1315 lines
48 KiB
C++
1315 lines
48 KiB
C++
//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
// This file implements a TargetTransformInfo analysis pass specific to the
|
|
// AMDGPU target machine. It uses the target's detailed information to provide
|
|
// more precise answers to certain TTI queries, while letting the target
|
|
// independent and default TTI implementations handle the rest.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUTargetTransformInfo.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "AMDGPUtti"
|
|
|
|
static cl::opt<unsigned> UnrollThresholdPrivate(
|
|
"amdgpu-unroll-threshold-private",
|
|
cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
|
|
cl::init(2700), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> UnrollThresholdLocal(
|
|
"amdgpu-unroll-threshold-local",
|
|
cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
|
|
cl::init(1000), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> UnrollThresholdIf(
|
|
"amdgpu-unroll-threshold-if",
|
|
cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
|
|
cl::init(150), cl::Hidden);
|
|
|
|
static cl::opt<bool> UnrollRuntimeLocal(
|
|
"amdgpu-unroll-runtime-local",
|
|
cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<bool> UseLegacyDA(
|
|
"amdgpu-use-legacy-divergence-analysis",
|
|
cl::desc("Enable legacy divergence analysis for AMDGPU"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
|
|
"amdgpu-unroll-max-block-to-analyze",
|
|
cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
|
|
cl::init(32), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
|
|
cl::Hidden, cl::init(4000),
|
|
cl::desc("Cost of alloca argument"));
|
|
|
|
// If the amount of scratch memory to eliminate exceeds our ability to allocate
|
|
// it into registers we gain nothing by aggressively inlining functions for that
|
|
// heuristic.
|
|
static cl::opt<unsigned>
|
|
ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
|
|
cl::init(256),
|
|
cl::desc("Maximum alloca size to use for inline cost"));
|
|
|
|
// Inliner constraint to achieve reasonable compilation time.
|
|
static cl::opt<size_t> InlineMaxBB(
|
|
"amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
|
|
cl::desc("Maximum number of BBs allowed in a function after inlining"
|
|
" (compile time constraint)"));
|
|
|
|
static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
|
|
unsigned Depth = 0) {
|
|
const Instruction *I = dyn_cast<Instruction>(Cond);
|
|
if (!I)
|
|
return false;
|
|
|
|
for (const Value *V : I->operand_values()) {
|
|
if (!L->contains(I))
|
|
continue;
|
|
if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
|
|
if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
|
|
return SubLoop->contains(PHI); }))
|
|
return true;
|
|
} else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
|
|
: BaseT(TM, F.getParent()->getDataLayout()),
|
|
TargetTriple(TM->getTargetTriple()),
|
|
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
|
|
TLI(ST->getTargetLowering()) {}
|
|
|
|
void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
const Function &F = *L->getHeader()->getParent();
|
|
UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
|
|
UP.MaxCount = std::numeric_limits<unsigned>::max();
|
|
UP.Partial = true;
|
|
|
|
// TODO: Do we want runtime unrolling?
|
|
|
|
// Maximum alloca size than can fit registers. Reserve 16 registers.
|
|
const unsigned MaxAlloca = (256 - 16) * 4;
|
|
unsigned ThresholdPrivate = UnrollThresholdPrivate;
|
|
unsigned ThresholdLocal = UnrollThresholdLocal;
|
|
|
|
// If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
|
|
// provided threshold value as the default for Threshold
|
|
if (MDNode *LoopUnrollThreshold =
|
|
findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
|
|
if (LoopUnrollThreshold->getNumOperands() == 2) {
|
|
ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
|
|
LoopUnrollThreshold->getOperand(1));
|
|
if (MetaThresholdValue) {
|
|
// We will also use the supplied value for PartialThreshold for now.
|
|
// We may introduce additional metadata if it becomes necessary in the
|
|
// future.
|
|
UP.Threshold = MetaThresholdValue->getSExtValue();
|
|
UP.PartialThreshold = UP.Threshold;
|
|
ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
|
|
ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
|
|
for (const BasicBlock *BB : L->getBlocks()) {
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
unsigned LocalGEPsSeen = 0;
|
|
|
|
if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
|
|
return SubLoop->contains(BB); }))
|
|
continue; // Block belongs to an inner loop.
|
|
|
|
for (const Instruction &I : *BB) {
|
|
// Unroll a loop which contains an "if" statement whose condition
|
|
// defined by a PHI belonging to the loop. This may help to eliminate
|
|
// if region and potentially even PHI itself, saving on both divergence
|
|
// and registers used for the PHI.
|
|
// Add a small bonus for each of such "if" statements.
|
|
if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
|
|
if (UP.Threshold < MaxBoost && Br->isConditional()) {
|
|
BasicBlock *Succ0 = Br->getSuccessor(0);
|
|
BasicBlock *Succ1 = Br->getSuccessor(1);
|
|
if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
|
|
(L->contains(Succ1) && L->isLoopExiting(Succ1)))
|
|
continue;
|
|
if (dependsOnLocalPhi(L, Br->getCondition())) {
|
|
UP.Threshold += UnrollThresholdIf;
|
|
LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
|
|
<< " for loop:\n"
|
|
<< *L << " due to " << *Br << '\n');
|
|
if (UP.Threshold >= MaxBoost)
|
|
return;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
|
|
if (!GEP)
|
|
continue;
|
|
|
|
unsigned AS = GEP->getAddressSpace();
|
|
unsigned Threshold = 0;
|
|
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
|
|
Threshold = ThresholdPrivate;
|
|
else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
|
|
Threshold = ThresholdLocal;
|
|
else
|
|
continue;
|
|
|
|
if (UP.Threshold >= Threshold)
|
|
continue;
|
|
|
|
if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
|
|
const Value *Ptr = GEP->getPointerOperand();
|
|
const AllocaInst *Alloca =
|
|
dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
|
|
if (!Alloca || !Alloca->isStaticAlloca())
|
|
continue;
|
|
Type *Ty = Alloca->getAllocatedType();
|
|
unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
|
|
if (AllocaSize > MaxAlloca)
|
|
continue;
|
|
} else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
|
|
AS == AMDGPUAS::REGION_ADDRESS) {
|
|
LocalGEPsSeen++;
|
|
// Inhibit unroll for local memory if we have seen addressing not to
|
|
// a variable, most likely we will be unable to combine it.
|
|
// Do not unroll too deep inner loops for local memory to give a chance
|
|
// to unroll an outer loop for a more important reason.
|
|
if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
|
|
(!isa<GlobalVariable>(GEP->getPointerOperand()) &&
|
|
!isa<Argument>(GEP->getPointerOperand())))
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
|
|
<< *L << " due to LDS use.\n");
|
|
UP.Runtime = UnrollRuntimeLocal;
|
|
}
|
|
|
|
// Check if GEP depends on a value defined by this loop itself.
|
|
bool HasLoopDef = false;
|
|
for (const Value *Op : GEP->operands()) {
|
|
const Instruction *Inst = dyn_cast<Instruction>(Op);
|
|
if (!Inst || L->isLoopInvariant(Op))
|
|
continue;
|
|
|
|
if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
|
|
return SubLoop->contains(Inst); }))
|
|
continue;
|
|
HasLoopDef = true;
|
|
break;
|
|
}
|
|
if (!HasLoopDef)
|
|
continue;
|
|
|
|
// We want to do whatever we can to limit the number of alloca
|
|
// instructions that make it through to the code generator. allocas
|
|
// require us to use indirect addressing, which is slow and prone to
|
|
// compiler bugs. If this loop does an address calculation on an
|
|
// alloca ptr, then we want to use a higher than normal loop unroll
|
|
// threshold. This will give SROA a better chance to eliminate these
|
|
// allocas.
|
|
//
|
|
// We also want to have more unrolling for local memory to let ds
|
|
// instructions with different offsets combine.
|
|
//
|
|
// Don't use the maximum allowed value here as it will make some
|
|
// programs way too big.
|
|
UP.Threshold = Threshold;
|
|
LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
|
|
<< " for loop:\n"
|
|
<< *L << " due to " << *GEP << '\n');
|
|
if (UP.Threshold >= MaxBoost)
|
|
return;
|
|
}
|
|
|
|
// If we got a GEP in a small BB from inner loop then increase max trip
|
|
// count to analyze for better estimation cost in unroll
|
|
if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
|
|
UP.MaxIterationsCountToAnalyze = 32;
|
|
}
|
|
}
|
|
|
|
void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
BaseT::getPeelingPreferences(L, SE, PP);
|
|
}
|
|
|
|
const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
|
|
// Codegen control options which don't matter.
|
|
AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
|
|
AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
|
|
AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
|
|
AMDGPU::FeatureUnalignedAccessMode,
|
|
|
|
AMDGPU::FeatureAutoWaitcntBeforeBarrier,
|
|
|
|
// Property of the kernel/environment which can't actually differ.
|
|
AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
|
|
AMDGPU::FeatureTrapHandler,
|
|
|
|
// The default assumption needs to be ecc is enabled, but no directly
|
|
// exposed operations depend on it, so it can be safely inlined.
|
|
AMDGPU::FeatureSRAMECC,
|
|
|
|
// Perf-tuning features
|
|
AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
|
|
|
|
GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
|
|
: BaseT(TM, F.getParent()->getDataLayout()),
|
|
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
|
|
TLI(ST->getTargetLowering()), CommonTTI(TM, F),
|
|
IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
|
|
MaxVGPRs(ST->getMaxNumVGPRs(
|
|
std::max(ST->getWavesPerEU(F).first,
|
|
ST->getWavesPerEUForWorkGroup(
|
|
ST->getFlatWorkGroupSizes(F).second)))) {
|
|
AMDGPU::SIModeRegisterDefaults Mode(F);
|
|
HasFP32Denormals = Mode.allFP32Denormals();
|
|
HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
|
|
// The concept of vector registers doesn't really exist. Some packed vector
|
|
// operations operate on the normal 32-bit registers.
|
|
return MaxVGPRs;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
|
|
// This is really the number of registers to fill when vectorizing /
|
|
// interleaving loops, so we lie to avoid trying to use all registers.
|
|
return getHardwareNumberOfRegisters(Vec) >> 3;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
|
|
const SIRegisterInfo *TRI = ST->getRegisterInfo();
|
|
const TargetRegisterClass *RC = TRI->getRegClass(RCID);
|
|
unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
|
|
return getHardwareNumberOfRegisters(false) / NumVGPRs;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
|
|
return 32;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
|
|
return 32;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
|
|
if (Opcode == Instruction::Load || Opcode == Instruction::Store)
|
|
return 32 * 4 / ElemWidth;
|
|
return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 : 1;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const {
|
|
unsigned VecRegBitWidth = VF * LoadSize;
|
|
if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
|
|
// TODO: Support element-size less than 32bit?
|
|
return 128 / LoadSize;
|
|
|
|
return VF;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
|
|
unsigned ChainSizeInBytes,
|
|
VectorType *VecTy) const {
|
|
unsigned VecRegBitWidth = VF * StoreSize;
|
|
if (VecRegBitWidth > 128)
|
|
return 128 / StoreSize;
|
|
|
|
return VF;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
|
|
if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
|
|
AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
|
|
return 512;
|
|
}
|
|
|
|
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
|
|
return 8 * ST->getMaxPrivateElementSize();
|
|
|
|
// Common to flat, global, local and region. Assume for unknown addrspace.
|
|
return 128;
|
|
}
|
|
|
|
bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
|
|
Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
// We allow vectorization of flat stores, even though we may need to decompose
|
|
// them later if they may access private memory. We don't have enough context
|
|
// here, and legalization can handle it.
|
|
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
|
|
return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
|
|
ChainSizeInBytes <= ST->getMaxPrivateElementSize();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
|
|
Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
|
|
}
|
|
|
|
bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
|
|
Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
|
|
}
|
|
|
|
// FIXME: Really we would like to issue multiple 128-bit loads and stores per
|
|
// iteration. Should we report a larger size and let it legalize?
|
|
//
|
|
// FIXME: Should we use narrower types for local/region, or account for when
|
|
// unaligned access is legal?
|
|
//
|
|
// FIXME: This could use fine tuning and microbenchmarks.
|
|
Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
|
|
unsigned SrcAddrSpace,
|
|
unsigned DestAddrSpace,
|
|
unsigned SrcAlign,
|
|
unsigned DestAlign) const {
|
|
unsigned MinAlign = std::min(SrcAlign, DestAlign);
|
|
|
|
// A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
|
|
// hardware into byte accesses. If you assume all alignments are equally
|
|
// probable, it's more efficient on average to use short accesses for this
|
|
// case.
|
|
if (MinAlign == 2)
|
|
return Type::getInt16Ty(Context);
|
|
|
|
// Not all subtargets have 128-bit DS instructions, and we currently don't
|
|
// form them by default.
|
|
if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
|
|
SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
|
|
DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
|
|
DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
|
|
return FixedVectorType::get(Type::getInt32Ty(Context), 2);
|
|
}
|
|
|
|
// Global memory works best with 16-byte accesses. Private memory will also
|
|
// hit this, although they'll be decomposed.
|
|
return FixedVectorType::get(Type::getInt32Ty(Context), 4);
|
|
}
|
|
|
|
void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
|
|
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
|
|
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
|
|
unsigned SrcAlign, unsigned DestAlign) const {
|
|
assert(RemainingBytes < 16);
|
|
|
|
unsigned MinAlign = std::min(SrcAlign, DestAlign);
|
|
|
|
if (MinAlign != 2) {
|
|
Type *I64Ty = Type::getInt64Ty(Context);
|
|
while (RemainingBytes >= 8) {
|
|
OpsOut.push_back(I64Ty);
|
|
RemainingBytes -= 8;
|
|
}
|
|
|
|
Type *I32Ty = Type::getInt32Ty(Context);
|
|
while (RemainingBytes >= 4) {
|
|
OpsOut.push_back(I32Ty);
|
|
RemainingBytes -= 4;
|
|
}
|
|
}
|
|
|
|
Type *I16Ty = Type::getInt16Ty(Context);
|
|
while (RemainingBytes >= 2) {
|
|
OpsOut.push_back(I16Ty);
|
|
RemainingBytes -= 2;
|
|
}
|
|
|
|
Type *I8Ty = Type::getInt8Ty(Context);
|
|
while (RemainingBytes) {
|
|
OpsOut.push_back(I8Ty);
|
|
--RemainingBytes;
|
|
}
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
// Disable unrolling if the loop is not vectorized.
|
|
// TODO: Enable this again.
|
|
if (VF == 1)
|
|
return 1;
|
|
|
|
return 8;
|
|
}
|
|
|
|
bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|
MemIntrinsicInfo &Info) const {
|
|
switch (Inst->getIntrinsicID()) {
|
|
case Intrinsic::amdgcn_atomic_inc:
|
|
case Intrinsic::amdgcn_atomic_dec:
|
|
case Intrinsic::amdgcn_ds_ordered_add:
|
|
case Intrinsic::amdgcn_ds_ordered_swap:
|
|
case Intrinsic::amdgcn_ds_fadd:
|
|
case Intrinsic::amdgcn_ds_fmin:
|
|
case Intrinsic::amdgcn_ds_fmax: {
|
|
auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
|
|
auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
|
|
if (!Ordering || !Volatile)
|
|
return false; // Invalid.
|
|
|
|
unsigned OrderingVal = Ordering->getZExtValue();
|
|
if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
|
|
return false;
|
|
|
|
Info.PtrVal = Inst->getArgOperand(0);
|
|
Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
|
|
Info.ReadMem = true;
|
|
Info.WriteMem = true;
|
|
Info.IsVolatile = !Volatile->isNullValue();
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueKind Opd1Info,
|
|
TTI::OperandValueKind Opd2Info,
|
|
TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo,
|
|
ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
EVT OrigTy = TLI->getValueType(DL, Ty);
|
|
if (!OrigTy.isSimple()) {
|
|
// FIXME: We're having to query the throughput cost so that the basic
|
|
// implementation tries to generate legalize and scalarization costs. Maybe
|
|
// we could hoist the scalarization code here?
|
|
if (CostKind != TTI::TCK_CodeSize)
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
|
|
Opd1Info, Opd2Info, Opd1PropInfo,
|
|
Opd2PropInfo, Args, CxtI);
|
|
// Scalarization
|
|
|
|
// Check if any of the operands are vector operands.
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
|
|
bool IsFloat = Ty->isFPOrFPVectorTy();
|
|
// Assume that floating point arithmetic operations cost twice as much as
|
|
// integer operations.
|
|
unsigned OpCost = (IsFloat ? 2 : 1);
|
|
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
return LT.first * OpCost;
|
|
}
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered, then assume that the code is twice
|
|
// as expensive.
|
|
return LT.first * 2 * OpCost;
|
|
}
|
|
|
|
// Else, assume that we need to scalarize this op.
|
|
// TODO: If one of the types get legalized by splitting, handle this
|
|
// similarly to what getCastInstrCost() does.
|
|
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
|
|
unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
|
|
unsigned Cost = getArithmeticInstrCost(
|
|
Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(VTy, Args) + Num * Cost;
|
|
}
|
|
|
|
// We don't know anything about this scalar instruction.
|
|
return OpCost;
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
// Because we don't have any legal vector operations, but the legal types, we
|
|
// need to account for split vectors.
|
|
unsigned NElts = LT.second.isVector() ?
|
|
LT.second.getVectorNumElements() : 1;
|
|
|
|
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
|
|
|
|
switch (ISD) {
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
if (SLT == MVT::i64)
|
|
return get64BitInstrCost(CostKind) * LT.first * NElts;
|
|
|
|
if (ST->has16BitInsts() && SLT == MVT::i16)
|
|
NElts = (NElts + 1) / 2;
|
|
|
|
// i32
|
|
return getFullRateInstrCost() * LT.first * NElts;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
if (SLT == MVT::i64) {
|
|
// and, or and xor are typically split into 2 VALU instructions.
|
|
return 2 * getFullRateInstrCost() * LT.first * NElts;
|
|
}
|
|
|
|
if (ST->has16BitInsts() && SLT == MVT::i16)
|
|
NElts = (NElts + 1) / 2;
|
|
|
|
return LT.first * NElts * getFullRateInstrCost();
|
|
case ISD::MUL: {
|
|
const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
|
|
if (SLT == MVT::i64) {
|
|
const int FullRateCost = getFullRateInstrCost();
|
|
return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
|
|
}
|
|
|
|
if (ST->has16BitInsts() && SLT == MVT::i16)
|
|
NElts = (NElts + 1) / 2;
|
|
|
|
// i32
|
|
return QuarterRateCost * NElts * LT.first;
|
|
}
|
|
case ISD::FMUL:
|
|
// Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
|
|
// fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
|
|
// fused operation.
|
|
if (CxtI && CxtI->hasOneUse())
|
|
if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
|
|
const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
|
|
if (OPC == ISD::FADD || OPC == ISD::FSUB) {
|
|
if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
|
|
return TargetTransformInfo::TCC_Free;
|
|
if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
|
|
return TargetTransformInfo::TCC_Free;
|
|
|
|
// Estimate all types may be fused with contract/unsafe flags
|
|
const TargetOptions &Options = TLI->getTargetMachine().Options;
|
|
if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
|
|
Options.UnsafeFPMath ||
|
|
(FAdd->hasAllowContract() && CxtI->hasAllowContract()))
|
|
return TargetTransformInfo::TCC_Free;
|
|
}
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
if (SLT == MVT::f64)
|
|
return LT.first * NElts * get64BitInstrCost(CostKind);
|
|
|
|
if (ST->has16BitInsts() && SLT == MVT::f16)
|
|
NElts = (NElts + 1) / 2;
|
|
|
|
if (SLT == MVT::f32 || SLT == MVT::f16)
|
|
return LT.first * NElts * getFullRateInstrCost();
|
|
break;
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
// FIXME: frem should be handled separately. The fdiv in it is most of it,
|
|
// but the current lowering is also not entirely correct.
|
|
if (SLT == MVT::f64) {
|
|
int Cost = 7 * get64BitInstrCost(CostKind) +
|
|
getQuarterRateInstrCost(CostKind) +
|
|
3 * getHalfRateInstrCost(CostKind);
|
|
// Add cost of workaround.
|
|
if (!ST->hasUsableDivScaleConditionOutput())
|
|
Cost += 3 * getFullRateInstrCost();
|
|
|
|
return LT.first * Cost * NElts;
|
|
}
|
|
|
|
if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
|
|
// TODO: This is more complicated, unsafe flags etc.
|
|
if ((SLT == MVT::f32 && !HasFP32Denormals) ||
|
|
(SLT == MVT::f16 && ST->has16BitInsts())) {
|
|
return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
|
|
}
|
|
}
|
|
|
|
if (SLT == MVT::f16 && ST->has16BitInsts()) {
|
|
// 2 x v_cvt_f32_f16
|
|
// f32 rcp
|
|
// f32 fmul
|
|
// v_cvt_f16_f32
|
|
// f16 div_fixup
|
|
int Cost =
|
|
4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
|
|
return LT.first * Cost * NElts;
|
|
}
|
|
|
|
if (SLT == MVT::f32 || SLT == MVT::f16) {
|
|
// 4 more v_cvt_* insts without f16 insts support
|
|
int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
|
|
1 * getQuarterRateInstrCost(CostKind);
|
|
|
|
if (!HasFP32Denormals) {
|
|
// FP mode switches.
|
|
Cost += 2 * getFullRateInstrCost();
|
|
}
|
|
|
|
return LT.first * NElts * Cost;
|
|
}
|
|
break;
|
|
case ISD::FNEG:
|
|
// Use the backend' estimation. If fneg is not free each element will cost
|
|
// one additional instruction.
|
|
return TLI->isFNegFree(SLT) ? 0 : NElts;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
|
|
}
|
|
|
|
// Return true if there's a potential benefit from using v2f16/v2i16
|
|
// instructions for an intrinsic, even if it requires nontrivial legalization.
|
|
static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
|
|
switch (ID) {
|
|
case Intrinsic::fma: // TODO: fmuladd
|
|
// There's a small benefit to using vector ops in the legalized code.
|
|
case Intrinsic::round:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::usub_sat:
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (ICA.getID() == Intrinsic::fabs)
|
|
return 0;
|
|
|
|
if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
|
|
Type *RetTy = ICA.getReturnType();
|
|
EVT OrigTy = TLI->getValueType(DL, RetTy);
|
|
if (!OrigTy.isSimple()) {
|
|
if (CostKind != TTI::TCK_CodeSize)
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
|
|
// TODO: Combine these two logic paths.
|
|
if (ICA.isTypeBasedOnly())
|
|
return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
|
|
|
|
Type *RetTy = ICA.getReturnType();
|
|
unsigned VF = ICA.getVectorFactor().getFixedValue();
|
|
unsigned RetVF =
|
|
(RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
|
|
: 1);
|
|
assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
|
|
const IntrinsicInst *I = ICA.getInst();
|
|
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
|
|
FastMathFlags FMF = ICA.getFlags();
|
|
// Assume that we need to scalarize this intrinsic.
|
|
SmallVector<Type *, 4> Types;
|
|
for (const Value *Op : Args) {
|
|
Type *OpTy = Op->getType();
|
|
assert(VF == 1 || !OpTy->isVectorTy());
|
|
Types.push_back(VF == 1 ? OpTy : FixedVectorType::get(OpTy, VF));
|
|
}
|
|
|
|
if (VF > 1 && !RetTy->isVoidTy())
|
|
RetTy = FixedVectorType::get(RetTy, VF);
|
|
|
|
// Compute the scalarization overhead based on Args for a vector
|
|
// intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
|
|
// CostModel will pass a vector RetTy and VF is 1.
|
|
unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
|
|
if (RetVF > 1 || VF > 1) {
|
|
ScalarizationCost = 0;
|
|
if (!RetTy->isVoidTy())
|
|
ScalarizationCost +=
|
|
getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
|
|
ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
|
|
}
|
|
|
|
IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, Types, FMF,
|
|
ScalarizationCost, I);
|
|
return getIntrinsicInstrCost(Attrs, CostKind);
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
|
|
|
|
unsigned NElts = LT.second.isVector() ?
|
|
LT.second.getVectorNumElements() : 1;
|
|
|
|
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
|
|
|
|
if (SLT == MVT::f64)
|
|
return LT.first * NElts * get64BitInstrCost(CostKind);
|
|
|
|
if (ST->has16BitInsts() && SLT == MVT::f16)
|
|
NElts = (NElts + 1) / 2;
|
|
|
|
// TODO: Get more refined intrinsic costs?
|
|
unsigned InstRate = getQuarterRateInstrCost(CostKind);
|
|
if (ICA.getID() == Intrinsic::fma) {
|
|
InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
|
|
: getQuarterRateInstrCost(CostKind);
|
|
}
|
|
|
|
return LT.first * NElts * InstRate;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
|
|
return Opcode == Instruction::PHI ? 0 : 1;
|
|
|
|
// XXX - For some reason this isn't called for switch.
|
|
switch (Opcode) {
|
|
case Instruction::Br:
|
|
case Instruction::Ret:
|
|
return 10;
|
|
default:
|
|
return BaseT::getCFInstrCost(Opcode, CostKind);
|
|
}
|
|
}
|
|
|
|
int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
|
|
bool IsPairwise,
|
|
TTI::TargetCostKind CostKind) {
|
|
EVT OrigTy = TLI->getValueType(DL, Ty);
|
|
|
|
// Computes cost on targets that have packed math instructions(which support
|
|
// 16-bit types only).
|
|
if (IsPairwise ||
|
|
!ST->hasVOP3PInsts() ||
|
|
OrigTy.getScalarSizeInBits() != 16)
|
|
return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
return LT.first * getFullRateInstrCost();
|
|
}
|
|
|
|
int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
|
|
bool IsPairwise, bool IsUnsigned,
|
|
TTI::TargetCostKind CostKind) {
|
|
EVT OrigTy = TLI->getValueType(DL, Ty);
|
|
|
|
// Computes cost on targets that have packed math instructions(which support
|
|
// 16-bit types only).
|
|
if (IsPairwise ||
|
|
!ST->hasVOP3PInsts() ||
|
|
OrigTy.getScalarSizeInBits() != 16)
|
|
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
|
|
CostKind);
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
return LT.first * getHalfRateInstrCost(CostKind);
|
|
}
|
|
|
|
int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) {
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement: {
|
|
unsigned EltSize
|
|
= DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
|
|
if (EltSize < 32) {
|
|
if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
|
|
return 0;
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
|
|
// Extracts are just reads of a subregister, so are free. Inserts are
|
|
// considered free because we don't want to have any cost for scalarizing
|
|
// operations, and we don't have to copy into a different register class.
|
|
|
|
// Dynamic indexing isn't free and is best avoided.
|
|
return Index == ~0u ? 2 : 0;
|
|
}
|
|
default:
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
}
|
|
|
|
/// Analyze if the results of inline asm are divergent. If \p Indices is empty,
|
|
/// this is analyzing the collective result of all output registers. Otherwise,
|
|
/// this is only querying a specific result index if this returns multiple
|
|
/// registers in a struct.
|
|
bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
|
|
const CallInst *CI, ArrayRef<unsigned> Indices) const {
|
|
// TODO: Handle complex extract indices
|
|
if (Indices.size() > 1)
|
|
return true;
|
|
|
|
const DataLayout &DL = CI->getModule()->getDataLayout();
|
|
const SIRegisterInfo *TRI = ST->getRegisterInfo();
|
|
TargetLowering::AsmOperandInfoVector TargetConstraints =
|
|
TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
|
|
|
|
const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
|
|
|
|
int OutputIdx = 0;
|
|
for (auto &TC : TargetConstraints) {
|
|
if (TC.Type != InlineAsm::isOutput)
|
|
continue;
|
|
|
|
// Skip outputs we don't care about.
|
|
if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
|
|
continue;
|
|
|
|
TLI->ComputeConstraintToUse(TC, SDValue());
|
|
|
|
Register AssignedReg;
|
|
const TargetRegisterClass *RC;
|
|
std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
|
|
TRI, TC.ConstraintCode, TC.ConstraintVT);
|
|
if (AssignedReg) {
|
|
// FIXME: This is a workaround for getRegForInlineAsmConstraint
|
|
// returning VS_32
|
|
RC = TRI->getPhysRegClass(AssignedReg);
|
|
}
|
|
|
|
// For AGPR constraints null is returned on subtargets without AGPRs, so
|
|
// assume divergent for null.
|
|
if (!RC || !TRI->isSGPRClass(RC))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \returns true if the new GPU divergence analysis is enabled.
|
|
bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
|
|
return !UseLegacyDA;
|
|
}
|
|
|
|
/// \returns true if the result of the value could potentially be
|
|
/// different across workitems in a wavefront.
|
|
bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return !AMDGPU::isArgPassedInSGPR(A);
|
|
|
|
// Loads from the private and flat address spaces are divergent, because
|
|
// threads can execute the load instruction with the same inputs and get
|
|
// different results.
|
|
//
|
|
// All other loads are not divergent, because if threads issue loads with the
|
|
// same arguments, they will always get the same result.
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
|
|
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
|
|
Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
|
|
|
|
// Atomics are divergent because they are executed sequentially: when an
|
|
// atomic operation refers to the same address in each thread, then each
|
|
// thread after the first sees the value written by the previous thread as
|
|
// original value.
|
|
if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
|
|
return true;
|
|
|
|
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
|
|
return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
|
|
|
|
// Assume all function calls are a source of divergence.
|
|
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
|
|
if (CI->isInlineAsm())
|
|
return isInlineAsmSourceOfDivergence(CI);
|
|
return true;
|
|
}
|
|
|
|
// Assume all function calls are a source of divergence.
|
|
if (isa<InvokeInst>(V))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
|
|
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
|
|
switch (Intrinsic->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::amdgcn_readfirstlane:
|
|
case Intrinsic::amdgcn_readlane:
|
|
case Intrinsic::amdgcn_icmp:
|
|
case Intrinsic::amdgcn_fcmp:
|
|
case Intrinsic::amdgcn_ballot:
|
|
case Intrinsic::amdgcn_if_break:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
|
|
if (CI->isInlineAsm())
|
|
return !isInlineAsmSourceOfDivergence(CI);
|
|
return false;
|
|
}
|
|
|
|
const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
|
|
if (!ExtValue)
|
|
return false;
|
|
|
|
const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
|
|
if (!CI)
|
|
return false;
|
|
|
|
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
|
|
switch (Intrinsic->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::amdgcn_if:
|
|
case Intrinsic::amdgcn_else: {
|
|
ArrayRef<unsigned> Indices = ExtValue->getIndices();
|
|
return Indices.size() == 1 && Indices[0] == 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have inline asm returning mixed SGPR and VGPR results, we inferred
|
|
// divergent for the overall struct return. We need to override it in the
|
|
// case we're extracting an SGPR component here.
|
|
if (CI->isInlineAsm())
|
|
return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
|
|
Intrinsic::ID IID) const {
|
|
switch (IID) {
|
|
case Intrinsic::amdgcn_atomic_inc:
|
|
case Intrinsic::amdgcn_atomic_dec:
|
|
case Intrinsic::amdgcn_ds_fadd:
|
|
case Intrinsic::amdgcn_ds_fmin:
|
|
case Intrinsic::amdgcn_ds_fmax:
|
|
case Intrinsic::amdgcn_is_shared:
|
|
case Intrinsic::amdgcn_is_private:
|
|
OpIndexes.push_back(0);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
|
|
Value *OldV,
|
|
Value *NewV) const {
|
|
auto IntrID = II->getIntrinsicID();
|
|
switch (IntrID) {
|
|
case Intrinsic::amdgcn_atomic_inc:
|
|
case Intrinsic::amdgcn_atomic_dec:
|
|
case Intrinsic::amdgcn_ds_fadd:
|
|
case Intrinsic::amdgcn_ds_fmin:
|
|
case Intrinsic::amdgcn_ds_fmax: {
|
|
const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
|
|
if (!IsVolatile->isZero())
|
|
return nullptr;
|
|
Module *M = II->getParent()->getParent()->getParent();
|
|
Type *DestTy = II->getType();
|
|
Type *SrcTy = NewV->getType();
|
|
Function *NewDecl =
|
|
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
|
|
II->setArgOperand(0, NewV);
|
|
II->setCalledFunction(NewDecl);
|
|
return II;
|
|
}
|
|
case Intrinsic::amdgcn_is_shared:
|
|
case Intrinsic::amdgcn_is_private: {
|
|
unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
|
|
AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
|
|
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
|
|
LLVMContext &Ctx = NewV->getType()->getContext();
|
|
ConstantInt *NewVal = (TrueAS == NewAS) ?
|
|
ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
|
|
return NewVal;
|
|
}
|
|
case Intrinsic::ptrmask: {
|
|
unsigned OldAS = OldV->getType()->getPointerAddressSpace();
|
|
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
|
|
Value *MaskOp = II->getArgOperand(1);
|
|
Type *MaskTy = MaskOp->getType();
|
|
|
|
bool DoTruncate = false;
|
|
|
|
const GCNTargetMachine &TM =
|
|
static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
|
|
if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
|
|
// All valid 64-bit to 32-bit casts work by chopping off the high
|
|
// bits. Any masking only clearing the low bits will also apply in the new
|
|
// address space.
|
|
if (DL.getPointerSizeInBits(OldAS) != 64 ||
|
|
DL.getPointerSizeInBits(NewAS) != 32)
|
|
return nullptr;
|
|
|
|
// TODO: Do we need to thread more context in here?
|
|
KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
|
|
if (Known.countMinLeadingOnes() < 32)
|
|
return nullptr;
|
|
|
|
DoTruncate = true;
|
|
}
|
|
|
|
IRBuilder<> B(II);
|
|
if (DoTruncate) {
|
|
MaskTy = B.getInt32Ty();
|
|
MaskOp = B.CreateTrunc(MaskOp, MaskTy);
|
|
}
|
|
|
|
return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
|
|
{NewV, MaskOp});
|
|
}
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT,
|
|
int Index, VectorType *SubTp) {
|
|
if (ST->hasVOP3PInsts()) {
|
|
if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
|
|
DL.getTypeSizeInBits(VT->getElementType()) == 16) {
|
|
// With op_sel VOP3P instructions freely can access the low half or high
|
|
// half of a register, so any swizzle is free.
|
|
|
|
switch (Kind) {
|
|
case TTI::SK_Broadcast:
|
|
case TTI::SK_Reverse:
|
|
case TTI::SK_PermuteSingleSrc:
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return BaseT::getShuffleCost(Kind, VT, Index, SubTp);
|
|
}
|
|
|
|
bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
const GCNSubtarget *CallerST
|
|
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
|
|
const GCNSubtarget *CalleeST
|
|
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
|
|
|
|
const FeatureBitset &CallerBits = CallerST->getFeatureBits();
|
|
const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
|
|
|
|
FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
|
|
FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
|
|
if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
|
|
return false;
|
|
|
|
// FIXME: dx10_clamp can just take the caller setting, but there seems to be
|
|
// no way to support merge for backend defined attributes.
|
|
AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
|
|
AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
|
|
if (!CallerMode.isInlineCompatible(CalleeMode))
|
|
return false;
|
|
|
|
// Hack to make compile times reasonable.
|
|
if (InlineMaxBB && !Callee->hasFnAttribute(Attribute::InlineHint)) {
|
|
// Single BB does not increase total BB amount, thus subtract 1.
|
|
size_t BBSize = Caller->size() + Callee->size() - 1;
|
|
return BBSize <= InlineMaxBB;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
|
|
// If we have a pointer to private array passed into a function
|
|
// it will not be optimized out, leaving scratch usage.
|
|
// Increase the inline threshold to allow inlining in this case.
|
|
uint64_t AllocaSize = 0;
|
|
SmallPtrSet<const AllocaInst *, 8> AIVisited;
|
|
for (Value *PtrArg : CB->args()) {
|
|
PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
|
|
if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
|
|
Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
|
|
continue;
|
|
|
|
PtrArg = getUnderlyingObject(PtrArg);
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
|
|
if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
|
|
continue;
|
|
AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
|
|
// If the amount of stack memory is excessive we will not be able
|
|
// to get rid of the scratch anyway, bail out.
|
|
if (AllocaSize > ArgAllocaCutoff) {
|
|
AllocaSize = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (AllocaSize)
|
|
return ArgAllocaCost;
|
|
return 0;
|
|
}
|
|
|
|
void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
CommonTTI.getUnrollingPreferences(L, SE, UP);
|
|
}
|
|
|
|
void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
CommonTTI.getPeelingPreferences(L, SE, PP);
|
|
}
|
|
|
|
int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
|
|
return ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
|
|
: getQuarterRateInstrCost(CostKind);
|
|
}
|
|
|
|
R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
|
|
: BaseT(TM, F.getParent()->getDataLayout()),
|
|
ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
|
|
TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
|
|
|
|
unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
|
|
return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
|
|
}
|
|
|
|
unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
|
|
return getHardwareNumberOfRegisters(Vec);
|
|
}
|
|
|
|
unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
|
|
return 32;
|
|
}
|
|
|
|
unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
|
|
return 32;
|
|
}
|
|
|
|
unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
|
|
if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
|
|
return 128;
|
|
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::REGION_ADDRESS)
|
|
return 64;
|
|
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
|
|
return 32;
|
|
|
|
if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
|
|
(AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
|
|
AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
|
|
return 128;
|
|
llvm_unreachable("unhandled address space");
|
|
}
|
|
|
|
bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
|
|
Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
// We allow vectorization of flat stores, even though we may need to decompose
|
|
// them later if they may access private memory. We don't have enough context
|
|
// here, and legalization can handle it.
|
|
return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
|
|
}
|
|
|
|
bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
|
|
Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
|
|
}
|
|
|
|
bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
|
|
Align Alignment,
|
|
unsigned AddrSpace) const {
|
|
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
|
|
}
|
|
|
|
unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
// Disable unrolling if the loop is not vectorized.
|
|
// TODO: Enable this again.
|
|
if (VF == 1)
|
|
return 1;
|
|
|
|
return 8;
|
|
}
|
|
|
|
unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
|
|
return Opcode == Instruction::PHI ? 0 : 1;
|
|
|
|
// XXX - For some reason this isn't called for switch.
|
|
switch (Opcode) {
|
|
case Instruction::Br:
|
|
case Instruction::Ret:
|
|
return 10;
|
|
default:
|
|
return BaseT::getCFInstrCost(Opcode, CostKind);
|
|
}
|
|
}
|
|
|
|
int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) {
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement:
|
|
case Instruction::InsertElement: {
|
|
unsigned EltSize
|
|
= DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
|
|
if (EltSize < 32) {
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
|
|
// Extracts are just reads of a subregister, so are free. Inserts are
|
|
// considered free because we don't want to have any cost for scalarizing
|
|
// operations, and we don't have to copy into a different register class.
|
|
|
|
// Dynamic indexing isn't free and is best avoided.
|
|
return Index == ~0u ? 2 : 0;
|
|
}
|
|
default:
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
}
|
|
|
|
void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
CommonTTI.getUnrollingPreferences(L, SE, UP);
|
|
}
|
|
|
|
void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
CommonTTI.getPeelingPreferences(L, SE, PP);
|
|
}
|