llvm-for-llvmta/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp

1626 lines
57 KiB
C++

//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file contains definition for AMDGPU ISA disassembler
//
//===----------------------------------------------------------------------===//
// ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
#include "Disassembler/AMDGPUDisassembler.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm-c/DisassemblerTypes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-disassembler"
#define SGPR_MAX \
(isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
: AMDGPU::EncValues::SGPR_MAX_SI)
using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
MCContext &Ctx,
MCInstrInfo const *MCII) :
MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
// ToDo: AMDGPUDisassembler supports only VI ISA.
if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
report_fatal_error("Disassembly not yet supported for subtarget");
}
inline static MCDisassembler::DecodeStatus
addOperand(MCInst &Inst, const MCOperand& Opnd) {
Inst.addOperand(Opnd);
return Opnd.isValid() ?
MCDisassembler::Success :
MCDisassembler::Fail;
}
static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
uint16_t NameIdx) {
int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
if (OpIdx != -1) {
auto I = MI.begin();
std::advance(I, OpIdx);
MI.insert(I, Op);
}
return OpIdx;
}
static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
uint64_t Addr, const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
// Our branches take a simm16, but we need two extra bits to account for the
// factor of 4.
APInt SignedOffset(18, Imm * 4, true);
int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
return MCDisassembler::Success;
return addOperand(Inst, MCOperand::createImm(Imm));
}
static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
uint64_t Addr, const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
int64_t Offset;
if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
Offset = Imm & 0xFFFFF;
} else { // GFX9+ supports 21-bit signed offsets.
Offset = SignExtend64<21>(Imm);
}
return addOperand(Inst, MCOperand::createImm(Offset));
}
static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
uint64_t Addr, const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeBoolReg(Val));
}
#define DECODE_OPERAND(StaticDecoderName, DecoderName) \
static DecodeStatus StaticDecoderName(MCInst &Inst, \
unsigned Imm, \
uint64_t /*Addr*/, \
const void *Decoder) { \
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
return addOperand(Inst, DAsm->DecoderName(Imm)); \
}
#define DECODE_OPERAND_REG(RegClass) \
DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
DECODE_OPERAND_REG(VGPR_32)
DECODE_OPERAND_REG(VRegOrLds_32)
DECODE_OPERAND_REG(VS_32)
DECODE_OPERAND_REG(VS_64)
DECODE_OPERAND_REG(VS_128)
DECODE_OPERAND_REG(VReg_64)
DECODE_OPERAND_REG(VReg_96)
DECODE_OPERAND_REG(VReg_128)
DECODE_OPERAND_REG(VReg_256)
DECODE_OPERAND_REG(VReg_512)
DECODE_OPERAND_REG(SReg_32)
DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
DECODE_OPERAND_REG(SRegOrLds_32)
DECODE_OPERAND_REG(SReg_64)
DECODE_OPERAND_REG(SReg_64_XEXEC)
DECODE_OPERAND_REG(SReg_128)
DECODE_OPERAND_REG(SReg_256)
DECODE_OPERAND_REG(SReg_512)
DECODE_OPERAND_REG(AGPR_32)
DECODE_OPERAND_REG(AReg_128)
DECODE_OPERAND_REG(AReg_512)
DECODE_OPERAND_REG(AReg_1024)
DECODE_OPERAND_REG(AV_32)
DECODE_OPERAND_REG(AV_64)
static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
}
static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
}
static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
}
static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
}
static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
}
static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
}
static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
}
static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
}
static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
unsigned Imm,
uint64_t Addr,
const void *Decoder) {
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
}
#define DECODE_SDWA(DecName) \
DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
DECODE_SDWA(Src32)
DECODE_SDWA(Src16)
DECODE_SDWA(VopcDst)
#include "AMDGPUGenDisassemblerTables.inc"
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
assert(Bytes.size() >= sizeof(T));
const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
Bytes = Bytes.slice(sizeof(T));
return Res;
}
DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
MCInst &MI,
uint64_t Inst,
uint64_t Address) const {
assert(MI.getOpcode() == 0);
assert(MI.getNumOperands() == 0);
MCInst TmpInst;
HasLiteral = false;
const auto SavedBytes = Bytes;
if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
MI = TmpInst;
return MCDisassembler::Success;
}
Bytes = SavedBytes;
return MCDisassembler::Fail;
}
static bool isValidDPP8(const MCInst &MI) {
using namespace llvm::AMDGPU::DPP;
int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
assert(FiIdx != -1);
if ((unsigned)FiIdx >= MI.getNumOperands())
return false;
unsigned Fi = MI.getOperand(FiIdx).getImm();
return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
}
DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ArrayRef<uint8_t> Bytes_,
uint64_t Address,
raw_ostream &CS) const {
CommentStream = &CS;
bool IsSDWA = false;
unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
Bytes = Bytes_.slice(0, MaxInstBytesNum);
DecodeStatus Res = MCDisassembler::Fail;
do {
// ToDo: better to switch encoding length using some bit predicate
// but it is unknown yet, so try all we can
// Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
// encodings
if (Bytes.size() >= 8) {
const uint64_t QW = eatBytes<uint64_t>(Bytes);
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
if (Res) {
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
== -1)
break;
if (convertDPP8Inst(MI) == MCDisassembler::Success)
break;
MI = MCInst(); // clear
}
}
Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
break;
MI = MCInst(); // clear
Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
if (Res) { IsSDWA = true; break; }
Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
if (Res) { IsSDWA = true; break; }
Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
if (Res) { IsSDWA = true; break; }
if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
if (Res)
break;
}
// Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
// v_mad_mixhi_f16 for FMA variants. Try to decode using this special
// table first so we print the correct name.
if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
if (Res)
break;
}
}
// Reinitialize Bytes as DPP64 could have eaten too much
Bytes = Bytes_.slice(0, MaxInstBytesNum);
// Try decode 32-bit instruction
if (Bytes.size() < 4) break;
const uint32_t DW = eatBytes<uint32_t>(Bytes);
Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
if (Res) break;
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
if (Res) break;
}
Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
if (Res) break;
if (Bytes.size() < 4) break;
const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
if (Res) break;
Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
} while (false);
if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
// Insert dummy unused src2_modifiers.
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src2_modifiers);
}
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
(SIInstrFlags::MUBUF | SIInstrFlags::FLAT)) &&
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::glc1) != -1) {
insertNamedMCOperand(MI, MCOperand::createImm(1), AMDGPU::OpName::glc1);
}
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
int VAddr0Idx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
int RsrcIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
if (VAddr0Idx >= 0 && NSAArgs > 0) {
unsigned NSAWords = (NSAArgs + 3) / 4;
if (Bytes.size() < 4 * NSAWords) {
Res = MCDisassembler::Fail;
} else {
for (unsigned i = 0; i < NSAArgs; ++i) {
MI.insert(MI.begin() + VAddr0Idx + 1 + i,
decodeOperand_VGPR_32(Bytes[i]));
}
Bytes = Bytes.slice(4 * NSAWords);
}
}
if (Res)
Res = convertMIMGInst(MI);
}
if (Res && IsSDWA)
Res = convertSDWAInst(MI);
int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::vdst_in);
if (VDstIn_Idx != -1) {
int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
MCOI::OperandConstraint::TIED_TO);
if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
!MI.getOperand(VDstIn_Idx).isReg() ||
MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
MI.erase(&MI.getOperand(VDstIn_Idx));
insertNamedMCOperand(MI,
MCOperand::createReg(MI.getOperand(Tied).getReg()),
AMDGPU::OpName::vdst_in);
}
}
// if the opcode was not recognized we'll assume a Size of 4 bytes
// (unless there are fewer bytes left)
Size = Res ? (MaxInstBytesNum - Bytes.size())
: std::min((size_t)4, Bytes_.size());
return Res;
}
DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
// VOPC - insert clamp
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
} else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
if (SDst != -1) {
// VOPC - insert VCC register as sdst
insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
AMDGPU::OpName::sdst);
} else {
// VOP1/2 - insert omod if present in instruction
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
}
}
return MCDisassembler::Success;
}
DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
unsigned Opc = MI.getOpcode();
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
// Insert dummy unused src modifiers.
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src0_modifiers);
if (MI.getNumOperands() < DescNumOps &&
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
insertNamedMCOperand(MI, MCOperand::createImm(0),
AMDGPU::OpName::src1_modifiers);
return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
}
// Note that before gfx10, the MIMG encoding provided no information about
// VADDR size. Consequently, decoded instructions always show address as if it
// has 1 dword, which could be not really so.
DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::vdst);
int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::vdata);
int VAddr0Idx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::dmask);
int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::tfe);
int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::d16);
assert(VDataIdx != -1);
if (DMaskIdx == -1 || TFEIdx == -1) {// intersect_ray
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
assert(MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_sa ||
MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa ||
MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_sa ||
MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa);
addOperand(MI, MCOperand::createImm(1));
}
return MCDisassembler::Success;
}
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
bool IsAtomic = (VDstIdx != -1);
bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
bool IsNSA = false;
unsigned AddrSize = Info->VAddrDwords;
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
unsigned DimIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
const AMDGPU::MIMGDimInfo *Dim =
AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
AddrSize = BaseOpcode->NumExtraArgs +
(BaseOpcode->Gradients ? Dim->NumGradients : 0) +
(BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
(BaseOpcode->LodOrClampOrMip ? 1 : 0);
IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
if (!IsNSA) {
if (AddrSize > 8)
AddrSize = 16;
else if (AddrSize > 4)
AddrSize = 8;
} else {
if (AddrSize > Info->VAddrDwords) {
// The NSA encoding does not contain enough operands for the combination
// of base opcode / dimension. Should this be an error?
return MCDisassembler::Success;
}
}
}
unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
if (D16 && AMDGPU::hasPackedD16(STI)) {
DstSize = (DstSize + 1) / 2;
}
if (MI.getOperand(TFEIdx).getImm())
DstSize += 1;
if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
return MCDisassembler::Success;
int NewOpcode =
AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
if (NewOpcode == -1)
return MCDisassembler::Success;
// Widen the register to the correct number of enabled channels.
unsigned NewVdata = AMDGPU::NoRegister;
if (DstSize != Info->VDataDwords) {
auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
// Get first subregister of VData
unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
&MRI.getRegClass(DataRCID));
if (NewVdata == AMDGPU::NoRegister) {
// It's possible to encode this such that the low register + enabled
// components exceeds the register count.
return MCDisassembler::Success;
}
}
unsigned NewVAddr0 = AMDGPU::NoRegister;
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
AddrSize != Info->VAddrDwords) {
unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
&MRI.getRegClass(AddrRCID));
if (NewVAddr0 == AMDGPU::NoRegister)
return MCDisassembler::Success;
}
MI.setOpcode(NewOpcode);
if (NewVdata != AMDGPU::NoRegister) {
MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
if (IsAtomic) {
// Atomic operations have an additional operand (a copy of data)
MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
}
}
if (NewVAddr0 != AMDGPU::NoRegister) {
MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
} else if (IsNSA) {
assert(AddrSize <= Info->VAddrDwords);
MI.erase(MI.begin() + VAddr0Idx + AddrSize,
MI.begin() + VAddr0Idx + Info->VAddrDwords);
}
return MCDisassembler::Success;
}
const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
return getContext().getRegisterInfo()->
getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
}
inline
MCOperand AMDGPUDisassembler::errOperand(unsigned V,
const Twine& ErrMsg) const {
*CommentStream << "Error: " + ErrMsg;
// ToDo: add support for error operands to MCInst.h
// return MCOperand::createError(V);
return MCOperand();
}
inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
}
inline
MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
unsigned Val) const {
const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
if (Val >= RegCl.getNumRegs())
return errOperand(Val, Twine(getRegClassName(RegClassID)) +
": unknown register " + Twine(Val));
return createRegOperand(RegCl.getRegister(Val));
}
inline
MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
unsigned Val) const {
// ToDo: SI/CI have 104 SGPRs, VI - 102
// Valery: here we accepting as much as we can, let assembler sort it out
int shift = 0;
switch (SRegClassID) {
case AMDGPU::SGPR_32RegClassID:
case AMDGPU::TTMP_32RegClassID:
break;
case AMDGPU::SGPR_64RegClassID:
case AMDGPU::TTMP_64RegClassID:
shift = 1;
break;
case AMDGPU::SGPR_128RegClassID:
case AMDGPU::TTMP_128RegClassID:
// ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
case AMDGPU::SGPR_256RegClassID:
case AMDGPU::TTMP_256RegClassID:
// ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
case AMDGPU::SGPR_512RegClassID:
case AMDGPU::TTMP_512RegClassID:
shift = 2;
break;
// ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
// this bundle?
default:
llvm_unreachable("unhandled register class");
}
if (Val % (1 << shift)) {
*CommentStream << "Warning: " << getRegClassName(SRegClassID)
<< ": scalar reg isn't aligned " << Val;
}
return createRegOperand(SRegClassID, Val >> shift);
}
MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
return decodeSrcOp(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
return decodeSrcOp(OPW128, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
return decodeSrcOp(OPW16, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
return decodeSrcOp(OPWV216, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
// Some instructions have operand restrictions beyond what the encoding
// allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
// high bit.
Val &= 255;
return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
return decodeSrcOp(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
}
MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
}
MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
}
MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
}
MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
return decodeSrcOp(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
// table-gen generated disassembler doesn't care about operand types
// leaving only registry class so SSrc_32 operand turns into SReg_32
// and therefore we accept immediates and literals here as well
return decodeSrcOp(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
unsigned Val) const {
// SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
return decodeOperand_SReg_32(Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
unsigned Val) const {
// SReg_32_XM0 is SReg_32 without EXEC_HI
return decodeOperand_SReg_32(Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
// table-gen generated disassembler doesn't care about operand types
// leaving only registry class so SSrc_32 operand turns into SReg_32
// and therefore we accept immediates and literals here as well
return decodeSrcOp(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
return decodeSrcOp(OPW64, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
return decodeSrcOp(OPW128, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
return decodeDstOp(OPW256, Val);
}
MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
return decodeDstOp(OPW512, Val);
}
MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
// For now all literal constants are supposed to be unsigned integer
// ToDo: deal with signed/unsigned 64-bit integer constants
// ToDo: deal with float/double constants
if (!HasLiteral) {
if (Bytes.size() < 4) {
return errOperand(0, "cannot read literal, inst bytes left " +
Twine(Bytes.size()));
}
HasLiteral = true;
Literal = eatBytes<uint32_t>(Bytes);
}
return MCOperand::createImm(Literal);
}
MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
using namespace AMDGPU::EncValues;
assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
(static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
(INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
// Cast prevents negative overflow.
}
static int64_t getInlineImmVal32(unsigned Imm) {
switch (Imm) {
case 240:
return FloatToBits(0.5f);
case 241:
return FloatToBits(-0.5f);
case 242:
return FloatToBits(1.0f);
case 243:
return FloatToBits(-1.0f);
case 244:
return FloatToBits(2.0f);
case 245:
return FloatToBits(-2.0f);
case 246:
return FloatToBits(4.0f);
case 247:
return FloatToBits(-4.0f);
case 248: // 1 / (2 * PI)
return 0x3e22f983;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal64(unsigned Imm) {
switch (Imm) {
case 240:
return DoubleToBits(0.5);
case 241:
return DoubleToBits(-0.5);
case 242:
return DoubleToBits(1.0);
case 243:
return DoubleToBits(-1.0);
case 244:
return DoubleToBits(2.0);
case 245:
return DoubleToBits(-2.0);
case 246:
return DoubleToBits(4.0);
case 247:
return DoubleToBits(-4.0);
case 248: // 1 / (2 * PI)
return 0x3fc45f306dc9c882;
default:
llvm_unreachable("invalid fp inline imm");
}
}
static int64_t getInlineImmVal16(unsigned Imm) {
switch (Imm) {
case 240:
return 0x3800;
case 241:
return 0xB800;
case 242:
return 0x3C00;
case 243:
return 0xBC00;
case 244:
return 0x4000;
case 245:
return 0xC000;
case 246:
return 0x4400;
case 247:
return 0xC400;
case 248: // 1 / (2 * PI)
return 0x3118;
default:
llvm_unreachable("invalid fp inline imm");
}
}
MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
&& Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
// ToDo: case 248: 1/(2*PI) - is allowed only on VI
switch (Width) {
case OPW32:
case OPW128: // splat constants
case OPW512:
case OPW1024:
return MCOperand::createImm(getInlineImmVal32(Imm));
case OPW64:
return MCOperand::createImm(getInlineImmVal64(Imm));
case OPW16:
case OPWV216:
return MCOperand::createImm(getInlineImmVal16(Imm));
default:
llvm_unreachable("implement me");
}
}
unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return VGPR_32RegClassID;
case OPW64: return VReg_64RegClassID;
case OPW128: return VReg_128RegClassID;
}
}
unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return AGPR_32RegClassID;
case OPW64: return AReg_64RegClassID;
case OPW128: return AReg_128RegClassID;
case OPW256: return AReg_256RegClassID;
case OPW512: return AReg_512RegClassID;
case OPW1024: return AReg_1024RegClassID;
}
}
unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return SGPR_32RegClassID;
case OPW64: return SGPR_64RegClassID;
case OPW128: return SGPR_128RegClassID;
case OPW256: return SGPR_256RegClassID;
case OPW512: return SGPR_512RegClassID;
}
}
unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
using namespace AMDGPU;
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
switch (Width) {
default: // fall
case OPW32:
case OPW16:
case OPWV216:
return TTMP_32RegClassID;
case OPW64: return TTMP_64RegClassID;
case OPW128: return TTMP_128RegClassID;
case OPW256: return TTMP_256RegClassID;
case OPW512: return TTMP_512RegClassID;
}
}
int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
using namespace AMDGPU::EncValues;
unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
}
MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
using namespace AMDGPU::EncValues;
assert(Val < 1024); // enum10
bool IsAGPR = Val & 512;
Val &= 511;
if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
return createRegOperand(IsAGPR ? getAgprClassId(Width)
: getVgprClassId(Width), Val - VGPR_MIN);
}
if (Val <= SGPR_MAX) {
// "SGPR_MIN <= Val" is always true and causes compilation warning.
static_assert(SGPR_MIN == 0, "");
return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
}
int TTmpIdx = getTTmpIdx(Val);
if (TTmpIdx >= 0) {
return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
}
if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
return decodeIntImmed(Val);
if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
return decodeFPImmed(Width, Val);
if (Val == LITERAL_CONST)
return decodeLiteralConstant();
switch (Width) {
case OPW32:
case OPW16:
case OPWV216:
return decodeSpecialReg32(Val);
case OPW64:
return decodeSpecialReg64(Val);
default:
llvm_unreachable("unexpected immediate type");
}
}
MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
using namespace AMDGPU::EncValues;
assert(Val < 128);
assert(Width == OPW256 || Width == OPW512);
if (Val <= SGPR_MAX) {
// "SGPR_MIN <= Val" is always true and causes compilation warning.
static_assert(SGPR_MIN == 0, "");
return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
}
int TTmpIdx = getTTmpIdx(Val);
if (TTmpIdx >= 0) {
return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
}
llvm_unreachable("unknown dst register");
}
MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
using namespace AMDGPU;
switch (Val) {
case 102: return createRegOperand(FLAT_SCR_LO);
case 103: return createRegOperand(FLAT_SCR_HI);
case 104: return createRegOperand(XNACK_MASK_LO);
case 105: return createRegOperand(XNACK_MASK_HI);
case 106: return createRegOperand(VCC_LO);
case 107: return createRegOperand(VCC_HI);
case 108: return createRegOperand(TBA_LO);
case 109: return createRegOperand(TBA_HI);
case 110: return createRegOperand(TMA_LO);
case 111: return createRegOperand(TMA_HI);
case 124: return createRegOperand(M0);
case 125: return createRegOperand(SGPR_NULL);
case 126: return createRegOperand(EXEC_LO);
case 127: return createRegOperand(EXEC_HI);
case 235: return createRegOperand(SRC_SHARED_BASE);
case 236: return createRegOperand(SRC_SHARED_LIMIT);
case 237: return createRegOperand(SRC_PRIVATE_BASE);
case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
case 251: return createRegOperand(SRC_VCCZ);
case 252: return createRegOperand(SRC_EXECZ);
case 253: return createRegOperand(SRC_SCC);
case 254: return createRegOperand(LDS_DIRECT);
default: break;
}
return errOperand(Val, "unknown operand encoding " + Twine(Val));
}
MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
using namespace AMDGPU;
switch (Val) {
case 102: return createRegOperand(FLAT_SCR);
case 104: return createRegOperand(XNACK_MASK);
case 106: return createRegOperand(VCC);
case 108: return createRegOperand(TBA);
case 110: return createRegOperand(TMA);
case 125: return createRegOperand(SGPR_NULL);
case 126: return createRegOperand(EXEC);
case 235: return createRegOperand(SRC_SHARED_BASE);
case 236: return createRegOperand(SRC_SHARED_LIMIT);
case 237: return createRegOperand(SRC_PRIVATE_BASE);
case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
case 251: return createRegOperand(SRC_VCCZ);
case 252: return createRegOperand(SRC_EXECZ);
case 253: return createRegOperand(SRC_SCC);
default: break;
}
return errOperand(Val, "unknown operand encoding " + Twine(Val));
}
MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
const unsigned Val) const {
using namespace AMDGPU::SDWA;
using namespace AMDGPU::EncValues;
if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
// XXX: cast to int is needed to avoid stupid warning:
// compare with unsigned is always true
if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
Val <= SDWA9EncValues::SRC_VGPR_MAX) {
return createRegOperand(getVgprClassId(Width),
Val - SDWA9EncValues::SRC_VGPR_MIN);
}
if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
: SDWA9EncValues::SRC_SGPR_MAX_SI)) {
return createSRegOperand(getSgprClassId(Width),
Val - SDWA9EncValues::SRC_SGPR_MIN);
}
if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
Val <= SDWA9EncValues::SRC_TTMP_MAX) {
return createSRegOperand(getTtmpClassId(Width),
Val - SDWA9EncValues::SRC_TTMP_MIN);
}
const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
return decodeIntImmed(SVal);
if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
return decodeFPImmed(Width, SVal);
return decodeSpecialReg32(SVal);
} else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
return createRegOperand(getVgprClassId(Width), Val);
}
llvm_unreachable("unsupported target");
}
MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
return decodeSDWASrc(OPW16, Val);
}
MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
return decodeSDWASrc(OPW32, Val);
}
MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
using namespace AMDGPU::SDWA;
assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
"SDWAVopcDst should be present only on GFX9+");
bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
int TTmpIdx = getTTmpIdx(Val);
if (TTmpIdx >= 0) {
auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
return createSRegOperand(TTmpClsId, TTmpIdx);
} else if (Val > SGPR_MAX) {
return IsWave64 ? decodeSpecialReg64(Val)
: decodeSpecialReg32(Val);
} else {
return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
}
} else {
return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
}
}
MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
}
bool AMDGPUDisassembler::isVI() const {
return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
}
bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
bool AMDGPUDisassembler::isGFX10Plus() const {
return AMDGPU::isGFX10Plus(STI);
}
//===----------------------------------------------------------------------===//
// AMDGPU specific symbol handling
//===----------------------------------------------------------------------===//
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
do { \
KdStream << Indent << DIRECTIVE " " \
<< ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
} while (0)
// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
using namespace amdhsa;
StringRef Indent = "\t";
// We cannot accurately backward compute #VGPRs used from
// GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
// value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
// simply calculate the inverse of what the assembler does.
uint32_t GranulatedWorkitemVGPRCount =
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
// We cannot backward compute values used to calculate
// GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
// directives can't be computed:
// .amdhsa_reserve_vcc
// .amdhsa_reserve_flat_scratch
// .amdhsa_reserve_xnack_mask
// They take their respective default values if not specified in the assembly.
//
// GRANULATED_WAVEFRONT_SGPR_COUNT
// = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
//
// We compute the inverse as though all directives apart from NEXT_FREE_SGPR
// are set to 0. So while disassembling we consider that:
//
// GRANULATED_WAVEFRONT_SGPR_COUNT
// = f(NEXT_FREE_SGPR + 0 + 0 + 0)
//
// The disassembler cannot recover the original values of those 3 directives.
uint32_t GranulatedWavefrontSGPRCount =
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
return MCDisassembler::Fail;
uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
return MCDisassembler::Fail;
if (isGFX10Plus()) {
PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
COMPUTE_PGM_RSRC1_WGP_MODE);
PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
}
return MCDisassembler::Success;
}
// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
using namespace amdhsa;
StringRef Indent = "\t";
PRINT_DIRECTIVE(
".amdhsa_system_sgpr_private_segment_wavefront_offset",
COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(
".amdhsa_exception_fp_ieee_invalid_op",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
PRINT_DIRECTIVE(
".amdhsa_exception_fp_ieee_div_zero",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
return MCDisassembler::Fail;
return MCDisassembler::Success;
}
#undef PRINT_DIRECTIVE
MCDisassembler::DecodeStatus
AMDGPUDisassembler::decodeKernelDescriptorDirective(
DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
raw_string_ostream &KdStream) const {
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
do { \
KdStream << Indent << DIRECTIVE " " \
<< ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
} while (0)
uint16_t TwoByteBuffer = 0;
uint32_t FourByteBuffer = 0;
uint64_t EightByteBuffer = 0;
StringRef ReservedBytes;
StringRef Indent = "\t";
assert(Bytes.size() == 64);
DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
switch (Cursor.tell()) {
case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
<< '\n';
return MCDisassembler::Success;
case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
KdStream << Indent << ".amdhsa_private_segment_fixed_size "
<< FourByteBuffer << '\n';
return MCDisassembler::Success;
case amdhsa::RESERVED0_OFFSET:
// 8 reserved bytes, must be 0.
EightByteBuffer = DE.getU64(Cursor);
if (EightByteBuffer) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
// KERNEL_CODE_ENTRY_BYTE_OFFSET
// So far no directive controls this for Code Object V3, so simply skip for
// disassembly.
DE.skip(Cursor, 8);
return MCDisassembler::Success;
case amdhsa::RESERVED1_OFFSET:
// 20 reserved bytes, must be 0.
ReservedBytes = DE.getBytes(Cursor, 20);
for (int I = 0; I < 20; ++I) {
if (ReservedBytes[I] != 0) {
return MCDisassembler::Fail;
}
}
return MCDisassembler::Success;
case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
// COMPUTE_PGM_RSRC3
// - Only set for GFX10, GFX6-9 have this to be 0.
// - Currently no directives directly control this.
FourByteBuffer = DE.getU32(Cursor);
if (!isGFX10Plus() && FourByteBuffer) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
MCDisassembler::Fail) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
MCDisassembler::Fail) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
using namespace amdhsa;
TwoByteBuffer = DE.getU16(Cursor);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
return MCDisassembler::Fail;
// Reserved for GFX9
if (isGFX9() &&
(TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
return MCDisassembler::Fail;
} else if (isGFX10Plus()) {
PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
}
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
return MCDisassembler::Fail;
return MCDisassembler::Success;
case amdhsa::RESERVED2_OFFSET:
// 6 bytes from here are reserved, must be 0.
ReservedBytes = DE.getBytes(Cursor, 6);
for (int I = 0; I < 6; ++I) {
if (ReservedBytes[I] != 0)
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
default:
llvm_unreachable("Unhandled index. Case statements cover everything.");
return MCDisassembler::Fail;
}
#undef PRINT_DIRECTIVE
}
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
// CP microcode requires the kernel descriptor to be 64 aligned.
if (Bytes.size() != 64 || KdAddress % 64 != 0)
return MCDisassembler::Fail;
std::string Kd;
raw_string_ostream KdStream(Kd);
KdStream << ".amdhsa_kernel " << KdName << '\n';
DataExtractor::Cursor C(0);
while (C && C.tell() < Bytes.size()) {
MCDisassembler::DecodeStatus Status =
decodeKernelDescriptorDirective(C, Bytes, KdStream);
cantFail(C.takeError());
if (Status == MCDisassembler::Fail)
return MCDisassembler::Fail;
}
KdStream << ".end_amdhsa_kernel\n";
outs() << KdStream.str();
return MCDisassembler::Success;
}
Optional<MCDisassembler::DecodeStatus>
AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &CStream) const {
// Right now only kernel descriptor needs to be handled.
// We ignore all other symbols for target specific handling.
// TODO:
// Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
// Object V2 and V3 when symbols are marked protected.
// amd_kernel_code_t for Code Object V2.
if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
Size = 256;
return MCDisassembler::Fail;
}
// Code Object V3 kernel descriptors.
StringRef Name = Symbol.Name;
if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
Size = 64; // Size = 64 regardless of success or failure.
return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
}
return None;
}
//===----------------------------------------------------------------------===//
// AMDGPUSymbolizer
//===----------------------------------------------------------------------===//
// Try to find symbol name for specified label
bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
raw_ostream &/*cStream*/, int64_t Value,
uint64_t /*Address*/, bool IsBranch,
uint64_t /*Offset*/, uint64_t /*InstSize*/) {
if (!IsBranch) {
return false;
}
auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
if (!Symbols)
return false;
auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
return Val.Addr == static_cast<uint64_t>(Value) &&
Val.Type == ELF::STT_NOTYPE;
});
if (Result != Symbols->end()) {
auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
Inst.addOperand(MCOperand::createExpr(Add));
return true;
}
return false;
}
void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
int64_t Value,
uint64_t Address) {
llvm_unreachable("unimplemented");
}
//===----------------------------------------------------------------------===//
// Initialization
//===----------------------------------------------------------------------===//
static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
LLVMOpInfoCallback /*GetOpInfo*/,
LLVMSymbolLookupCallback /*SymbolLookUp*/,
void *DisInfo,
MCContext *Ctx,
std::unique_ptr<MCRelocationInfo> &&RelInfo) {
return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
}
static MCDisassembler *createAMDGPUDisassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
createAMDGPUDisassembler);
TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
createAMDGPUSymbolizer);
}