676 lines
24 KiB
C++
676 lines
24 KiB
C++
//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass optimizes atomic operations by using a single lane of a wavefront
|
|
/// to perform the atomic operation, thus reducing contention on that memory
|
|
/// location.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-atomic-optimizer"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::AMDGPU;
|
|
|
|
namespace {
|
|
|
|
struct ReplacementInfo {
|
|
Instruction *I;
|
|
AtomicRMWInst::BinOp Op;
|
|
unsigned ValIdx;
|
|
bool ValDivergent;
|
|
};
|
|
|
|
class AMDGPUAtomicOptimizer : public FunctionPass,
|
|
public InstVisitor<AMDGPUAtomicOptimizer> {
|
|
private:
|
|
SmallVector<ReplacementInfo, 8> ToReplace;
|
|
const LegacyDivergenceAnalysis *DA;
|
|
const DataLayout *DL;
|
|
DominatorTree *DT;
|
|
const GCNSubtarget *ST;
|
|
bool IsPixelShader;
|
|
|
|
Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
|
|
Value *const Identity) const;
|
|
Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
|
|
void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
|
|
bool ValDivergent) const;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
}
|
|
|
|
void visitAtomicRMWInst(AtomicRMWInst &I);
|
|
void visitIntrinsicInst(IntrinsicInst &I);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char AMDGPUAtomicOptimizer::ID = 0;
|
|
|
|
char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
|
|
|
|
bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
|
|
if (skipFunction(F)) {
|
|
return false;
|
|
}
|
|
|
|
DA = &getAnalysis<LegacyDivergenceAnalysis>();
|
|
DL = &F.getParent()->getDataLayout();
|
|
DominatorTreeWrapperPass *const DTW =
|
|
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DT = DTW ? &DTW->getDomTree() : nullptr;
|
|
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
|
|
const TargetMachine &TM = TPC.getTM<TargetMachine>();
|
|
ST = &TM.getSubtarget<GCNSubtarget>(F);
|
|
IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
|
|
|
|
visit(F);
|
|
|
|
const bool Changed = !ToReplace.empty();
|
|
|
|
for (ReplacementInfo &Info : ToReplace) {
|
|
optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
|
|
}
|
|
|
|
ToReplace.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
|
|
// Early exit for unhandled address space atomic instructions.
|
|
switch (I.getPointerAddressSpace()) {
|
|
default:
|
|
return;
|
|
case AMDGPUAS::GLOBAL_ADDRESS:
|
|
case AMDGPUAS::LOCAL_ADDRESS:
|
|
break;
|
|
}
|
|
|
|
AtomicRMWInst::BinOp Op = I.getOperation();
|
|
|
|
switch (Op) {
|
|
default:
|
|
return;
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
break;
|
|
}
|
|
|
|
const unsigned PtrIdx = 0;
|
|
const unsigned ValIdx = 1;
|
|
|
|
// If the pointer operand is divergent, then each lane is doing an atomic
|
|
// operation on a different address, and we cannot optimize that.
|
|
if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
|
|
return;
|
|
}
|
|
|
|
const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
|
|
|
|
// If the value operand is divergent, each lane is contributing a different
|
|
// value to the atomic calculation. We can only optimize divergent values if
|
|
// we have DPP available on our subtarget, and the atomic operation is 32
|
|
// bits.
|
|
if (ValDivergent &&
|
|
(!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
|
|
return;
|
|
}
|
|
|
|
// If we get here, we can optimize the atomic using a single wavefront-wide
|
|
// atomic operation to do the calculation for the entire wavefront, so
|
|
// remember the instruction so we can come back to it.
|
|
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
|
|
|
|
ToReplace.push_back(Info);
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
|
|
AtomicRMWInst::BinOp Op;
|
|
|
|
switch (I.getIntrinsicID()) {
|
|
default:
|
|
return;
|
|
case Intrinsic::amdgcn_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_add:
|
|
Op = AtomicRMWInst::Add;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
|
|
Op = AtomicRMWInst::Sub;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_and:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_and:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_and:
|
|
Op = AtomicRMWInst::And;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_or:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_or:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_or:
|
|
Op = AtomicRMWInst::Or;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_xor:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_xor:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_xor:
|
|
Op = AtomicRMWInst::Xor;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_smin:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_smin:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_smin:
|
|
Op = AtomicRMWInst::Min;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_umin:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_umin:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_umin:
|
|
Op = AtomicRMWInst::UMin;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_smax:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_smax:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_smax:
|
|
Op = AtomicRMWInst::Max;
|
|
break;
|
|
case Intrinsic::amdgcn_buffer_atomic_umax:
|
|
case Intrinsic::amdgcn_struct_buffer_atomic_umax:
|
|
case Intrinsic::amdgcn_raw_buffer_atomic_umax:
|
|
Op = AtomicRMWInst::UMax;
|
|
break;
|
|
}
|
|
|
|
const unsigned ValIdx = 0;
|
|
|
|
const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
|
|
|
|
// If the value operand is divergent, each lane is contributing a different
|
|
// value to the atomic calculation. We can only optimize divergent values if
|
|
// we have DPP available on our subtarget, and the atomic operation is 32
|
|
// bits.
|
|
if (ValDivergent &&
|
|
(!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
|
|
return;
|
|
}
|
|
|
|
// If any of the other arguments to the intrinsic are divergent, we can't
|
|
// optimize the operation.
|
|
for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
|
|
if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we get here, we can optimize the atomic using a single wavefront-wide
|
|
// atomic operation to do the calculation for the entire wavefront, so
|
|
// remember the instruction so we can come back to it.
|
|
const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
|
|
|
|
ToReplace.push_back(Info);
|
|
}
|
|
|
|
// Use the builder to create the non-atomic counterpart of the specified
|
|
// atomicrmw binary op.
|
|
static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
|
|
Value *LHS, Value *RHS) {
|
|
CmpInst::Predicate Pred;
|
|
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
case AtomicRMWInst::Add:
|
|
return B.CreateBinOp(Instruction::Add, LHS, RHS);
|
|
case AtomicRMWInst::Sub:
|
|
return B.CreateBinOp(Instruction::Sub, LHS, RHS);
|
|
case AtomicRMWInst::And:
|
|
return B.CreateBinOp(Instruction::And, LHS, RHS);
|
|
case AtomicRMWInst::Or:
|
|
return B.CreateBinOp(Instruction::Or, LHS, RHS);
|
|
case AtomicRMWInst::Xor:
|
|
return B.CreateBinOp(Instruction::Xor, LHS, RHS);
|
|
|
|
case AtomicRMWInst::Max:
|
|
Pred = CmpInst::ICMP_SGT;
|
|
break;
|
|
case AtomicRMWInst::Min:
|
|
Pred = CmpInst::ICMP_SLT;
|
|
break;
|
|
case AtomicRMWInst::UMax:
|
|
Pred = CmpInst::ICMP_UGT;
|
|
break;
|
|
case AtomicRMWInst::UMin:
|
|
Pred = CmpInst::ICMP_ULT;
|
|
break;
|
|
}
|
|
Value *Cond = B.CreateICmp(Pred, LHS, RHS);
|
|
return B.CreateSelect(Cond, LHS, RHS);
|
|
}
|
|
|
|
// Use the builder to create an inclusive scan of V across the wavefront, with
|
|
// all lanes active.
|
|
Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
|
|
Value *V, Value *const Identity) const {
|
|
Type *const Ty = V->getType();
|
|
Module *M = B.GetInsertBlock()->getModule();
|
|
Function *UpdateDPP =
|
|
Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
|
|
Function *PermLaneX16 =
|
|
Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {});
|
|
Function *ReadLane =
|
|
Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
|
|
|
|
for (unsigned Idx = 0; Idx < 4; Idx++) {
|
|
V = buildNonAtomicBinOp(
|
|
B, Op, V,
|
|
B.CreateCall(UpdateDPP,
|
|
{Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
|
|
B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
|
|
}
|
|
if (ST->hasDPPBroadcasts()) {
|
|
// GFX9 has DPP row broadcast operations.
|
|
V = buildNonAtomicBinOp(
|
|
B, Op, V,
|
|
B.CreateCall(UpdateDPP,
|
|
{Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
|
|
B.getInt32(0xf), B.getFalse()}));
|
|
V = buildNonAtomicBinOp(
|
|
B, Op, V,
|
|
B.CreateCall(UpdateDPP,
|
|
{Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
|
|
B.getInt32(0xf), B.getFalse()}));
|
|
} else {
|
|
// On GFX10 all DPP operations are confined to a single row. To get cross-
|
|
// row operations we have to use permlane or readlane.
|
|
|
|
// Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
|
|
// 48..63).
|
|
Value *const PermX =
|
|
B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1),
|
|
B.getFalse(), B.getFalse()});
|
|
V = buildNonAtomicBinOp(
|
|
B, Op, V,
|
|
B.CreateCall(UpdateDPP,
|
|
{Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
|
|
B.getInt32(0xa), B.getInt32(0xf), B.getFalse()}));
|
|
if (!ST->isWave32()) {
|
|
// Combine lane 31 into lanes 32..63.
|
|
Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)});
|
|
V = buildNonAtomicBinOp(
|
|
B, Op, V,
|
|
B.CreateCall(UpdateDPP,
|
|
{Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
|
|
B.getInt32(0xc), B.getInt32(0xf), B.getFalse()}));
|
|
}
|
|
}
|
|
return V;
|
|
}
|
|
|
|
// Use the builder to create a shift right of V across the wavefront, with all
|
|
// lanes active, to turn an inclusive scan into an exclusive scan.
|
|
Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V,
|
|
Value *const Identity) const {
|
|
Type *const Ty = V->getType();
|
|
Module *M = B.GetInsertBlock()->getModule();
|
|
Function *UpdateDPP =
|
|
Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
|
|
Function *ReadLane =
|
|
Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
|
|
Function *WriteLane =
|
|
Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {});
|
|
|
|
if (ST->hasDPPWavefrontShifts()) {
|
|
// GFX9 has DPP wavefront shift operations.
|
|
V = B.CreateCall(UpdateDPP,
|
|
{Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
|
|
B.getInt32(0xf), B.getFalse()});
|
|
} else {
|
|
// On GFX10 all DPP operations are confined to a single row. To get cross-
|
|
// row operations we have to use permlane or readlane.
|
|
Value *Old = V;
|
|
V = B.CreateCall(UpdateDPP,
|
|
{Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
|
|
B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
|
|
|
|
// Copy the old lane 15 to the new lane 16.
|
|
V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
|
|
B.getInt32(16), V});
|
|
|
|
if (!ST->isWave32()) {
|
|
// Copy the old lane 31 to the new lane 32.
|
|
V = B.CreateCall(
|
|
WriteLane,
|
|
{B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
|
|
|
|
// Copy the old lane 47 to the new lane 48.
|
|
V = B.CreateCall(
|
|
WriteLane,
|
|
{B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
|
|
}
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
|
|
unsigned BitWidth) {
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
case AtomicRMWInst::UMax:
|
|
return APInt::getMinValue(BitWidth);
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::UMin:
|
|
return APInt::getMaxValue(BitWidth);
|
|
case AtomicRMWInst::Max:
|
|
return APInt::getSignedMinValue(BitWidth);
|
|
case AtomicRMWInst::Min:
|
|
return APInt::getSignedMaxValue(BitWidth);
|
|
}
|
|
}
|
|
|
|
static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) {
|
|
const ConstantInt *CI = dyn_cast<ConstantInt>(LHS);
|
|
return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS);
|
|
}
|
|
|
|
void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
|
|
AtomicRMWInst::BinOp Op,
|
|
unsigned ValIdx,
|
|
bool ValDivergent) const {
|
|
// Start building just before the instruction.
|
|
IRBuilder<> B(&I);
|
|
|
|
// If we are in a pixel shader, because of how we have to mask out helper
|
|
// lane invocations, we need to record the entry and exit BB's.
|
|
BasicBlock *PixelEntryBB = nullptr;
|
|
BasicBlock *PixelExitBB = nullptr;
|
|
|
|
// If we're optimizing an atomic within a pixel shader, we need to wrap the
|
|
// entire atomic operation in a helper-lane check. We do not want any helper
|
|
// lanes that are around only for the purposes of derivatives to take part
|
|
// in any cross-lane communication, and we use a branch on whether the lane is
|
|
// live to do this.
|
|
if (IsPixelShader) {
|
|
// Record I's original position as the entry block.
|
|
PixelEntryBB = I.getParent();
|
|
|
|
Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
|
|
Instruction *const NonHelperTerminator =
|
|
SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
|
|
|
|
// Record I's new position as the exit block.
|
|
PixelExitBB = I.getParent();
|
|
|
|
I.moveBefore(NonHelperTerminator);
|
|
B.SetInsertPoint(&I);
|
|
}
|
|
|
|
Type *const Ty = I.getType();
|
|
const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
|
|
auto *const VecTy = FixedVectorType::get(B.getInt32Ty(), 2);
|
|
|
|
// This is the value in the atomic operation we need to combine in order to
|
|
// reduce the number of atomic operations.
|
|
Value *const V = I.getOperand(ValIdx);
|
|
|
|
// We need to know how many lanes are active within the wavefront, and we do
|
|
// this by doing a ballot of active lanes.
|
|
Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
|
|
CallInst *const Ballot =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
|
|
|
|
// We need to know how many lanes are active within the wavefront that are
|
|
// below us. If we counted each lane linearly starting from 0, a lane is
|
|
// below us only if its associated index was less than ours. We do this by
|
|
// using the mbcnt intrinsic.
|
|
Value *Mbcnt;
|
|
if (ST->isWave32()) {
|
|
Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
|
|
{Ballot, B.getInt32(0)});
|
|
} else {
|
|
Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
|
|
Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
|
|
Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
|
|
Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
|
|
{ExtractLo, B.getInt32(0)});
|
|
Mbcnt =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
|
|
}
|
|
Mbcnt = B.CreateIntCast(Mbcnt, Ty, false);
|
|
|
|
Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
|
|
|
|
Value *ExclScan = nullptr;
|
|
Value *NewV = nullptr;
|
|
|
|
// If we have a divergent value in each lane, we need to combine the value
|
|
// using DPP.
|
|
if (ValDivergent) {
|
|
// First we need to set all inactive invocations to the identity value, so
|
|
// that they can correctly contribute to the final result.
|
|
NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
|
|
|
|
const AtomicRMWInst::BinOp ScanOp =
|
|
Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op;
|
|
NewV = buildScan(B, ScanOp, NewV, Identity);
|
|
ExclScan = buildShiftRight(B, NewV, Identity);
|
|
|
|
// Read the value from the last lane, which has accumlated the values of
|
|
// each active lane in the wavefront. This will be our new value which we
|
|
// will provide to the atomic operation.
|
|
Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
|
|
if (TyBitWidth == 64) {
|
|
Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
|
|
Value *const ExtractHi =
|
|
B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty());
|
|
CallInst *const ReadLaneLo = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx});
|
|
CallInst *const ReadLaneHi = B.CreateIntrinsic(
|
|
Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx});
|
|
Value *const PartialInsert = B.CreateInsertElement(
|
|
UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
|
|
Value *const Insert =
|
|
B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
|
|
NewV = B.CreateBitCast(Insert, Ty);
|
|
} else if (TyBitWidth == 32) {
|
|
NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
|
|
{NewV, LastLaneIdx});
|
|
} else {
|
|
llvm_unreachable("Unhandled atomic bit width");
|
|
}
|
|
|
|
// Finally mark the readlanes in the WWM section.
|
|
NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
|
|
} else {
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub: {
|
|
// The new value we will be contributing to the atomic operation is the
|
|
// old value times the number of active lanes.
|
|
Value *const Ctpop = B.CreateIntCast(
|
|
B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
|
|
NewV = buildMul(B, V, Ctpop);
|
|
break;
|
|
}
|
|
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
// These operations with a uniform value are idempotent: doing the atomic
|
|
// operation multiple times has the same effect as doing it once.
|
|
NewV = V;
|
|
break;
|
|
|
|
case AtomicRMWInst::Xor:
|
|
// The new value we will be contributing to the atomic operation is the
|
|
// old value times the parity of the number of active lanes.
|
|
Value *const Ctpop = B.CreateIntCast(
|
|
B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
|
|
NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We only want a single lane to enter our new control flow, and we do this
|
|
// by checking if there are any active lanes below us. Only one lane will
|
|
// have 0 active lanes below us, so that will be the only one to progress.
|
|
Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
|
|
|
|
// Store I's original basic block before we split the block.
|
|
BasicBlock *const EntryBB = I.getParent();
|
|
|
|
// We need to introduce some new control flow to force a single lane to be
|
|
// active. We do this by splitting I's basic block at I, and introducing the
|
|
// new block such that:
|
|
// entry --> single_lane -\
|
|
// \------------------> exit
|
|
Instruction *const SingleLaneTerminator =
|
|
SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
|
|
|
|
// Move the IR builder into single_lane next.
|
|
B.SetInsertPoint(SingleLaneTerminator);
|
|
|
|
// Clone the original atomic operation into single lane, replacing the
|
|
// original value with our newly created one.
|
|
Instruction *const NewI = I.clone();
|
|
B.Insert(NewI);
|
|
NewI->setOperand(ValIdx, NewV);
|
|
|
|
// Move the IR builder into exit next, and start inserting just before the
|
|
// original instruction.
|
|
B.SetInsertPoint(&I);
|
|
|
|
const bool NeedResult = !I.use_empty();
|
|
if (NeedResult) {
|
|
// Create a PHI node to get our new atomic result into the exit block.
|
|
PHINode *const PHI = B.CreatePHI(Ty, 2);
|
|
PHI->addIncoming(UndefValue::get(Ty), EntryBB);
|
|
PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
|
|
|
|
// We need to broadcast the value who was the lowest active lane (the first
|
|
// lane) to all other lanes in the wavefront. We use an intrinsic for this,
|
|
// but have to handle 64-bit broadcasts with two calls to this intrinsic.
|
|
Value *BroadcastI = nullptr;
|
|
|
|
if (TyBitWidth == 64) {
|
|
Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
|
|
Value *const ExtractHi =
|
|
B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty());
|
|
CallInst *const ReadFirstLaneLo =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
|
|
CallInst *const ReadFirstLaneHi =
|
|
B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
|
|
Value *const PartialInsert = B.CreateInsertElement(
|
|
UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
|
|
Value *const Insert =
|
|
B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
|
|
BroadcastI = B.CreateBitCast(Insert, Ty);
|
|
} else if (TyBitWidth == 32) {
|
|
|
|
BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
|
|
} else {
|
|
llvm_unreachable("Unhandled atomic bit width");
|
|
}
|
|
|
|
// Now that we have the result of our single atomic operation, we need to
|
|
// get our individual lane's slice into the result. We use the lane offset
|
|
// we previously calculated combined with the atomic result value we got
|
|
// from the first lane, to get our lane's index into the atomic result.
|
|
Value *LaneOffset = nullptr;
|
|
if (ValDivergent) {
|
|
LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
|
|
} else {
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Unhandled atomic op");
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
LaneOffset = buildMul(B, V, Mbcnt);
|
|
break;
|
|
case AtomicRMWInst::And:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
LaneOffset = B.CreateSelect(Cond, Identity, V);
|
|
break;
|
|
case AtomicRMWInst::Xor:
|
|
LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1));
|
|
break;
|
|
}
|
|
}
|
|
Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
|
|
|
|
if (IsPixelShader) {
|
|
// Need a final PHI to reconverge to above the helper lane branch mask.
|
|
B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
|
|
|
|
PHINode *const PHI = B.CreatePHI(Ty, 2);
|
|
PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
|
|
PHI->addIncoming(Result, I.getParent());
|
|
I.replaceAllUsesWith(PHI);
|
|
} else {
|
|
// Replace the original atomic instruction with the new one.
|
|
I.replaceAllUsesWith(Result);
|
|
}
|
|
}
|
|
|
|
// And delete the original.
|
|
I.eraseFromParent();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
|
|
"AMDGPU atomic optimizations", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
|
|
"AMDGPU atomic optimizations", false, false)
|
|
|
|
FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
|
|
return new AMDGPUAtomicOptimizer();
|
|
}
|