1626 lines
57 KiB
C++
1626 lines
57 KiB
C++
//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
///
|
|
/// This file contains definition for AMDGPU ISA disassembler
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
|
|
|
|
#include "Disassembler/AMDGPUDisassembler.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "TargetInfo/AMDGPUTargetInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm-c/DisassemblerTypes.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFixedLenDisassembler.h"
|
|
#include "llvm/Support/AMDHSAKernelDescriptor.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-disassembler"
|
|
|
|
#define SGPR_MAX \
|
|
(isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
|
|
: AMDGPU::EncValues::SGPR_MAX_SI)
|
|
|
|
using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
|
|
|
|
AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
|
|
MCContext &Ctx,
|
|
MCInstrInfo const *MCII) :
|
|
MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
|
|
TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
|
|
|
|
// ToDo: AMDGPUDisassembler supports only VI ISA.
|
|
if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
|
|
report_fatal_error("Disassembly not yet supported for subtarget");
|
|
}
|
|
|
|
inline static MCDisassembler::DecodeStatus
|
|
addOperand(MCInst &Inst, const MCOperand& Opnd) {
|
|
Inst.addOperand(Opnd);
|
|
return Opnd.isValid() ?
|
|
MCDisassembler::Success :
|
|
MCDisassembler::Fail;
|
|
}
|
|
|
|
static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
|
|
uint16_t NameIdx) {
|
|
int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
|
|
if (OpIdx != -1) {
|
|
auto I = MI.begin();
|
|
std::advance(I, OpIdx);
|
|
MI.insert(I, Op);
|
|
}
|
|
return OpIdx;
|
|
}
|
|
|
|
static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
|
|
uint64_t Addr, const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
|
|
// Our branches take a simm16, but we need two extra bits to account for the
|
|
// factor of 4.
|
|
APInt SignedOffset(18, Imm * 4, true);
|
|
int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
|
|
|
|
if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
|
|
return MCDisassembler::Success;
|
|
return addOperand(Inst, MCOperand::createImm(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
|
|
uint64_t Addr, const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
int64_t Offset;
|
|
if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
|
|
Offset = Imm & 0xFFFFF;
|
|
} else { // GFX9+ supports 21-bit signed offsets.
|
|
Offset = SignExtend64<21>(Imm);
|
|
}
|
|
return addOperand(Inst, MCOperand::createImm(Offset));
|
|
}
|
|
|
|
static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
|
|
uint64_t Addr, const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeBoolReg(Val));
|
|
}
|
|
|
|
#define DECODE_OPERAND(StaticDecoderName, DecoderName) \
|
|
static DecodeStatus StaticDecoderName(MCInst &Inst, \
|
|
unsigned Imm, \
|
|
uint64_t /*Addr*/, \
|
|
const void *Decoder) { \
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
|
|
return addOperand(Inst, DAsm->DecoderName(Imm)); \
|
|
}
|
|
|
|
#define DECODE_OPERAND_REG(RegClass) \
|
|
DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
|
|
|
|
DECODE_OPERAND_REG(VGPR_32)
|
|
DECODE_OPERAND_REG(VRegOrLds_32)
|
|
DECODE_OPERAND_REG(VS_32)
|
|
DECODE_OPERAND_REG(VS_64)
|
|
DECODE_OPERAND_REG(VS_128)
|
|
|
|
DECODE_OPERAND_REG(VReg_64)
|
|
DECODE_OPERAND_REG(VReg_96)
|
|
DECODE_OPERAND_REG(VReg_128)
|
|
DECODE_OPERAND_REG(VReg_256)
|
|
DECODE_OPERAND_REG(VReg_512)
|
|
|
|
DECODE_OPERAND_REG(SReg_32)
|
|
DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
|
|
DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
|
|
DECODE_OPERAND_REG(SRegOrLds_32)
|
|
DECODE_OPERAND_REG(SReg_64)
|
|
DECODE_OPERAND_REG(SReg_64_XEXEC)
|
|
DECODE_OPERAND_REG(SReg_128)
|
|
DECODE_OPERAND_REG(SReg_256)
|
|
DECODE_OPERAND_REG(SReg_512)
|
|
|
|
DECODE_OPERAND_REG(AGPR_32)
|
|
DECODE_OPERAND_REG(AReg_128)
|
|
DECODE_OPERAND_REG(AReg_512)
|
|
DECODE_OPERAND_REG(AReg_1024)
|
|
DECODE_OPERAND_REG(AV_32)
|
|
DECODE_OPERAND_REG(AV_64)
|
|
|
|
static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
|
|
unsigned Imm,
|
|
uint64_t Addr,
|
|
const void *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
|
|
}
|
|
|
|
#define DECODE_SDWA(DecName) \
|
|
DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
|
|
|
|
DECODE_SDWA(Src32)
|
|
DECODE_SDWA(Src16)
|
|
DECODE_SDWA(VopcDst)
|
|
|
|
#include "AMDGPUGenDisassemblerTables.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
|
|
assert(Bytes.size() >= sizeof(T));
|
|
const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
|
|
Bytes = Bytes.slice(sizeof(T));
|
|
return Res;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
|
|
MCInst &MI,
|
|
uint64_t Inst,
|
|
uint64_t Address) const {
|
|
assert(MI.getOpcode() == 0);
|
|
assert(MI.getNumOperands() == 0);
|
|
MCInst TmpInst;
|
|
HasLiteral = false;
|
|
const auto SavedBytes = Bytes;
|
|
if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
|
|
MI = TmpInst;
|
|
return MCDisassembler::Success;
|
|
}
|
|
Bytes = SavedBytes;
|
|
return MCDisassembler::Fail;
|
|
}
|
|
|
|
static bool isValidDPP8(const MCInst &MI) {
|
|
using namespace llvm::AMDGPU::DPP;
|
|
int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
|
|
assert(FiIdx != -1);
|
|
if ((unsigned)FiIdx >= MI.getNumOperands())
|
|
return false;
|
|
unsigned Fi = MI.getOperand(FiIdx).getImm();
|
|
return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
|
|
ArrayRef<uint8_t> Bytes_,
|
|
uint64_t Address,
|
|
raw_ostream &CS) const {
|
|
CommentStream = &CS;
|
|
bool IsSDWA = false;
|
|
|
|
unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
|
|
Bytes = Bytes_.slice(0, MaxInstBytesNum);
|
|
|
|
DecodeStatus Res = MCDisassembler::Fail;
|
|
do {
|
|
// ToDo: better to switch encoding length using some bit predicate
|
|
// but it is unknown yet, so try all we can
|
|
|
|
// Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
|
|
// encodings
|
|
if (Bytes.size() >= 8) {
|
|
const uint64_t QW = eatBytes<uint64_t>(Bytes);
|
|
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
|
|
Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
|
|
if (Res) {
|
|
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
|
|
== -1)
|
|
break;
|
|
if (convertDPP8Inst(MI) == MCDisassembler::Success)
|
|
break;
|
|
MI = MCInst(); // clear
|
|
}
|
|
}
|
|
|
|
Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
|
|
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
|
|
break;
|
|
|
|
MI = MCInst(); // clear
|
|
|
|
Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
|
|
if (Res) { IsSDWA = true; break; }
|
|
|
|
Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
|
|
if (Res) { IsSDWA = true; break; }
|
|
|
|
Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
|
|
if (Res) { IsSDWA = true; break; }
|
|
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
|
|
Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
|
|
// Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
|
|
// v_mad_mixhi_f16 for FMA variants. Try to decode using this special
|
|
// table first so we print the correct name.
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
|
|
Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Reinitialize Bytes as DPP64 could have eaten too much
|
|
Bytes = Bytes_.slice(0, MaxInstBytesNum);
|
|
|
|
// Try decode 32-bit instruction
|
|
if (Bytes.size() < 4) break;
|
|
const uint32_t DW = eatBytes<uint32_t>(Bytes);
|
|
Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
|
|
Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
|
|
if (Res) break;
|
|
}
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
if (Bytes.size() < 4) break;
|
|
const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
|
|
Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
|
|
} while (false);
|
|
|
|
if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
|
|
MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
|
|
MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
|
|
MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
|
|
MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
|
|
MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
|
|
MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
|
|
MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
|
|
MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
|
|
MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
|
|
// Insert dummy unused src2_modifiers.
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src2_modifiers);
|
|
}
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
|
|
(SIInstrFlags::MUBUF | SIInstrFlags::FLAT)) &&
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::glc1) != -1) {
|
|
insertNamedMCOperand(MI, MCOperand::createImm(1), AMDGPU::OpName::glc1);
|
|
}
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
|
|
int VAddr0Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
|
|
int RsrcIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
|
|
unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
|
|
if (VAddr0Idx >= 0 && NSAArgs > 0) {
|
|
unsigned NSAWords = (NSAArgs + 3) / 4;
|
|
if (Bytes.size() < 4 * NSAWords) {
|
|
Res = MCDisassembler::Fail;
|
|
} else {
|
|
for (unsigned i = 0; i < NSAArgs; ++i) {
|
|
MI.insert(MI.begin() + VAddr0Idx + 1 + i,
|
|
decodeOperand_VGPR_32(Bytes[i]));
|
|
}
|
|
Bytes = Bytes.slice(4 * NSAWords);
|
|
}
|
|
}
|
|
|
|
if (Res)
|
|
Res = convertMIMGInst(MI);
|
|
}
|
|
|
|
if (Res && IsSDWA)
|
|
Res = convertSDWAInst(MI);
|
|
|
|
int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::vdst_in);
|
|
if (VDstIn_Idx != -1) {
|
|
int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
|
|
MCOI::OperandConstraint::TIED_TO);
|
|
if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
|
|
!MI.getOperand(VDstIn_Idx).isReg() ||
|
|
MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
|
|
if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
|
|
MI.erase(&MI.getOperand(VDstIn_Idx));
|
|
insertNamedMCOperand(MI,
|
|
MCOperand::createReg(MI.getOperand(Tied).getReg()),
|
|
AMDGPU::OpName::vdst_in);
|
|
}
|
|
}
|
|
|
|
// if the opcode was not recognized we'll assume a Size of 4 bytes
|
|
// (unless there are fewer bytes left)
|
|
Size = Res ? (MaxInstBytesNum - Bytes.size())
|
|
: std::min((size_t)4, Bytes_.size());
|
|
return Res;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
|
|
STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
|
|
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
|
|
// VOPC - insert clamp
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
|
|
} else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
|
|
int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
|
|
if (SDst != -1) {
|
|
// VOPC - insert VCC register as sdst
|
|
insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
|
|
AMDGPU::OpName::sdst);
|
|
} else {
|
|
// VOP1/2 - insert omod if present in instruction
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
|
|
}
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
|
|
|
|
// Insert dummy unused src modifiers.
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src0_modifiers);
|
|
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src1_modifiers);
|
|
|
|
return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
|
|
}
|
|
|
|
// Note that before gfx10, the MIMG encoding provided no information about
|
|
// VADDR size. Consequently, decoded instructions always show address as if it
|
|
// has 1 dword, which could be not really so.
|
|
DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
|
|
|
|
int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::vdst);
|
|
|
|
int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::vdata);
|
|
int VAddr0Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
|
|
int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::dmask);
|
|
|
|
int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::tfe);
|
|
int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::d16);
|
|
|
|
assert(VDataIdx != -1);
|
|
if (DMaskIdx == -1 || TFEIdx == -1) {// intersect_ray
|
|
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
|
|
assert(MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_sa ||
|
|
MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa ||
|
|
MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_sa ||
|
|
MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa);
|
|
addOperand(MI, MCOperand::createImm(1));
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
|
|
bool IsAtomic = (VDstIdx != -1);
|
|
bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
|
|
|
|
bool IsNSA = false;
|
|
unsigned AddrSize = Info->VAddrDwords;
|
|
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
|
|
unsigned DimIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
|
|
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
|
|
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
|
|
const AMDGPU::MIMGDimInfo *Dim =
|
|
AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
|
|
|
|
AddrSize = BaseOpcode->NumExtraArgs +
|
|
(BaseOpcode->Gradients ? Dim->NumGradients : 0) +
|
|
(BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
|
|
(BaseOpcode->LodOrClampOrMip ? 1 : 0);
|
|
IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
|
|
if (!IsNSA) {
|
|
if (AddrSize > 8)
|
|
AddrSize = 16;
|
|
else if (AddrSize > 4)
|
|
AddrSize = 8;
|
|
} else {
|
|
if (AddrSize > Info->VAddrDwords) {
|
|
// The NSA encoding does not contain enough operands for the combination
|
|
// of base opcode / dimension. Should this be an error?
|
|
return MCDisassembler::Success;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
|
|
unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
|
|
|
|
bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
|
|
if (D16 && AMDGPU::hasPackedD16(STI)) {
|
|
DstSize = (DstSize + 1) / 2;
|
|
}
|
|
|
|
if (MI.getOperand(TFEIdx).getImm())
|
|
DstSize += 1;
|
|
|
|
if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
|
|
return MCDisassembler::Success;
|
|
|
|
int NewOpcode =
|
|
AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
|
|
if (NewOpcode == -1)
|
|
return MCDisassembler::Success;
|
|
|
|
// Widen the register to the correct number of enabled channels.
|
|
unsigned NewVdata = AMDGPU::NoRegister;
|
|
if (DstSize != Info->VDataDwords) {
|
|
auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
|
|
|
|
// Get first subregister of VData
|
|
unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
|
|
unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
|
|
Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
|
|
|
|
NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
|
|
&MRI.getRegClass(DataRCID));
|
|
if (NewVdata == AMDGPU::NoRegister) {
|
|
// It's possible to encode this such that the low register + enabled
|
|
// components exceeds the register count.
|
|
return MCDisassembler::Success;
|
|
}
|
|
}
|
|
|
|
unsigned NewVAddr0 = AMDGPU::NoRegister;
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
|
|
AddrSize != Info->VAddrDwords) {
|
|
unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
|
|
unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
|
|
VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
|
|
|
|
auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
|
|
NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
|
|
&MRI.getRegClass(AddrRCID));
|
|
if (NewVAddr0 == AMDGPU::NoRegister)
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
MI.setOpcode(NewOpcode);
|
|
|
|
if (NewVdata != AMDGPU::NoRegister) {
|
|
MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
|
|
|
|
if (IsAtomic) {
|
|
// Atomic operations have an additional operand (a copy of data)
|
|
MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
|
|
}
|
|
}
|
|
|
|
if (NewVAddr0 != AMDGPU::NoRegister) {
|
|
MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
|
|
} else if (IsNSA) {
|
|
assert(AddrSize <= Info->VAddrDwords);
|
|
MI.erase(MI.begin() + VAddr0Idx + AddrSize,
|
|
MI.begin() + VAddr0Idx + Info->VAddrDwords);
|
|
}
|
|
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
|
|
return getContext().getRegisterInfo()->
|
|
getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::errOperand(unsigned V,
|
|
const Twine& ErrMsg) const {
|
|
*CommentStream << "Error: " + ErrMsg;
|
|
|
|
// ToDo: add support for error operands to MCInst.h
|
|
// return MCOperand::createError(V);
|
|
return MCOperand();
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
|
|
return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
|
|
unsigned Val) const {
|
|
const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
|
|
if (Val >= RegCl.getNumRegs())
|
|
return errOperand(Val, Twine(getRegClassName(RegClassID)) +
|
|
": unknown register " + Twine(Val));
|
|
return createRegOperand(RegCl.getRegister(Val));
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
|
|
unsigned Val) const {
|
|
// ToDo: SI/CI have 104 SGPRs, VI - 102
|
|
// Valery: here we accepting as much as we can, let assembler sort it out
|
|
int shift = 0;
|
|
switch (SRegClassID) {
|
|
case AMDGPU::SGPR_32RegClassID:
|
|
case AMDGPU::TTMP_32RegClassID:
|
|
break;
|
|
case AMDGPU::SGPR_64RegClassID:
|
|
case AMDGPU::TTMP_64RegClassID:
|
|
shift = 1;
|
|
break;
|
|
case AMDGPU::SGPR_128RegClassID:
|
|
case AMDGPU::TTMP_128RegClassID:
|
|
// ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
|
|
// this bundle?
|
|
case AMDGPU::SGPR_256RegClassID:
|
|
case AMDGPU::TTMP_256RegClassID:
|
|
// ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
|
|
// this bundle?
|
|
case AMDGPU::SGPR_512RegClassID:
|
|
case AMDGPU::TTMP_512RegClassID:
|
|
shift = 2;
|
|
break;
|
|
// ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
|
|
// this bundle?
|
|
default:
|
|
llvm_unreachable("unhandled register class");
|
|
}
|
|
|
|
if (Val % (1 << shift)) {
|
|
*CommentStream << "Warning: " << getRegClassName(SRegClassID)
|
|
<< ": scalar reg isn't aligned " << Val;
|
|
}
|
|
|
|
return createRegOperand(SRegClassID, Val >> shift);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
|
|
return decodeSrcOp(OPW32, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
|
|
return decodeSrcOp(OPW64, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
|
|
return decodeSrcOp(OPW128, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
|
|
return decodeSrcOp(OPW16, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
|
|
return decodeSrcOp(OPWV216, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
|
|
// Some instructions have operand restrictions beyond what the encoding
|
|
// allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
|
|
// high bit.
|
|
Val &= 255;
|
|
|
|
return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
|
|
return decodeSrcOp(OPW32, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
|
|
return decodeSrcOp(OPW32, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
|
|
return decodeSrcOp(OPW64, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
|
|
return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
|
|
// table-gen generated disassembler doesn't care about operand types
|
|
// leaving only registry class so SSrc_32 operand turns into SReg_32
|
|
// and therefore we accept immediates and literals here as well
|
|
return decodeSrcOp(OPW32, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
|
|
unsigned Val) const {
|
|
// SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
|
|
return decodeOperand_SReg_32(Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
|
|
unsigned Val) const {
|
|
// SReg_32_XM0 is SReg_32 without EXEC_HI
|
|
return decodeOperand_SReg_32(Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
|
|
// table-gen generated disassembler doesn't care about operand types
|
|
// leaving only registry class so SSrc_32 operand turns into SReg_32
|
|
// and therefore we accept immediates and literals here as well
|
|
return decodeSrcOp(OPW32, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
|
|
return decodeSrcOp(OPW64, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
|
|
return decodeSrcOp(OPW64, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
|
|
return decodeSrcOp(OPW128, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
|
|
return decodeDstOp(OPW256, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
|
|
return decodeDstOp(OPW512, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
|
|
// For now all literal constants are supposed to be unsigned integer
|
|
// ToDo: deal with signed/unsigned 64-bit integer constants
|
|
// ToDo: deal with float/double constants
|
|
if (!HasLiteral) {
|
|
if (Bytes.size() < 4) {
|
|
return errOperand(0, "cannot read literal, inst bytes left " +
|
|
Twine(Bytes.size()));
|
|
}
|
|
HasLiteral = true;
|
|
Literal = eatBytes<uint32_t>(Bytes);
|
|
}
|
|
return MCOperand::createImm(Literal);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
|
|
return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
|
|
(static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
|
|
(INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
|
|
// Cast prevents negative overflow.
|
|
}
|
|
|
|
static int64_t getInlineImmVal32(unsigned Imm) {
|
|
switch (Imm) {
|
|
case 240:
|
|
return FloatToBits(0.5f);
|
|
case 241:
|
|
return FloatToBits(-0.5f);
|
|
case 242:
|
|
return FloatToBits(1.0f);
|
|
case 243:
|
|
return FloatToBits(-1.0f);
|
|
case 244:
|
|
return FloatToBits(2.0f);
|
|
case 245:
|
|
return FloatToBits(-2.0f);
|
|
case 246:
|
|
return FloatToBits(4.0f);
|
|
case 247:
|
|
return FloatToBits(-4.0f);
|
|
case 248: // 1 / (2 * PI)
|
|
return 0x3e22f983;
|
|
default:
|
|
llvm_unreachable("invalid fp inline imm");
|
|
}
|
|
}
|
|
|
|
static int64_t getInlineImmVal64(unsigned Imm) {
|
|
switch (Imm) {
|
|
case 240:
|
|
return DoubleToBits(0.5);
|
|
case 241:
|
|
return DoubleToBits(-0.5);
|
|
case 242:
|
|
return DoubleToBits(1.0);
|
|
case 243:
|
|
return DoubleToBits(-1.0);
|
|
case 244:
|
|
return DoubleToBits(2.0);
|
|
case 245:
|
|
return DoubleToBits(-2.0);
|
|
case 246:
|
|
return DoubleToBits(4.0);
|
|
case 247:
|
|
return DoubleToBits(-4.0);
|
|
case 248: // 1 / (2 * PI)
|
|
return 0x3fc45f306dc9c882;
|
|
default:
|
|
llvm_unreachable("invalid fp inline imm");
|
|
}
|
|
}
|
|
|
|
static int64_t getInlineImmVal16(unsigned Imm) {
|
|
switch (Imm) {
|
|
case 240:
|
|
return 0x3800;
|
|
case 241:
|
|
return 0xB800;
|
|
case 242:
|
|
return 0x3C00;
|
|
case 243:
|
|
return 0xBC00;
|
|
case 244:
|
|
return 0x4000;
|
|
case 245:
|
|
return 0xC000;
|
|
case 246:
|
|
return 0x4400;
|
|
case 247:
|
|
return 0xC400;
|
|
case 248: // 1 / (2 * PI)
|
|
return 0x3118;
|
|
default:
|
|
llvm_unreachable("invalid fp inline imm");
|
|
}
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
|
|
assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
|
|
&& Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
|
|
|
|
// ToDo: case 248: 1/(2*PI) - is allowed only on VI
|
|
switch (Width) {
|
|
case OPW32:
|
|
case OPW128: // splat constants
|
|
case OPW512:
|
|
case OPW1024:
|
|
return MCOperand::createImm(getInlineImmVal32(Imm));
|
|
case OPW64:
|
|
return MCOperand::createImm(getInlineImmVal64(Imm));
|
|
case OPW16:
|
|
case OPWV216:
|
|
return MCOperand::createImm(getInlineImmVal16(Imm));
|
|
default:
|
|
llvm_unreachable("implement me");
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return VGPR_32RegClassID;
|
|
case OPW64: return VReg_64RegClassID;
|
|
case OPW128: return VReg_128RegClassID;
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return AGPR_32RegClassID;
|
|
case OPW64: return AReg_64RegClassID;
|
|
case OPW128: return AReg_128RegClassID;
|
|
case OPW256: return AReg_256RegClassID;
|
|
case OPW512: return AReg_512RegClassID;
|
|
case OPW1024: return AReg_1024RegClassID;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return SGPR_32RegClassID;
|
|
case OPW64: return SGPR_64RegClassID;
|
|
case OPW128: return SGPR_128RegClassID;
|
|
case OPW256: return SGPR_256RegClassID;
|
|
case OPW512: return SGPR_512RegClassID;
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return TTMP_32RegClassID;
|
|
case OPW64: return TTMP_64RegClassID;
|
|
case OPW128: return TTMP_128RegClassID;
|
|
case OPW256: return TTMP_256RegClassID;
|
|
case OPW512: return TTMP_512RegClassID;
|
|
}
|
|
}
|
|
|
|
int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
|
|
unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
|
|
|
|
return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
assert(Val < 1024); // enum10
|
|
|
|
bool IsAGPR = Val & 512;
|
|
Val &= 511;
|
|
|
|
if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
|
|
return createRegOperand(IsAGPR ? getAgprClassId(Width)
|
|
: getVgprClassId(Width), Val - VGPR_MIN);
|
|
}
|
|
if (Val <= SGPR_MAX) {
|
|
// "SGPR_MIN <= Val" is always true and causes compilation warning.
|
|
static_assert(SGPR_MIN == 0, "");
|
|
return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
|
|
}
|
|
|
|
int TTmpIdx = getTTmpIdx(Val);
|
|
if (TTmpIdx >= 0) {
|
|
return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
|
|
}
|
|
|
|
if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
|
|
return decodeIntImmed(Val);
|
|
|
|
if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
|
|
return decodeFPImmed(Width, Val);
|
|
|
|
if (Val == LITERAL_CONST)
|
|
return decodeLiteralConstant();
|
|
|
|
switch (Width) {
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return decodeSpecialReg32(Val);
|
|
case OPW64:
|
|
return decodeSpecialReg64(Val);
|
|
default:
|
|
llvm_unreachable("unexpected immediate type");
|
|
}
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
assert(Val < 128);
|
|
assert(Width == OPW256 || Width == OPW512);
|
|
|
|
if (Val <= SGPR_MAX) {
|
|
// "SGPR_MIN <= Val" is always true and causes compilation warning.
|
|
static_assert(SGPR_MIN == 0, "");
|
|
return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
|
|
}
|
|
|
|
int TTmpIdx = getTTmpIdx(Val);
|
|
if (TTmpIdx >= 0) {
|
|
return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
|
|
}
|
|
|
|
llvm_unreachable("unknown dst register");
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
|
|
using namespace AMDGPU;
|
|
|
|
switch (Val) {
|
|
case 102: return createRegOperand(FLAT_SCR_LO);
|
|
case 103: return createRegOperand(FLAT_SCR_HI);
|
|
case 104: return createRegOperand(XNACK_MASK_LO);
|
|
case 105: return createRegOperand(XNACK_MASK_HI);
|
|
case 106: return createRegOperand(VCC_LO);
|
|
case 107: return createRegOperand(VCC_HI);
|
|
case 108: return createRegOperand(TBA_LO);
|
|
case 109: return createRegOperand(TBA_HI);
|
|
case 110: return createRegOperand(TMA_LO);
|
|
case 111: return createRegOperand(TMA_HI);
|
|
case 124: return createRegOperand(M0);
|
|
case 125: return createRegOperand(SGPR_NULL);
|
|
case 126: return createRegOperand(EXEC_LO);
|
|
case 127: return createRegOperand(EXEC_HI);
|
|
case 235: return createRegOperand(SRC_SHARED_BASE);
|
|
case 236: return createRegOperand(SRC_SHARED_LIMIT);
|
|
case 237: return createRegOperand(SRC_PRIVATE_BASE);
|
|
case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
|
|
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
|
|
case 251: return createRegOperand(SRC_VCCZ);
|
|
case 252: return createRegOperand(SRC_EXECZ);
|
|
case 253: return createRegOperand(SRC_SCC);
|
|
case 254: return createRegOperand(LDS_DIRECT);
|
|
default: break;
|
|
}
|
|
return errOperand(Val, "unknown operand encoding " + Twine(Val));
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
|
|
using namespace AMDGPU;
|
|
|
|
switch (Val) {
|
|
case 102: return createRegOperand(FLAT_SCR);
|
|
case 104: return createRegOperand(XNACK_MASK);
|
|
case 106: return createRegOperand(VCC);
|
|
case 108: return createRegOperand(TBA);
|
|
case 110: return createRegOperand(TMA);
|
|
case 125: return createRegOperand(SGPR_NULL);
|
|
case 126: return createRegOperand(EXEC);
|
|
case 235: return createRegOperand(SRC_SHARED_BASE);
|
|
case 236: return createRegOperand(SRC_SHARED_LIMIT);
|
|
case 237: return createRegOperand(SRC_PRIVATE_BASE);
|
|
case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
|
|
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
|
|
case 251: return createRegOperand(SRC_VCCZ);
|
|
case 252: return createRegOperand(SRC_EXECZ);
|
|
case 253: return createRegOperand(SRC_SCC);
|
|
default: break;
|
|
}
|
|
return errOperand(Val, "unknown operand encoding " + Twine(Val));
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
|
|
const unsigned Val) const {
|
|
using namespace AMDGPU::SDWA;
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
|
|
STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
|
|
// XXX: cast to int is needed to avoid stupid warning:
|
|
// compare with unsigned is always true
|
|
if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
|
|
Val <= SDWA9EncValues::SRC_VGPR_MAX) {
|
|
return createRegOperand(getVgprClassId(Width),
|
|
Val - SDWA9EncValues::SRC_VGPR_MIN);
|
|
}
|
|
if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
|
|
Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
|
|
: SDWA9EncValues::SRC_SGPR_MAX_SI)) {
|
|
return createSRegOperand(getSgprClassId(Width),
|
|
Val - SDWA9EncValues::SRC_SGPR_MIN);
|
|
}
|
|
if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
|
|
Val <= SDWA9EncValues::SRC_TTMP_MAX) {
|
|
return createSRegOperand(getTtmpClassId(Width),
|
|
Val - SDWA9EncValues::SRC_TTMP_MIN);
|
|
}
|
|
|
|
const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
|
|
|
|
if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
|
|
return decodeIntImmed(SVal);
|
|
|
|
if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
|
|
return decodeFPImmed(Width, SVal);
|
|
|
|
return decodeSpecialReg32(SVal);
|
|
} else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
|
|
return createRegOperand(getVgprClassId(Width), Val);
|
|
}
|
|
llvm_unreachable("unsupported target");
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
|
|
return decodeSDWASrc(OPW16, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
|
|
return decodeSDWASrc(OPW32, Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
|
|
using namespace AMDGPU::SDWA;
|
|
|
|
assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
|
|
STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
|
|
"SDWAVopcDst should be present only on GFX9+");
|
|
|
|
bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
|
|
|
|
if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
|
|
Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
|
|
|
|
int TTmpIdx = getTTmpIdx(Val);
|
|
if (TTmpIdx >= 0) {
|
|
auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
|
|
return createSRegOperand(TTmpClsId, TTmpIdx);
|
|
} else if (Val > SGPR_MAX) {
|
|
return IsWave64 ? decodeSpecialReg64(Val)
|
|
: decodeSpecialReg32(Val);
|
|
} else {
|
|
return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
|
|
}
|
|
} else {
|
|
return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
|
|
}
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
|
|
decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
|
|
}
|
|
|
|
bool AMDGPUDisassembler::isVI() const {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
|
|
}
|
|
|
|
bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
|
|
|
|
bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
|
|
|
|
bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
|
|
|
|
bool AMDGPUDisassembler::isGFX10Plus() const {
|
|
return AMDGPU::isGFX10Plus(STI);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPU specific symbol handling
|
|
//===----------------------------------------------------------------------===//
|
|
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
|
|
do { \
|
|
KdStream << Indent << DIRECTIVE " " \
|
|
<< ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
|
|
} while (0)
|
|
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
|
|
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
|
|
using namespace amdhsa;
|
|
StringRef Indent = "\t";
|
|
|
|
// We cannot accurately backward compute #VGPRs used from
|
|
// GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
|
|
// value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
|
|
// simply calculate the inverse of what the assembler does.
|
|
|
|
uint32_t GranulatedWorkitemVGPRCount =
|
|
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
|
|
COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
|
|
|
|
uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
|
|
AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
|
|
|
|
KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
|
|
|
|
// We cannot backward compute values used to calculate
|
|
// GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
|
|
// directives can't be computed:
|
|
// .amdhsa_reserve_vcc
|
|
// .amdhsa_reserve_flat_scratch
|
|
// .amdhsa_reserve_xnack_mask
|
|
// They take their respective default values if not specified in the assembly.
|
|
//
|
|
// GRANULATED_WAVEFRONT_SGPR_COUNT
|
|
// = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
|
|
//
|
|
// We compute the inverse as though all directives apart from NEXT_FREE_SGPR
|
|
// are set to 0. So while disassembling we consider that:
|
|
//
|
|
// GRANULATED_WAVEFRONT_SGPR_COUNT
|
|
// = f(NEXT_FREE_SGPR + 0 + 0 + 0)
|
|
//
|
|
// The disassembler cannot recover the original values of those 3 directives.
|
|
|
|
uint32_t GranulatedWavefrontSGPRCount =
|
|
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
|
|
COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
|
|
|
|
if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
|
|
return MCDisassembler::Fail;
|
|
|
|
uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
|
|
AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
|
|
|
|
KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
|
|
KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
|
|
KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
|
|
KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
|
|
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
|
|
PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
|
|
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
|
|
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
|
|
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
|
|
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
|
|
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (isGFX10Plus()) {
|
|
PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
|
|
COMPUTE_PGM_RSRC1_WGP_MODE);
|
|
PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
|
|
PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
|
|
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
|
|
using namespace amdhsa;
|
|
StringRef Indent = "\t";
|
|
PRINT_DIRECTIVE(
|
|
".amdhsa_system_sgpr_private_segment_wavefront_offset",
|
|
COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
|
|
PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
|
|
COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(
|
|
".amdhsa_exception_fp_ieee_invalid_op",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
|
|
PRINT_DIRECTIVE(
|
|
".amdhsa_exception_fp_ieee_div_zero",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
|
|
return MCDisassembler::Fail;
|
|
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
#undef PRINT_DIRECTIVE
|
|
|
|
MCDisassembler::DecodeStatus
|
|
AMDGPUDisassembler::decodeKernelDescriptorDirective(
|
|
DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
|
|
raw_string_ostream &KdStream) const {
|
|
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
|
|
do { \
|
|
KdStream << Indent << DIRECTIVE " " \
|
|
<< ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
|
|
} while (0)
|
|
|
|
uint16_t TwoByteBuffer = 0;
|
|
uint32_t FourByteBuffer = 0;
|
|
uint64_t EightByteBuffer = 0;
|
|
|
|
StringRef ReservedBytes;
|
|
StringRef Indent = "\t";
|
|
|
|
assert(Bytes.size() == 64);
|
|
DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
|
|
|
|
switch (Cursor.tell()) {
|
|
case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
|
|
<< '\n';
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
KdStream << Indent << ".amdhsa_private_segment_fixed_size "
|
|
<< FourByteBuffer << '\n';
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::RESERVED0_OFFSET:
|
|
// 8 reserved bytes, must be 0.
|
|
EightByteBuffer = DE.getU64(Cursor);
|
|
if (EightByteBuffer) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
|
|
// KERNEL_CODE_ENTRY_BYTE_OFFSET
|
|
// So far no directive controls this for Code Object V3, so simply skip for
|
|
// disassembly.
|
|
DE.skip(Cursor, 8);
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::RESERVED1_OFFSET:
|
|
// 20 reserved bytes, must be 0.
|
|
ReservedBytes = DE.getBytes(Cursor, 20);
|
|
for (int I = 0; I < 20; ++I) {
|
|
if (ReservedBytes[I] != 0) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
|
|
// COMPUTE_PGM_RSRC3
|
|
// - Only set for GFX10, GFX6-9 have this to be 0.
|
|
// - Currently no directives directly control this.
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
if (!isGFX10Plus() && FourByteBuffer) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
|
|
MCDisassembler::Fail) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
|
|
MCDisassembler::Fail) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
|
|
using namespace amdhsa;
|
|
TwoByteBuffer = DE.getU16(Cursor);
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
|
|
|
|
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
|
|
return MCDisassembler::Fail;
|
|
|
|
// Reserved for GFX9
|
|
if (isGFX9() &&
|
|
(TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
|
|
return MCDisassembler::Fail;
|
|
} else if (isGFX10Plus()) {
|
|
PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
|
|
KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
|
|
}
|
|
|
|
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
|
|
return MCDisassembler::Fail;
|
|
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::RESERVED2_OFFSET:
|
|
// 6 bytes from here are reserved, must be 0.
|
|
ReservedBytes = DE.getBytes(Cursor, 6);
|
|
for (int I = 0; I < 6; ++I) {
|
|
if (ReservedBytes[I] != 0)
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
default:
|
|
llvm_unreachable("Unhandled index. Case statements cover everything.");
|
|
return MCDisassembler::Fail;
|
|
}
|
|
#undef PRINT_DIRECTIVE
|
|
}
|
|
|
|
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
|
|
StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
|
|
// CP microcode requires the kernel descriptor to be 64 aligned.
|
|
if (Bytes.size() != 64 || KdAddress % 64 != 0)
|
|
return MCDisassembler::Fail;
|
|
|
|
std::string Kd;
|
|
raw_string_ostream KdStream(Kd);
|
|
KdStream << ".amdhsa_kernel " << KdName << '\n';
|
|
|
|
DataExtractor::Cursor C(0);
|
|
while (C && C.tell() < Bytes.size()) {
|
|
MCDisassembler::DecodeStatus Status =
|
|
decodeKernelDescriptorDirective(C, Bytes, KdStream);
|
|
|
|
cantFail(C.takeError());
|
|
|
|
if (Status == MCDisassembler::Fail)
|
|
return MCDisassembler::Fail;
|
|
}
|
|
KdStream << ".end_amdhsa_kernel\n";
|
|
outs() << KdStream.str();
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
Optional<MCDisassembler::DecodeStatus>
|
|
AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
|
|
ArrayRef<uint8_t> Bytes, uint64_t Address,
|
|
raw_ostream &CStream) const {
|
|
// Right now only kernel descriptor needs to be handled.
|
|
// We ignore all other symbols for target specific handling.
|
|
// TODO:
|
|
// Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
|
|
// Object V2 and V3 when symbols are marked protected.
|
|
|
|
// amd_kernel_code_t for Code Object V2.
|
|
if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
|
|
Size = 256;
|
|
return MCDisassembler::Fail;
|
|
}
|
|
|
|
// Code Object V3 kernel descriptors.
|
|
StringRef Name = Symbol.Name;
|
|
if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
|
|
Size = 64; // Size = 64 regardless of success or failure.
|
|
return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
|
|
}
|
|
return None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPUSymbolizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Try to find symbol name for specified label
|
|
bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
|
|
raw_ostream &/*cStream*/, int64_t Value,
|
|
uint64_t /*Address*/, bool IsBranch,
|
|
uint64_t /*Offset*/, uint64_t /*InstSize*/) {
|
|
|
|
if (!IsBranch) {
|
|
return false;
|
|
}
|
|
|
|
auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
|
|
if (!Symbols)
|
|
return false;
|
|
|
|
auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
|
|
return Val.Addr == static_cast<uint64_t>(Value) &&
|
|
Val.Type == ELF::STT_NOTYPE;
|
|
});
|
|
if (Result != Symbols->end()) {
|
|
auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
|
|
const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
|
|
Inst.addOperand(MCOperand::createExpr(Add));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
|
|
int64_t Value,
|
|
uint64_t Address) {
|
|
llvm_unreachable("unimplemented");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
|
|
LLVMOpInfoCallback /*GetOpInfo*/,
|
|
LLVMSymbolLookupCallback /*SymbolLookUp*/,
|
|
void *DisInfo,
|
|
MCContext *Ctx,
|
|
std::unique_ptr<MCRelocationInfo> &&RelInfo) {
|
|
return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
|
|
}
|
|
|
|
static MCDisassembler *createAMDGPUDisassembler(const Target &T,
|
|
const MCSubtargetInfo &STI,
|
|
MCContext &Ctx) {
|
|
return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
|
|
}
|
|
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
|
|
TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
|
|
createAMDGPUDisassembler);
|
|
TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
|
|
createAMDGPUSymbolizer);
|
|
}
|