1128 lines
36 KiB
C++
1128 lines
36 KiB
C++
//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates allocas by either converting them into vectors or
|
|
// by migrating them to local address space.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/IntrinsicsR600.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-promote-alloca"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
static cl::opt<bool> DisablePromoteAllocaToVector(
|
|
"disable-promote-alloca-to-vector",
|
|
cl::desc("Disable promote alloca to vector"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> DisablePromoteAllocaToLDS(
|
|
"disable-promote-alloca-to-lds",
|
|
cl::desc("Disable promote alloca to LDS"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned> PromoteAllocaToVectorLimit(
|
|
"amdgpu-promote-alloca-to-vector-limit",
|
|
cl::desc("Maximum byte size to consider promote alloca to vector"),
|
|
cl::init(0));
|
|
|
|
// FIXME: This can create globals so should be a module pass.
|
|
class AMDGPUPromoteAlloca : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPUPromoteAlloca() : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
|
|
|
|
bool handleAlloca(AllocaInst &I, bool SufficientLDS);
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
class AMDGPUPromoteAllocaImpl {
|
|
private:
|
|
const TargetMachine &TM;
|
|
Module *Mod = nullptr;
|
|
const DataLayout *DL = nullptr;
|
|
|
|
// FIXME: This should be per-kernel.
|
|
uint32_t LocalMemLimit = 0;
|
|
uint32_t CurrentLocalMemUsage = 0;
|
|
unsigned MaxVGPRs;
|
|
|
|
bool IsAMDGCN = false;
|
|
bool IsAMDHSA = false;
|
|
|
|
std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
|
|
Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
|
|
|
|
/// BaseAlloca is the alloca root the search started from.
|
|
/// Val may be that alloca or a recursive user of it.
|
|
bool collectUsesWithPtrTypes(Value *BaseAlloca,
|
|
Value *Val,
|
|
std::vector<Value*> &WorkList) const;
|
|
|
|
/// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
|
|
/// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
|
|
/// Returns true if both operands are derived from the same alloca. Val should
|
|
/// be the same value as one of the input operands of UseInst.
|
|
bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
|
|
Instruction *UseInst,
|
|
int OpIdx0, int OpIdx1) const;
|
|
|
|
/// Check whether we have enough local memory for promotion.
|
|
bool hasSufficientLocalMem(const Function &F);
|
|
|
|
bool handleAlloca(AllocaInst &I, bool SufficientLDS);
|
|
|
|
public:
|
|
AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
|
|
bool run(Function &F);
|
|
};
|
|
|
|
class AMDGPUPromoteAllocaToVector : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
StringRef getPassName() const override {
|
|
return "AMDGPU Promote Alloca to vector";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char AMDGPUPromoteAlloca::ID = 0;
|
|
char AMDGPUPromoteAllocaToVector::ID = 0;
|
|
|
|
INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
|
|
"AMDGPU promote alloca to vector or LDS", false, false)
|
|
|
|
INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
|
|
"AMDGPU promote alloca to vector", false, false)
|
|
|
|
char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
|
|
char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
|
|
|
|
bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
|
|
return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
|
|
if (Changed) {
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
bool AMDGPUPromoteAllocaImpl::run(Function &F) {
|
|
Mod = F.getParent();
|
|
DL = &Mod->getDataLayout();
|
|
|
|
const Triple &TT = TM.getTargetTriple();
|
|
IsAMDGCN = TT.getArch() == Triple::amdgcn;
|
|
IsAMDHSA = TT.getOS() == Triple::AMDHSA;
|
|
|
|
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
|
|
if (!ST.isPromoteAllocaEnabled())
|
|
return false;
|
|
|
|
if (IsAMDGCN) {
|
|
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
|
|
MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
|
|
} else {
|
|
MaxVGPRs = 128;
|
|
}
|
|
|
|
bool SufficientLDS = hasSufficientLocalMem(F);
|
|
bool Changed = false;
|
|
BasicBlock &EntryBB = *F.begin();
|
|
|
|
SmallVector<AllocaInst *, 16> Allocas;
|
|
for (Instruction &I : EntryBB) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
|
|
Allocas.push_back(AI);
|
|
}
|
|
|
|
for (AllocaInst *AI : Allocas) {
|
|
if (handleAlloca(*AI, SufficientLDS))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
std::pair<Value *, Value *>
|
|
AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
|
|
const Function &F = *Builder.GetInsertBlock()->getParent();
|
|
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
|
|
|
|
if (!IsAMDHSA) {
|
|
Function *LocalSizeYFn
|
|
= Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
|
|
Function *LocalSizeZFn
|
|
= Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
|
|
|
|
CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
|
|
CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
|
|
|
|
ST.makeLIDRangeMetadata(LocalSizeY);
|
|
ST.makeLIDRangeMetadata(LocalSizeZ);
|
|
|
|
return std::make_pair(LocalSizeY, LocalSizeZ);
|
|
}
|
|
|
|
// We must read the size out of the dispatch pointer.
|
|
assert(IsAMDGCN);
|
|
|
|
// We are indexing into this struct, and want to extract the workgroup_size_*
|
|
// fields.
|
|
//
|
|
// typedef struct hsa_kernel_dispatch_packet_s {
|
|
// uint16_t header;
|
|
// uint16_t setup;
|
|
// uint16_t workgroup_size_x ;
|
|
// uint16_t workgroup_size_y;
|
|
// uint16_t workgroup_size_z;
|
|
// uint16_t reserved0;
|
|
// uint32_t grid_size_x ;
|
|
// uint32_t grid_size_y ;
|
|
// uint32_t grid_size_z;
|
|
//
|
|
// uint32_t private_segment_size;
|
|
// uint32_t group_segment_size;
|
|
// uint64_t kernel_object;
|
|
//
|
|
// #ifdef HSA_LARGE_MODEL
|
|
// void *kernarg_address;
|
|
// #elif defined HSA_LITTLE_ENDIAN
|
|
// void *kernarg_address;
|
|
// uint32_t reserved1;
|
|
// #else
|
|
// uint32_t reserved1;
|
|
// void *kernarg_address;
|
|
// #endif
|
|
// uint64_t reserved2;
|
|
// hsa_signal_t completion_signal; // uint64_t wrapper
|
|
// } hsa_kernel_dispatch_packet_t
|
|
//
|
|
Function *DispatchPtrFn
|
|
= Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
|
|
|
|
CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
|
|
DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
|
|
DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
|
|
|
|
// Size of the dispatch packet struct.
|
|
DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
|
|
|
|
Type *I32Ty = Type::getInt32Ty(Mod->getContext());
|
|
Value *CastDispatchPtr = Builder.CreateBitCast(
|
|
DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
|
|
|
|
// We could do a single 64-bit load here, but it's likely that the basic
|
|
// 32-bit and extract sequence is already present, and it is probably easier
|
|
// to CSE this. The loads should be mergable later anyway.
|
|
Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
|
|
LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
|
|
|
|
Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
|
|
LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
|
|
|
|
MDNode *MD = MDNode::get(Mod->getContext(), None);
|
|
LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
|
|
LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
|
|
ST.makeLIDRangeMetadata(LoadZU);
|
|
|
|
// Extract y component. Upper half of LoadZU should be zero already.
|
|
Value *Y = Builder.CreateLShr(LoadXY, 16);
|
|
|
|
return std::make_pair(Y, LoadZU);
|
|
}
|
|
|
|
Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
|
|
unsigned N) {
|
|
const AMDGPUSubtarget &ST =
|
|
AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent());
|
|
Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
|
|
|
|
switch (N) {
|
|
case 0:
|
|
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
|
|
: (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
|
|
break;
|
|
case 1:
|
|
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
|
|
: (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
|
|
break;
|
|
|
|
case 2:
|
|
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
|
|
: (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
|
|
break;
|
|
default:
|
|
llvm_unreachable("invalid dimension");
|
|
}
|
|
|
|
Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
|
|
CallInst *CI = Builder.CreateCall(WorkitemIdFn);
|
|
ST.makeLIDRangeMetadata(CI);
|
|
|
|
return CI;
|
|
}
|
|
|
|
static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
|
|
return FixedVectorType::get(ArrayTy->getElementType(),
|
|
ArrayTy->getNumElements());
|
|
}
|
|
|
|
static Value *stripBitcasts(Value *V) {
|
|
while (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (I->getOpcode() != Instruction::BitCast)
|
|
break;
|
|
V = I->getOperand(0);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
static Value *
|
|
calculateVectorIndex(Value *Ptr,
|
|
const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
|
|
if (!GEP)
|
|
return nullptr;
|
|
|
|
auto I = GEPIdx.find(GEP);
|
|
return I == GEPIdx.end() ? nullptr : I->second;
|
|
}
|
|
|
|
static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
|
|
// FIXME we only support simple cases
|
|
if (GEP->getNumOperands() != 3)
|
|
return nullptr;
|
|
|
|
ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
|
|
if (!I0 || !I0->isZero())
|
|
return nullptr;
|
|
|
|
return GEP->getOperand(2);
|
|
}
|
|
|
|
// Not an instruction handled below to turn into a vector.
|
|
//
|
|
// TODO: Check isTriviallyVectorizable for calls and handle other
|
|
// instructions.
|
|
static bool canVectorizeInst(Instruction *Inst, User *User,
|
|
const DataLayout &DL) {
|
|
switch (Inst->getOpcode()) {
|
|
case Instruction::Load: {
|
|
// Currently only handle the case where the Pointer Operand is a GEP.
|
|
// Also we could not vectorize volatile or atomic loads.
|
|
LoadInst *LI = cast<LoadInst>(Inst);
|
|
if (isa<AllocaInst>(User) &&
|
|
LI->getPointerOperandType() == User->getType() &&
|
|
isa<VectorType>(LI->getType()))
|
|
return true;
|
|
|
|
Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
|
|
if (!PtrInst)
|
|
return false;
|
|
|
|
return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
|
|
PtrInst->getOpcode() == Instruction::BitCast) &&
|
|
LI->isSimple();
|
|
}
|
|
case Instruction::BitCast:
|
|
return true;
|
|
case Instruction::Store: {
|
|
// Must be the stored pointer operand, not a stored value, plus
|
|
// since it should be canonical form, the User should be a GEP.
|
|
// Also we could not vectorize volatile or atomic stores.
|
|
StoreInst *SI = cast<StoreInst>(Inst);
|
|
if (isa<AllocaInst>(User) &&
|
|
SI->getPointerOperandType() == User->getType() &&
|
|
isa<VectorType>(SI->getValueOperand()->getType()))
|
|
return true;
|
|
|
|
Instruction *UserInst = dyn_cast<Instruction>(User);
|
|
if (!UserInst)
|
|
return false;
|
|
|
|
return (SI->getPointerOperand() == User) &&
|
|
(UserInst->getOpcode() == Instruction::GetElementPtr ||
|
|
UserInst->getOpcode() == Instruction::BitCast) &&
|
|
SI->isSimple();
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
|
|
unsigned MaxVGPRs) {
|
|
|
|
if (DisablePromoteAllocaToVector) {
|
|
LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n");
|
|
return false;
|
|
}
|
|
|
|
Type *AllocaTy = Alloca->getAllocatedType();
|
|
auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
|
|
if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
|
|
if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
|
|
ArrayTy->getNumElements() > 0)
|
|
VectorTy = arrayTypeToVecType(ArrayTy);
|
|
}
|
|
|
|
// Use up to 1/4 of available register budget for vectorization.
|
|
unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
|
|
: (MaxVGPRs * 32);
|
|
|
|
if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
|
|
LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with "
|
|
<< MaxVGPRs << " registers available\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
|
|
|
|
// FIXME: There is no reason why we can't support larger arrays, we
|
|
// are just being conservative for now.
|
|
// FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
|
|
// could also be promoted but we don't currently handle this case
|
|
if (!VectorTy || VectorTy->getNumElements() > 16 ||
|
|
VectorTy->getNumElements() < 2) {
|
|
LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
|
|
return false;
|
|
}
|
|
|
|
std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
|
|
std::vector<Value *> WorkList;
|
|
SmallVector<User *, 8> Users(Alloca->users());
|
|
SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
|
|
Type *VecEltTy = VectorTy->getElementType();
|
|
while (!Users.empty()) {
|
|
User *AllocaUser = Users.pop_back_val();
|
|
User *UseUser = UseUsers.pop_back_val();
|
|
Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
|
|
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
|
|
if (!GEP) {
|
|
if (!canVectorizeInst(Inst, UseUser, DL))
|
|
return false;
|
|
|
|
if (Inst->getOpcode() == Instruction::BitCast) {
|
|
Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
|
|
Type *ToTy = Inst->getType()->getPointerElementType();
|
|
if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
|
|
DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
|
|
continue;
|
|
|
|
for (User *CastUser : Inst->users()) {
|
|
if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
|
|
continue;
|
|
Users.push_back(CastUser);
|
|
UseUsers.push_back(Inst);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
WorkList.push_back(AllocaUser);
|
|
continue;
|
|
}
|
|
|
|
Value *Index = GEPToVectorIndex(GEP);
|
|
|
|
// If we can't compute a vector index from this GEP, then we can't
|
|
// promote this alloca to vector.
|
|
if (!Index) {
|
|
LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP
|
|
<< '\n');
|
|
return false;
|
|
}
|
|
|
|
GEPVectorIdx[GEP] = Index;
|
|
Users.append(GEP->user_begin(), GEP->user_end());
|
|
UseUsers.append(GEP->getNumUses(), GEP);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "
|
|
<< *VectorTy << '\n');
|
|
|
|
for (Value *V : WorkList) {
|
|
Instruction *Inst = cast<Instruction>(V);
|
|
IRBuilder<> Builder(Inst);
|
|
switch (Inst->getOpcode()) {
|
|
case Instruction::Load: {
|
|
if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
|
|
break;
|
|
|
|
Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
|
|
Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
|
|
if (!Index)
|
|
break;
|
|
|
|
Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
|
|
Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
|
|
Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
|
|
Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
|
|
if (Inst->getType() != VecEltTy)
|
|
ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
|
|
Inst->replaceAllUsesWith(ExtractElement);
|
|
Inst->eraseFromParent();
|
|
break;
|
|
}
|
|
case Instruction::Store: {
|
|
StoreInst *SI = cast<StoreInst>(Inst);
|
|
if (SI->getValueOperand()->getType() == AllocaTy ||
|
|
SI->getValueOperand()->getType()->isVectorTy())
|
|
break;
|
|
|
|
Value *Ptr = SI->getPointerOperand();
|
|
Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
|
|
if (!Index)
|
|
break;
|
|
|
|
Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
|
|
Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
|
|
Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
|
|
Value *Elt = SI->getValueOperand();
|
|
if (Elt->getType() != VecEltTy)
|
|
Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
|
|
Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
|
|
Builder.CreateStore(NewVecValue, BitCast);
|
|
Inst->eraseFromParent();
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("Inconsistency in instructions promotable to vector");
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isCallPromotable(CallInst *CI) {
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
|
|
if (!II)
|
|
return false;
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memset:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::launder_invariant_group:
|
|
case Intrinsic::strip_invariant_group:
|
|
case Intrinsic::objectsize:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
|
|
Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
|
|
int OpIdx1) const {
|
|
// Figure out which operand is the one we might not be promoting.
|
|
Value *OtherOp = Inst->getOperand(OpIdx0);
|
|
if (Val == OtherOp)
|
|
OtherOp = Inst->getOperand(OpIdx1);
|
|
|
|
if (isa<ConstantPointerNull>(OtherOp))
|
|
return true;
|
|
|
|
Value *OtherObj = getUnderlyingObject(OtherOp);
|
|
if (!isa<AllocaInst>(OtherObj))
|
|
return false;
|
|
|
|
// TODO: We should be able to replace undefs with the right pointer type.
|
|
|
|
// TODO: If we know the other base object is another promotable
|
|
// alloca, not necessarily this alloca, we can do this. The
|
|
// important part is both must have the same address space at
|
|
// the end.
|
|
if (OtherObj != BaseAlloca) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Found a binary instruction with another alloca object\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
|
|
Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
|
|
|
|
for (User *User : Val->users()) {
|
|
if (is_contained(WorkList, User))
|
|
continue;
|
|
|
|
if (CallInst *CI = dyn_cast<CallInst>(User)) {
|
|
if (!isCallPromotable(CI))
|
|
return false;
|
|
|
|
WorkList.push_back(User);
|
|
continue;
|
|
}
|
|
|
|
Instruction *UseInst = cast<Instruction>(User);
|
|
if (UseInst->getOpcode() == Instruction::PtrToInt)
|
|
return false;
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
|
|
if (LI->isVolatile())
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
|
|
if (SI->isVolatile())
|
|
return false;
|
|
|
|
// Reject if the stored value is not the pointer operand.
|
|
if (SI->getPointerOperand() != Val)
|
|
return false;
|
|
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
|
|
if (RMW->isVolatile())
|
|
return false;
|
|
} else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
|
|
if (CAS->isVolatile())
|
|
return false;
|
|
}
|
|
|
|
// Only promote a select if we know that the other select operand
|
|
// is from another pointer that will also be promoted.
|
|
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
|
|
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
|
|
return false;
|
|
|
|
// May need to rewrite constant operands.
|
|
WorkList.push_back(ICmp);
|
|
}
|
|
|
|
if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
|
|
// Give up if the pointer may be captured.
|
|
if (PointerMayBeCaptured(UseInst, true, true))
|
|
return false;
|
|
// Don't collect the users of this.
|
|
WorkList.push_back(User);
|
|
continue;
|
|
}
|
|
|
|
if (!User->getType()->isPointerTy())
|
|
continue;
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
|
|
// Be conservative if an address could be computed outside the bounds of
|
|
// the alloca.
|
|
if (!GEP->isInBounds())
|
|
return false;
|
|
}
|
|
|
|
// Only promote a select if we know that the other select operand is from
|
|
// another pointer that will also be promoted.
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
|
|
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
|
|
return false;
|
|
}
|
|
|
|
// Repeat for phis.
|
|
if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
|
|
// TODO: Handle more complex cases. We should be able to replace loops
|
|
// over arrays.
|
|
switch (Phi->getNumIncomingValues()) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
|
|
return false;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
WorkList.push_back(User);
|
|
if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
|
|
|
|
FunctionType *FTy = F.getFunctionType();
|
|
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
|
|
|
|
// If the function has any arguments in the local address space, then it's
|
|
// possible these arguments require the entire local memory space, so
|
|
// we cannot use local memory in the pass.
|
|
for (Type *ParamTy : FTy->params()) {
|
|
PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
|
|
if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
|
|
LocalMemLimit = 0;
|
|
LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
|
|
"local memory disabled.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LocalMemLimit = ST.getLocalMemorySize();
|
|
if (LocalMemLimit == 0)
|
|
return false;
|
|
|
|
SmallVector<const Constant *, 16> Stack;
|
|
SmallPtrSet<const Constant *, 8> VisitedConstants;
|
|
SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
|
|
|
|
auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
|
|
for (const User *U : Val->users()) {
|
|
if (const Instruction *Use = dyn_cast<Instruction>(U)) {
|
|
if (Use->getParent()->getParent() == &F)
|
|
return true;
|
|
} else {
|
|
const Constant *C = cast<Constant>(U);
|
|
if (VisitedConstants.insert(C).second)
|
|
Stack.push_back(C);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
for (GlobalVariable &GV : Mod->globals()) {
|
|
if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
|
|
continue;
|
|
|
|
if (visitUsers(&GV, &GV)) {
|
|
UsedLDS.insert(&GV);
|
|
Stack.clear();
|
|
continue;
|
|
}
|
|
|
|
// For any ConstantExpr uses, we need to recursively search the users until
|
|
// we see a function.
|
|
while (!Stack.empty()) {
|
|
const Constant *C = Stack.pop_back_val();
|
|
if (visitUsers(&GV, C)) {
|
|
UsedLDS.insert(&GV);
|
|
Stack.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
const DataLayout &DL = Mod->getDataLayout();
|
|
SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
|
|
AllocatedSizes.reserve(UsedLDS.size());
|
|
|
|
for (const GlobalVariable *GV : UsedLDS) {
|
|
Align Alignment =
|
|
DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
|
|
uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
|
|
AllocatedSizes.emplace_back(AllocSize, Alignment);
|
|
}
|
|
|
|
// Sort to try to estimate the worst case alignment padding
|
|
//
|
|
// FIXME: We should really do something to fix the addresses to a more optimal
|
|
// value instead
|
|
llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
|
|
std::pair<uint64_t, Align> RHS) {
|
|
return LHS.second < RHS.second;
|
|
});
|
|
|
|
// Check how much local memory is being used by global objects
|
|
CurrentLocalMemUsage = 0;
|
|
|
|
// FIXME: Try to account for padding here. The real padding and address is
|
|
// currently determined from the inverse order of uses in the function when
|
|
// legalizing, which could also potentially change. We try to estimate the
|
|
// worst case here, but we probably should fix the addresses earlier.
|
|
for (auto Alloc : AllocatedSizes) {
|
|
CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
|
|
CurrentLocalMemUsage += Alloc.first;
|
|
}
|
|
|
|
unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
|
|
F);
|
|
|
|
// Restrict local memory usage so that we don't drastically reduce occupancy,
|
|
// unless it is already significantly reduced.
|
|
|
|
// TODO: Have some sort of hint or other heuristics to guess occupancy based
|
|
// on other factors..
|
|
unsigned OccupancyHint = ST.getWavesPerEU(F).second;
|
|
if (OccupancyHint == 0)
|
|
OccupancyHint = 7;
|
|
|
|
// Clamp to max value.
|
|
OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
|
|
|
|
// Check the hint but ignore it if it's obviously wrong from the existing LDS
|
|
// usage.
|
|
MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
|
|
|
|
|
|
// Round up to the next tier of usage.
|
|
unsigned MaxSizeWithWaveCount
|
|
= ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
|
|
|
|
// Program is possibly broken by using more local mem than available.
|
|
if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
|
|
return false;
|
|
|
|
LocalMemLimit = MaxSizeWithWaveCount;
|
|
|
|
LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
|
|
<< " bytes of LDS\n"
|
|
<< " Rounding size to " << MaxSizeWithWaveCount
|
|
<< " with a maximum occupancy of " << MaxOccupancy << '\n'
|
|
<< " and " << (LocalMemLimit - CurrentLocalMemUsage)
|
|
<< " available for promotion\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Should try to pick the most likely to be profitable allocas first.
|
|
bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
|
|
// Array allocations are probably not worth handling, since an allocation of
|
|
// the array type is the canonical form.
|
|
if (!I.isStaticAlloca() || I.isArrayAllocation())
|
|
return false;
|
|
|
|
const DataLayout &DL = Mod->getDataLayout();
|
|
IRBuilder<> Builder(&I);
|
|
|
|
// First try to replace the alloca with a vector
|
|
Type *AllocaTy = I.getAllocatedType();
|
|
|
|
LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
|
|
|
|
if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
|
|
return true; // Promoted to vector.
|
|
|
|
if (DisablePromoteAllocaToLDS)
|
|
return false;
|
|
|
|
const Function &ContainingFunction = *I.getParent()->getParent();
|
|
CallingConv::ID CC = ContainingFunction.getCallingConv();
|
|
|
|
// Don't promote the alloca to LDS for shader calling conventions as the work
|
|
// item ID intrinsics are not supported for these calling conventions.
|
|
// Furthermore not all LDS is available for some of the stages.
|
|
switch (CC) {
|
|
case CallingConv::AMDGPU_KERNEL:
|
|
case CallingConv::SPIR_KERNEL:
|
|
break;
|
|
default:
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< " promote alloca to LDS not supported with calling convention.\n");
|
|
return false;
|
|
}
|
|
|
|
// Not likely to have sufficient local memory for promotion.
|
|
if (!SufficientLDS)
|
|
return false;
|
|
|
|
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
|
|
unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
|
|
|
|
Align Alignment =
|
|
DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
|
|
|
|
// FIXME: This computed padding is likely wrong since it depends on inverse
|
|
// usage order.
|
|
//
|
|
// FIXME: It is also possible that if we're allowed to use all of the memory
|
|
// could could end up using more than the maximum due to alignment padding.
|
|
|
|
uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
|
|
uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
|
|
NewSize += AllocSize;
|
|
|
|
if (NewSize > LocalMemLimit) {
|
|
LLVM_DEBUG(dbgs() << " " << AllocSize
|
|
<< " bytes of local memory not available to promote\n");
|
|
return false;
|
|
}
|
|
|
|
CurrentLocalMemUsage = NewSize;
|
|
|
|
std::vector<Value*> WorkList;
|
|
|
|
if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
|
|
LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
|
|
|
|
Function *F = I.getParent()->getParent();
|
|
|
|
Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
|
|
GlobalVariable *GV = new GlobalVariable(
|
|
*Mod, GVTy, false, GlobalValue::InternalLinkage,
|
|
UndefValue::get(GVTy),
|
|
Twine(F->getName()) + Twine('.') + I.getName(),
|
|
nullptr,
|
|
GlobalVariable::NotThreadLocal,
|
|
AMDGPUAS::LOCAL_ADDRESS);
|
|
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
|
|
GV->setAlignment(MaybeAlign(I.getAlignment()));
|
|
|
|
Value *TCntY, *TCntZ;
|
|
|
|
std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
|
|
Value *TIdX = getWorkitemID(Builder, 0);
|
|
Value *TIdY = getWorkitemID(Builder, 1);
|
|
Value *TIdZ = getWorkitemID(Builder, 2);
|
|
|
|
Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
|
|
Tmp0 = Builder.CreateMul(Tmp0, TIdX);
|
|
Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
|
|
Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
|
|
TID = Builder.CreateAdd(TID, TIdZ);
|
|
|
|
Value *Indices[] = {
|
|
Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
|
|
TID
|
|
};
|
|
|
|
Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
|
|
I.mutateType(Offset->getType());
|
|
I.replaceAllUsesWith(Offset);
|
|
I.eraseFromParent();
|
|
|
|
for (Value *V : WorkList) {
|
|
CallInst *Call = dyn_cast<CallInst>(V);
|
|
if (!Call) {
|
|
if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
|
|
Value *Src0 = CI->getOperand(0);
|
|
Type *EltTy = Src0->getType()->getPointerElementType();
|
|
PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
|
|
|
|
if (isa<ConstantPointerNull>(CI->getOperand(0)))
|
|
CI->setOperand(0, ConstantPointerNull::get(NewTy));
|
|
|
|
if (isa<ConstantPointerNull>(CI->getOperand(1)))
|
|
CI->setOperand(1, ConstantPointerNull::get(NewTy));
|
|
|
|
continue;
|
|
}
|
|
|
|
// The operand's value should be corrected on its own and we don't want to
|
|
// touch the users.
|
|
if (isa<AddrSpaceCastInst>(V))
|
|
continue;
|
|
|
|
Type *EltTy = V->getType()->getPointerElementType();
|
|
PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
|
|
|
|
// FIXME: It doesn't really make sense to try to do this for all
|
|
// instructions.
|
|
V->mutateType(NewTy);
|
|
|
|
// Adjust the types of any constant operands.
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
|
|
if (isa<ConstantPointerNull>(SI->getOperand(1)))
|
|
SI->setOperand(1, ConstantPointerNull::get(NewTy));
|
|
|
|
if (isa<ConstantPointerNull>(SI->getOperand(2)))
|
|
SI->setOperand(2, ConstantPointerNull::get(NewTy));
|
|
} else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
|
|
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
|
|
if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
|
|
Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
|
|
Builder.SetInsertPoint(Intr);
|
|
switch (Intr->getIntrinsicID()) {
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
// These intrinsics are for address space 0 only
|
|
Intr->eraseFromParent();
|
|
continue;
|
|
case Intrinsic::memcpy: {
|
|
MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
|
|
Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(),
|
|
MemCpy->getRawSource(), MemCpy->getSourceAlign(),
|
|
MemCpy->getLength(), MemCpy->isVolatile());
|
|
Intr->eraseFromParent();
|
|
continue;
|
|
}
|
|
case Intrinsic::memmove: {
|
|
MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
|
|
Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(),
|
|
MemMove->getRawSource(), MemMove->getSourceAlign(),
|
|
MemMove->getLength(), MemMove->isVolatile());
|
|
Intr->eraseFromParent();
|
|
continue;
|
|
}
|
|
case Intrinsic::memset: {
|
|
MemSetInst *MemSet = cast<MemSetInst>(Intr);
|
|
Builder.CreateMemSet(
|
|
MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
|
|
MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
|
|
Intr->eraseFromParent();
|
|
continue;
|
|
}
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::launder_invariant_group:
|
|
case Intrinsic::strip_invariant_group:
|
|
Intr->eraseFromParent();
|
|
// FIXME: I think the invariant marker should still theoretically apply,
|
|
// but the intrinsics need to be changed to accept pointers with any
|
|
// address space.
|
|
continue;
|
|
case Intrinsic::objectsize: {
|
|
Value *Src = Intr->getOperand(0);
|
|
Type *SrcTy = Src->getType()->getPointerElementType();
|
|
Function *ObjectSize = Intrinsic::getDeclaration(Mod,
|
|
Intrinsic::objectsize,
|
|
{ Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
|
|
);
|
|
|
|
CallInst *NewCall = Builder.CreateCall(
|
|
ObjectSize,
|
|
{Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
|
|
Intr->replaceAllUsesWith(NewCall);
|
|
Intr->eraseFromParent();
|
|
continue;
|
|
}
|
|
default:
|
|
Intr->print(errs());
|
|
llvm_unreachable("Don't know how to promote alloca intrinsic use.");
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
|
|
// Array allocations are probably not worth handling, since an allocation of
|
|
// the array type is the canonical form.
|
|
if (!I.isStaticAlloca() || I.isArrayAllocation())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
|
|
|
|
Module *Mod = I.getParent()->getParent()->getParent();
|
|
return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
|
|
}
|
|
|
|
bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
|
|
if (DisablePromoteAllocaToVector)
|
|
return false;
|
|
|
|
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
|
|
if (!ST.isPromoteAllocaEnabled())
|
|
return false;
|
|
|
|
unsigned MaxVGPRs;
|
|
if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
|
|
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
|
|
MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
|
|
} else {
|
|
MaxVGPRs = 128;
|
|
}
|
|
|
|
bool Changed = false;
|
|
BasicBlock &EntryBB = *F.begin();
|
|
|
|
SmallVector<AllocaInst *, 16> Allocas;
|
|
for (Instruction &I : EntryBB) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
|
|
Allocas.push_back(AI);
|
|
}
|
|
|
|
for (AllocaInst *AI : Allocas) {
|
|
if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
|
|
return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
PreservedAnalyses
|
|
AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
bool Changed = promoteAllocasToVector(F, TM);
|
|
if (Changed) {
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
FunctionPass *llvm::createAMDGPUPromoteAlloca() {
|
|
return new AMDGPUPromoteAlloca();
|
|
}
|
|
|
|
FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
|
|
return new AMDGPUPromoteAllocaToVector();
|
|
}
|