return;
}
// New msgpack-based format -- output as YAML (with unsigned numbers in hex),
// but first change the registers map to use names.
MsgPackDoc.setHexMode();
auto &RegsObj = refRegisters();
auto OrigRegs = RegsObj.getMap();
RegsObj = MsgPackDoc.getMapNode();
for (auto I : OrigRegs) {
auto Key = I.first;
if (const char *RegName = getRegisterName(Key.getUInt())) {
std::string KeyName = Key.toString();
KeyName += " (";
KeyName += RegName;
KeyName += ')';
Key = MsgPackDoc.getNode(KeyName, /*Copy=*/true);
}
RegsObj.getMap()[Key] = I.second;
}
// Output as YAML.
Stream << '\t' << AMDGPU::PALMD::AssemblerDirectiveBegin << '\n';
MsgPackDoc.toYAML(Stream);
Stream << '\t' << AMDGPU::PALMD::AssemblerDirectiveEnd << '\n';
// Restore original registers map.
RegsObj = OrigRegs;
}
// Convert the accumulated PAL metadata into a binary blob for writing as
// a .note record of the specified AMD type. Returns an empty blob if
// there is no PAL metadata,
void AMDGPUPALMetadata::toBlob(unsigned Type, std::string &Blob) {
if (Type == ELF::NT_AMD_AMDGPU_PAL_METADATA)
toLegacyBlob(Blob);
else if (Type)
toMsgPackBlob(Blob);
}
void AMDGPUPALMetadata::toLegacyBlob(std::string &Blob) {
Blob.clear();
auto Registers = getRegisters();
if (Registers.getMap().empty())
return;
raw_string_ostream OS(Blob);
support::endian::Writer EW(OS, support::endianness::little);
for (auto I : Registers.getMap()) {
EW.write(uint32_t(I.first.getUInt()));
EW.write(uint32_t(I.second.getUInt()));
}
}
void AMDGPUPALMetadata::toMsgPackBlob(std::string &Blob) {
Blob.clear();
MsgPackDoc.writeToBlob(Blob);
}
// Set PAL metadata from YAML text. Returns false if failed.
bool AMDGPUPALMetadata::setFromString(StringRef S) {
BlobType = ELF::NT_AMDGPU_METADATA;
if (!MsgPackDoc.fromYAML(S))
return false;
// In the registers map, some keys may be of the form "0xa191
// (SPI_PS_INPUT_CNTL_0)", in which case the YAML input code made it a
// string. We need to turn it into a number.
auto &RegsObj = refRegisters();
auto OrigRegs = RegsObj;
RegsObj = MsgPackDoc.getMapNode();
Registers = RegsObj.getMap();
bool Ok = true;
for (auto I : OrigRegs.getMap()) {
auto Key = I.first;
if (Key.getKind() == msgpack::Type::String) {
StringRef S = Key.getString();
uint64_t Val;
if (S.consumeInteger(0, Val)) {
Ok = false;
errs() << "Unrecognized PAL metadata register key '" << S << "'\n";
continue;
}
Key = MsgPackDoc.getNode(uint64_t(Val));
}
Registers.getMap()[Key] = I.second;
}
return Ok;
}
// Reference (create if necessary) the node for the registers map.
msgpack::DocNode &AMDGPUPALMetadata::refRegisters() {
auto &N =
MsgPackDoc.getRoot()
.getMap(/*Convert=*/true)[MsgPackDoc.getNode("amdpal.pipelines")]
.getArray(/*Convert=*/true)[0]
.getMap(/*Convert=*/true)[MsgPackDoc.getNode(".registers")];
N.getMap(/*Convert=*/true);
return N;
}
// Get (create if necessary) the registers map.
msgpack::MapDocNode AMDGPUPALMetadata::getRegisters() {
if (Registers.isEmpty())
Registers = refRegisters();
return Registers.getMap();
}
// Reference (create if necessary) the node for the shader functions map.
msgpack::DocNode &AMDGPUPALMetadata::refShaderFunctions() {
auto &N =
MsgPackDoc.getRoot()
.getMap(/*Convert=*/true)[MsgPackDoc.getNode("amdpal.pipelines")]
.getArray(/*Convert=*/true)[0]
.getMap(/*Convert=*/true)[MsgPackDoc.getNode(".shader_functions")];
N.getMap(/*Convert=*/true);
return N;
}
// Get (create if necessary) the shader functions map.
msgpack::MapDocNode AMDGPUPALMetadata::getShaderFunctions() {
if (ShaderFunctions.isEmpty())
ShaderFunctions = refShaderFunctions();
return ShaderFunctions.getMap();
}
// Get (create if necessary) a function in the shader functions map.
msgpack::MapDocNode AMDGPUPALMetadata::getShaderFunction(StringRef Name) {
auto Functions = getShaderFunctions();
return Functions[Name].getMap(/*Convert=*/true);
}
// Return the PAL metadata hardware shader stage name.
static const char *getStageName(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_PS:
return ".ps";
case CallingConv::AMDGPU_VS:
return ".vs";
case CallingConv::AMDGPU_GS:
return ".gs";
case CallingConv::AMDGPU_ES:
return ".es";
case CallingConv::AMDGPU_HS:
return ".hs";
case CallingConv::AMDGPU_LS:
return ".ls";
case CallingConv::AMDGPU_Gfx:
llvm_unreachable("Callable shader has no hardware stage");
default:
return ".cs";
}
}
// Get (create if necessary) the .hardware_stages entry for the given calling
// convention.
msgpack::MapDocNode AMDGPUPALMetadata::getHwStage(unsigned CC) {
if (HwStages.isEmpty())
HwStages = MsgPackDoc.getRoot()
.getMap(/*Convert=*/true)["amdpal.pipelines"]
.getArray(/*Convert=*/true)[0]
.getMap(/*Convert=*/true)[".hardware_stages"]
.getMap(/*Convert=*/true);
return HwStages.getMap()[getStageName(CC)].getMap(/*Convert=*/true);
}
// Get .note record vendor name of metadata blob to be emitted.
const char *AMDGPUPALMetadata::getVendor() const {
return isLegacy() ? ElfNote::NoteNameV2 : ElfNote::NoteNameV3;
}
// Get .note record type of metadata blob to be emitted:
// ELF::NT_AMD_AMDGPU_PAL_METADATA (legacy key=val format), or
// ELF::NT_AMDGPU_METADATA (MsgPack format), or
// 0 (no PAL metadata).
unsigned AMDGPUPALMetadata::getType() const {
return BlobType;
}
// Return whether the blob type is legacy PAL metadata.
bool AMDGPUPALMetadata::isLegacy() const {
return BlobType == ELF::NT_AMD_AMDGPU_PAL_METADATA;
}
// Set legacy PAL metadata format.
void AMDGPUPALMetadata::setLegacy() {
BlobType = ELF::NT_AMD_AMDGPU_PAL_METADATA;
}
// Erase all PAL metadata.
void AMDGPUPALMetadata::reset() {
MsgPackDoc.clear();
Registers = MsgPackDoc.getEmptyNode();
HwStages = MsgPackDoc.getEmptyNode();
}