7196 lines
253 KiB
C++
7196 lines
253 KiB
C++
//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the AArch64 implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "Utils/AArch64BaseInfo.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "AArch64GenInstrInfo.inc"
|
|
|
|
static cl::opt<unsigned> TBZDisplacementBits(
|
|
"aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
|
|
cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
|
|
|
|
static cl::opt<unsigned> CBZDisplacementBits(
|
|
"aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
|
|
cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
|
|
|
|
static cl::opt<unsigned>
|
|
BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
|
|
cl::desc("Restrict range of Bcc instructions (DEBUG)"));
|
|
|
|
AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
|
|
: AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP,
|
|
AArch64::CATCHRET),
|
|
RI(STI.getTargetTriple()), Subtarget(STI) {}
|
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
const MachineBasicBlock &MBB = *MI.getParent();
|
|
const MachineFunction *MF = MBB.getParent();
|
|
const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
|
|
|
|
{
|
|
auto Op = MI.getOpcode();
|
|
if (Op == AArch64::INLINEASM || Op == AArch64::INLINEASM_BR)
|
|
return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
|
|
}
|
|
|
|
// Meta-instructions emit no code.
|
|
if (MI.isMetaInstruction())
|
|
return 0;
|
|
|
|
// FIXME: We currently only handle pseudoinstructions that don't get expanded
|
|
// before the assembly printer.
|
|
unsigned NumBytes = 0;
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
switch (Desc.getOpcode()) {
|
|
default:
|
|
// Anything not explicitly designated otherwise is a normal 4-byte insn.
|
|
NumBytes = 4;
|
|
break;
|
|
case TargetOpcode::STACKMAP:
|
|
// The upper bound for a stackmap intrinsic is the full length of its shadow
|
|
NumBytes = StackMapOpers(&MI).getNumPatchBytes();
|
|
assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
|
|
break;
|
|
case TargetOpcode::PATCHPOINT:
|
|
// The size of the patchpoint intrinsic is the number of bytes requested
|
|
NumBytes = PatchPointOpers(&MI).getNumPatchBytes();
|
|
assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
|
|
break;
|
|
case TargetOpcode::STATEPOINT:
|
|
NumBytes = StatepointOpers(&MI).getNumPatchBytes();
|
|
assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
|
|
// No patch bytes means a normal call inst is emitted
|
|
if (NumBytes == 0)
|
|
NumBytes = 4;
|
|
break;
|
|
case AArch64::TLSDESC_CALLSEQ:
|
|
// This gets lowered to an instruction sequence which takes 16 bytes
|
|
NumBytes = 16;
|
|
break;
|
|
case AArch64::SpeculationBarrierISBDSBEndBB:
|
|
// This gets lowered to 2 4-byte instructions.
|
|
NumBytes = 8;
|
|
break;
|
|
case AArch64::SpeculationBarrierSBEndBB:
|
|
// This gets lowered to 1 4-byte instructions.
|
|
NumBytes = 4;
|
|
break;
|
|
case AArch64::JumpTableDest32:
|
|
case AArch64::JumpTableDest16:
|
|
case AArch64::JumpTableDest8:
|
|
NumBytes = 12;
|
|
break;
|
|
case AArch64::SPACE:
|
|
NumBytes = MI.getOperand(1).getImm();
|
|
break;
|
|
case TargetOpcode::BUNDLE:
|
|
NumBytes = getInstBundleLength(MI);
|
|
break;
|
|
}
|
|
|
|
return NumBytes;
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::getInstBundleLength(const MachineInstr &MI) const {
|
|
unsigned Size = 0;
|
|
MachineBasicBlock::const_instr_iterator I = MI.getIterator();
|
|
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
|
|
while (++I != E && I->isInsideBundle()) {
|
|
assert(!I->isBundle() && "No nested bundle!");
|
|
Size += getInstSizeInBytes(*I);
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
|
|
SmallVectorImpl<MachineOperand> &Cond) {
|
|
// Block ends with fall-through condbranch.
|
|
switch (LastInst->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch instruction?");
|
|
case AArch64::Bcc:
|
|
Target = LastInst->getOperand(1).getMBB();
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
break;
|
|
case AArch64::CBZW:
|
|
case AArch64::CBZX:
|
|
case AArch64::CBNZW:
|
|
case AArch64::CBNZX:
|
|
Target = LastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(-1));
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
break;
|
|
case AArch64::TBZW:
|
|
case AArch64::TBZX:
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBNZX:
|
|
Target = LastInst->getOperand(2).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(-1));
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
Cond.push_back(LastInst->getOperand(1));
|
|
}
|
|
}
|
|
|
|
static unsigned getBranchDisplacementBits(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("unexpected opcode!");
|
|
case AArch64::B:
|
|
return 64;
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBZW:
|
|
case AArch64::TBNZX:
|
|
case AArch64::TBZX:
|
|
return TBZDisplacementBits;
|
|
case AArch64::CBNZW:
|
|
case AArch64::CBZW:
|
|
case AArch64::CBNZX:
|
|
case AArch64::CBZX:
|
|
return CBZDisplacementBits;
|
|
case AArch64::Bcc:
|
|
return BCCDisplacementBits;
|
|
}
|
|
}
|
|
|
|
bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp,
|
|
int64_t BrOffset) const {
|
|
unsigned Bits = getBranchDisplacementBits(BranchOp);
|
|
assert(Bits >= 3 && "max branch displacement must be enough to jump"
|
|
"over conditional branch expansion");
|
|
return isIntN(Bits, BrOffset / 4);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unexpected opcode!");
|
|
case AArch64::B:
|
|
return MI.getOperand(0).getMBB();
|
|
case AArch64::TBZW:
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBZX:
|
|
case AArch64::TBNZX:
|
|
return MI.getOperand(2).getMBB();
|
|
case AArch64::CBZW:
|
|
case AArch64::CBNZW:
|
|
case AArch64::CBZX:
|
|
case AArch64::CBNZX:
|
|
case AArch64::Bcc:
|
|
return MI.getOperand(1).getMBB();
|
|
}
|
|
}
|
|
|
|
// Branch analysis.
|
|
bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return false;
|
|
|
|
// Skip over SpeculationBarrierEndBB terminators
|
|
if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
|
|
I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
|
|
--I;
|
|
}
|
|
|
|
if (!isUnpredicatedTerminator(*I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = &*I;
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
unsigned LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
|
|
if (isUncondBranchOpcode(LastOpc)) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
if (isCondBranchOpcode(LastOpc)) {
|
|
// Block ends with fall-through condbranch.
|
|
parseCondBranch(LastInst, TBB, Cond);
|
|
return false;
|
|
}
|
|
return true; // Can't handle indirect branch.
|
|
}
|
|
|
|
// Get the instruction before it if it is a terminator.
|
|
MachineInstr *SecondLastInst = &*I;
|
|
unsigned SecondLastOpc = SecondLastInst->getOpcode();
|
|
|
|
// If AllowModify is true and the block ends with two or more unconditional
|
|
// branches, delete all but the first unconditional branch.
|
|
if (AllowModify && isUncondBranchOpcode(LastOpc)) {
|
|
while (isUncondBranchOpcode(SecondLastOpc)) {
|
|
LastInst->eraseFromParent();
|
|
LastInst = SecondLastInst;
|
|
LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
|
|
// Return now the only terminator is an unconditional branch.
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else {
|
|
SecondLastInst = &*I;
|
|
SecondLastOpc = SecondLastInst->getOpcode();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we're allowed to modify and the block ends in a unconditional branch
|
|
// which could simply fallthrough, remove the branch. (Note: This case only
|
|
// matters when we can't understand the whole sequence, otherwise it's also
|
|
// handled by BranchFolding.cpp.)
|
|
if (AllowModify && isUncondBranchOpcode(LastOpc) &&
|
|
MBB.isLayoutSuccessor(getBranchDestBlock(*LastInst))) {
|
|
LastInst->eraseFromParent();
|
|
LastInst = SecondLastInst;
|
|
LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
|
|
assert(!isUncondBranchOpcode(LastOpc) &&
|
|
"unreachable unconditional branches removed above");
|
|
|
|
if (isCondBranchOpcode(LastOpc)) {
|
|
// Block ends with fall-through condbranch.
|
|
parseCondBranch(LastInst, TBB, Cond);
|
|
return false;
|
|
}
|
|
return true; // Can't handle indirect branch.
|
|
} else {
|
|
SecondLastInst = &*I;
|
|
SecondLastOpc = SecondLastInst->getOpcode();
|
|
}
|
|
}
|
|
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
|
|
return true;
|
|
|
|
// If the block ends with a B and a Bcc, handle it.
|
|
if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
parseCondBranch(SecondLastInst, TBB, Cond);
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two unconditional branches, handle it. The second
|
|
// one is not executed, so remove it.
|
|
if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// ...likewise if it ends with an indirect branch followed by an unconditional
|
|
// branch.
|
|
if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
|
|
MachineBranchPredicate &MBP,
|
|
bool AllowModify) const {
|
|
// For the moment, handle only a block which ends with a cb(n)zx followed by
|
|
// a fallthrough. Why this? Because it is a common form.
|
|
// TODO: Should we handle b.cc?
|
|
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return true;
|
|
|
|
// Skip over SpeculationBarrierEndBB terminators
|
|
if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
|
|
I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
|
|
--I;
|
|
}
|
|
|
|
if (!isUnpredicatedTerminator(*I))
|
|
return true;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = &*I;
|
|
unsigned LastOpc = LastInst->getOpcode();
|
|
if (!isCondBranchOpcode(LastOpc))
|
|
return true;
|
|
|
|
switch (LastOpc) {
|
|
default:
|
|
return true;
|
|
case AArch64::CBZW:
|
|
case AArch64::CBZX:
|
|
case AArch64::CBNZW:
|
|
case AArch64::CBNZX:
|
|
break;
|
|
};
|
|
|
|
MBP.TrueDest = LastInst->getOperand(1).getMBB();
|
|
assert(MBP.TrueDest && "expected!");
|
|
MBP.FalseDest = MBB.getNextNode();
|
|
|
|
MBP.ConditionDef = nullptr;
|
|
MBP.SingleUseCondition = false;
|
|
|
|
MBP.LHS = LastInst->getOperand(0);
|
|
MBP.RHS = MachineOperand::CreateImm(0);
|
|
MBP.Predicate = LastOpc == AArch64::CBNZX ? MachineBranchPredicate::PRED_NE
|
|
: MachineBranchPredicate::PRED_EQ;
|
|
return false;
|
|
}
|
|
|
|
bool AArch64InstrInfo::reverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
if (Cond[0].getImm() != -1) {
|
|
// Regular Bcc
|
|
AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
|
|
Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
|
|
} else {
|
|
// Folded compare-and-branch
|
|
switch (Cond[1].getImm()) {
|
|
default:
|
|
llvm_unreachable("Unknown conditional branch!");
|
|
case AArch64::CBZW:
|
|
Cond[1].setImm(AArch64::CBNZW);
|
|
break;
|
|
case AArch64::CBNZW:
|
|
Cond[1].setImm(AArch64::CBZW);
|
|
break;
|
|
case AArch64::CBZX:
|
|
Cond[1].setImm(AArch64::CBNZX);
|
|
break;
|
|
case AArch64::CBNZX:
|
|
Cond[1].setImm(AArch64::CBZX);
|
|
break;
|
|
case AArch64::TBZW:
|
|
Cond[1].setImm(AArch64::TBNZW);
|
|
break;
|
|
case AArch64::TBNZW:
|
|
Cond[1].setImm(AArch64::TBZW);
|
|
break;
|
|
case AArch64::TBZX:
|
|
Cond[1].setImm(AArch64::TBNZX);
|
|
break;
|
|
case AArch64::TBNZX:
|
|
Cond[1].setImm(AArch64::TBZX);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return 0;
|
|
|
|
if (!isUncondBranchOpcode(I->getOpcode()) &&
|
|
!isCondBranchOpcode(I->getOpcode()))
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin()) {
|
|
if (BytesRemoved)
|
|
*BytesRemoved = 4;
|
|
return 1;
|
|
}
|
|
--I;
|
|
if (!isCondBranchOpcode(I->getOpcode())) {
|
|
if (BytesRemoved)
|
|
*BytesRemoved = 4;
|
|
return 1;
|
|
}
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
if (BytesRemoved)
|
|
*BytesRemoved = 8;
|
|
|
|
return 2;
|
|
}
|
|
|
|
void AArch64InstrInfo::instantiateCondBranch(
|
|
MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB,
|
|
ArrayRef<MachineOperand> Cond) const {
|
|
if (Cond[0].getImm() != -1) {
|
|
// Regular Bcc
|
|
BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
|
|
} else {
|
|
// Folded compare-and-branch
|
|
// Note that we use addOperand instead of addReg to keep the flags.
|
|
const MachineInstrBuilder MIB =
|
|
BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]);
|
|
if (Cond.size() > 3)
|
|
MIB.addImm(Cond[3].getImm());
|
|
MIB.addMBB(TBB);
|
|
}
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::insertBranch(
|
|
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
|
|
if (!FBB) {
|
|
if (Cond.empty()) // Unconditional branch?
|
|
BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
|
|
else
|
|
instantiateCondBranch(MBB, DL, TBB, Cond);
|
|
|
|
if (BytesAdded)
|
|
*BytesAdded = 4;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Two-way conditional branch.
|
|
instantiateCondBranch(MBB, DL, TBB, Cond);
|
|
BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
|
|
|
|
if (BytesAdded)
|
|
*BytesAdded = 8;
|
|
|
|
return 2;
|
|
}
|
|
|
|
// Find the original register that VReg is copied from.
|
|
static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
|
|
while (Register::isVirtualRegister(VReg)) {
|
|
const MachineInstr *DefMI = MRI.getVRegDef(VReg);
|
|
if (!DefMI->isFullCopy())
|
|
return VReg;
|
|
VReg = DefMI->getOperand(1).getReg();
|
|
}
|
|
return VReg;
|
|
}
|
|
|
|
// Determine if VReg is defined by an instruction that can be folded into a
|
|
// csel instruction. If so, return the folded opcode, and the replacement
|
|
// register.
|
|
static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
|
|
unsigned *NewVReg = nullptr) {
|
|
VReg = removeCopies(MRI, VReg);
|
|
if (!Register::isVirtualRegister(VReg))
|
|
return 0;
|
|
|
|
bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
|
|
const MachineInstr *DefMI = MRI.getVRegDef(VReg);
|
|
unsigned Opc = 0;
|
|
unsigned SrcOpNum = 0;
|
|
switch (DefMI->getOpcode()) {
|
|
case AArch64::ADDSXri:
|
|
case AArch64::ADDSWri:
|
|
// if NZCV is used, do not fold.
|
|
if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
|
|
return 0;
|
|
// fall-through to ADDXri and ADDWri.
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64::ADDXri:
|
|
case AArch64::ADDWri:
|
|
// add x, 1 -> csinc.
|
|
if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
|
|
DefMI->getOperand(3).getImm() != 0)
|
|
return 0;
|
|
SrcOpNum = 1;
|
|
Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
|
|
break;
|
|
|
|
case AArch64::ORNXrr:
|
|
case AArch64::ORNWrr: {
|
|
// not x -> csinv, represented as orn dst, xzr, src.
|
|
unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
|
|
if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
|
|
return 0;
|
|
SrcOpNum = 2;
|
|
Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
|
|
break;
|
|
}
|
|
|
|
case AArch64::SUBSXrr:
|
|
case AArch64::SUBSWrr:
|
|
// if NZCV is used, do not fold.
|
|
if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
|
|
return 0;
|
|
// fall-through to SUBXrr and SUBWrr.
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64::SUBXrr:
|
|
case AArch64::SUBWrr: {
|
|
// neg x -> csneg, represented as sub dst, xzr, src.
|
|
unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
|
|
if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
|
|
return 0;
|
|
SrcOpNum = 2;
|
|
Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
|
|
break;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
assert(Opc && SrcOpNum && "Missing parameters");
|
|
|
|
if (NewVReg)
|
|
*NewVReg = DefMI->getOperand(SrcOpNum).getReg();
|
|
return Opc;
|
|
}
|
|
|
|
bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
Register DstReg, Register TrueReg,
|
|
Register FalseReg, int &CondCycles,
|
|
int &TrueCycles,
|
|
int &FalseCycles) const {
|
|
// Check register classes.
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
|
|
if (!RC)
|
|
return false;
|
|
|
|
// Also need to check the dest regclass, in case we're trying to optimize
|
|
// something like:
|
|
// %1(gpr) = PHI %2(fpr), bb1, %(fpr), bb2
|
|
if (!RI.getCommonSubClass(RC, MRI.getRegClass(DstReg)))
|
|
return false;
|
|
|
|
// Expanding cbz/tbz requires an extra cycle of latency on the condition.
|
|
unsigned ExtraCondLat = Cond.size() != 1;
|
|
|
|
// GPRs are handled by csel.
|
|
// FIXME: Fold in x+1, -x, and ~x when applicable.
|
|
if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
|
|
AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
|
|
// Single-cycle csel, csinc, csinv, and csneg.
|
|
CondCycles = 1 + ExtraCondLat;
|
|
TrueCycles = FalseCycles = 1;
|
|
if (canFoldIntoCSel(MRI, TrueReg))
|
|
TrueCycles = 0;
|
|
else if (canFoldIntoCSel(MRI, FalseReg))
|
|
FalseCycles = 0;
|
|
return true;
|
|
}
|
|
|
|
// Scalar floating point is handled by fcsel.
|
|
// FIXME: Form fabs, fmin, and fmax when applicable.
|
|
if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
|
|
AArch64::FPR32RegClass.hasSubClassEq(RC)) {
|
|
CondCycles = 5 + ExtraCondLat;
|
|
TrueCycles = FalseCycles = 2;
|
|
return true;
|
|
}
|
|
|
|
// Can't do vectors.
|
|
return false;
|
|
}
|
|
|
|
void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, Register DstReg,
|
|
ArrayRef<MachineOperand> Cond,
|
|
Register TrueReg, Register FalseReg) const {
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
// Parse the condition code, see parseCondBranch() above.
|
|
AArch64CC::CondCode CC;
|
|
switch (Cond.size()) {
|
|
default:
|
|
llvm_unreachable("Unknown condition opcode in Cond");
|
|
case 1: // b.cc
|
|
CC = AArch64CC::CondCode(Cond[0].getImm());
|
|
break;
|
|
case 3: { // cbz/cbnz
|
|
// We must insert a compare against 0.
|
|
bool Is64Bit;
|
|
switch (Cond[1].getImm()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch opcode in Cond");
|
|
case AArch64::CBZW:
|
|
Is64Bit = false;
|
|
CC = AArch64CC::EQ;
|
|
break;
|
|
case AArch64::CBZX:
|
|
Is64Bit = true;
|
|
CC = AArch64CC::EQ;
|
|
break;
|
|
case AArch64::CBNZW:
|
|
Is64Bit = false;
|
|
CC = AArch64CC::NE;
|
|
break;
|
|
case AArch64::CBNZX:
|
|
Is64Bit = true;
|
|
CC = AArch64CC::NE;
|
|
break;
|
|
}
|
|
Register SrcReg = Cond[2].getReg();
|
|
if (Is64Bit) {
|
|
// cmp reg, #0 is actually subs xzr, reg, #0.
|
|
MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
.addImm(0);
|
|
} else {
|
|
MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
.addImm(0);
|
|
}
|
|
break;
|
|
}
|
|
case 4: { // tbz/tbnz
|
|
// We must insert a tst instruction.
|
|
switch (Cond[1].getImm()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch opcode in Cond");
|
|
case AArch64::TBZW:
|
|
case AArch64::TBZX:
|
|
CC = AArch64CC::EQ;
|
|
break;
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBNZX:
|
|
CC = AArch64CC::NE;
|
|
break;
|
|
}
|
|
// cmp reg, #foo is actually ands xzr, reg, #1<<foo.
|
|
if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
|
|
BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
|
|
.addReg(Cond[2].getReg())
|
|
.addImm(
|
|
AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
|
|
else
|
|
BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
|
|
.addReg(Cond[2].getReg())
|
|
.addImm(
|
|
AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned Opc = 0;
|
|
const TargetRegisterClass *RC = nullptr;
|
|
bool TryFold = false;
|
|
if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
|
|
RC = &AArch64::GPR64RegClass;
|
|
Opc = AArch64::CSELXr;
|
|
TryFold = true;
|
|
} else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
|
|
RC = &AArch64::GPR32RegClass;
|
|
Opc = AArch64::CSELWr;
|
|
TryFold = true;
|
|
} else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FCSELDrrr;
|
|
} else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
|
|
RC = &AArch64::FPR32RegClass;
|
|
Opc = AArch64::FCSELSrrr;
|
|
}
|
|
assert(RC && "Unsupported regclass");
|
|
|
|
// Try folding simple instructions into the csel.
|
|
if (TryFold) {
|
|
unsigned NewVReg = 0;
|
|
unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
|
|
if (FoldedOpc) {
|
|
// The folded opcodes csinc, csinc and csneg apply the operation to
|
|
// FalseReg, so we need to invert the condition.
|
|
CC = AArch64CC::getInvertedCondCode(CC);
|
|
TrueReg = FalseReg;
|
|
} else
|
|
FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
|
|
|
|
// Fold the operation. Leave any dead instructions for DCE to clean up.
|
|
if (FoldedOpc) {
|
|
FalseReg = NewVReg;
|
|
Opc = FoldedOpc;
|
|
// The extends the live range of NewVReg.
|
|
MRI.clearKillFlags(NewVReg);
|
|
}
|
|
}
|
|
|
|
// Pull all virtual register into the appropriate class.
|
|
MRI.constrainRegClass(TrueReg, RC);
|
|
MRI.constrainRegClass(FalseReg, RC);
|
|
|
|
// Insert the csel.
|
|
BuildMI(MBB, I, DL, get(Opc), DstReg)
|
|
.addReg(TrueReg)
|
|
.addReg(FalseReg)
|
|
.addImm(CC);
|
|
}
|
|
|
|
/// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
|
|
static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) {
|
|
uint64_t Imm = MI.getOperand(1).getImm();
|
|
uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
|
|
uint64_t Encoding;
|
|
return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding);
|
|
}
|
|
|
|
// FIXME: this implementation should be micro-architecture dependent, so a
|
|
// micro-architecture target hook should be introduced here in future.
|
|
bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
|
|
if (!Subtarget.hasCustomCheapAsMoveHandling())
|
|
return MI.isAsCheapAsAMove();
|
|
|
|
const unsigned Opcode = MI.getOpcode();
|
|
|
|
// Firstly, check cases gated by features.
|
|
|
|
if (Subtarget.hasZeroCycleZeroingFP()) {
|
|
if (Opcode == AArch64::FMOVH0 ||
|
|
Opcode == AArch64::FMOVS0 ||
|
|
Opcode == AArch64::FMOVD0)
|
|
return true;
|
|
}
|
|
|
|
if (Subtarget.hasZeroCycleZeroingGP()) {
|
|
if (Opcode == TargetOpcode::COPY &&
|
|
(MI.getOperand(1).getReg() == AArch64::WZR ||
|
|
MI.getOperand(1).getReg() == AArch64::XZR))
|
|
return true;
|
|
}
|
|
|
|
// Secondly, check cases specific to sub-targets.
|
|
|
|
if (Subtarget.hasExynosCheapAsMoveHandling()) {
|
|
if (isExynosCheapAsMove(MI))
|
|
return true;
|
|
|
|
return MI.isAsCheapAsAMove();
|
|
}
|
|
|
|
// Finally, check generic cases.
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
return false;
|
|
|
|
// add/sub on register without shift
|
|
case AArch64::ADDWri:
|
|
case AArch64::ADDXri:
|
|
case AArch64::SUBWri:
|
|
case AArch64::SUBXri:
|
|
return (MI.getOperand(3).getImm() == 0);
|
|
|
|
// logical ops on immediate
|
|
case AArch64::ANDWri:
|
|
case AArch64::ANDXri:
|
|
case AArch64::EORWri:
|
|
case AArch64::EORXri:
|
|
case AArch64::ORRWri:
|
|
case AArch64::ORRXri:
|
|
return true;
|
|
|
|
// logical ops on register without shift
|
|
case AArch64::ANDWrr:
|
|
case AArch64::ANDXrr:
|
|
case AArch64::BICWrr:
|
|
case AArch64::BICXrr:
|
|
case AArch64::EONWrr:
|
|
case AArch64::EONXrr:
|
|
case AArch64::EORWrr:
|
|
case AArch64::EORXrr:
|
|
case AArch64::ORNWrr:
|
|
case AArch64::ORNXrr:
|
|
case AArch64::ORRWrr:
|
|
case AArch64::ORRXrr:
|
|
return true;
|
|
|
|
// If MOVi32imm or MOVi64imm can be expanded into ORRWri or
|
|
// ORRXri, it is as cheap as MOV
|
|
case AArch64::MOVi32imm:
|
|
return canBeExpandedToORR(MI, 32);
|
|
case AArch64::MOVi64imm:
|
|
return canBeExpandedToORR(MI, 64);
|
|
}
|
|
|
|
llvm_unreachable("Unknown opcode to check as cheap as a move!");
|
|
}
|
|
|
|
bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
|
|
case AArch64::ADDWrs:
|
|
case AArch64::ADDXrs:
|
|
case AArch64::ADDSWrs:
|
|
case AArch64::ADDSXrs: {
|
|
unsigned Imm = MI.getOperand(3).getImm();
|
|
unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
|
|
if (ShiftVal == 0)
|
|
return true;
|
|
return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5;
|
|
}
|
|
|
|
case AArch64::ADDWrx:
|
|
case AArch64::ADDXrx:
|
|
case AArch64::ADDXrx64:
|
|
case AArch64::ADDSWrx:
|
|
case AArch64::ADDSXrx:
|
|
case AArch64::ADDSXrx64: {
|
|
unsigned Imm = MI.getOperand(3).getImm();
|
|
switch (AArch64_AM::getArithExtendType(Imm)) {
|
|
default:
|
|
return false;
|
|
case AArch64_AM::UXTB:
|
|
case AArch64_AM::UXTH:
|
|
case AArch64_AM::UXTW:
|
|
case AArch64_AM::UXTX:
|
|
return AArch64_AM::getArithShiftValue(Imm) <= 4;
|
|
}
|
|
}
|
|
|
|
case AArch64::SUBWrs:
|
|
case AArch64::SUBSWrs: {
|
|
unsigned Imm = MI.getOperand(3).getImm();
|
|
unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
|
|
return ShiftVal == 0 ||
|
|
(AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31);
|
|
}
|
|
|
|
case AArch64::SUBXrs:
|
|
case AArch64::SUBSXrs: {
|
|
unsigned Imm = MI.getOperand(3).getImm();
|
|
unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
|
|
return ShiftVal == 0 ||
|
|
(AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63);
|
|
}
|
|
|
|
case AArch64::SUBWrx:
|
|
case AArch64::SUBXrx:
|
|
case AArch64::SUBXrx64:
|
|
case AArch64::SUBSWrx:
|
|
case AArch64::SUBSXrx:
|
|
case AArch64::SUBSXrx64: {
|
|
unsigned Imm = MI.getOperand(3).getImm();
|
|
switch (AArch64_AM::getArithExtendType(Imm)) {
|
|
default:
|
|
return false;
|
|
case AArch64_AM::UXTB:
|
|
case AArch64_AM::UXTH:
|
|
case AArch64_AM::UXTW:
|
|
case AArch64_AM::UXTX:
|
|
return AArch64_AM::getArithShiftValue(Imm) == 0;
|
|
}
|
|
}
|
|
|
|
case AArch64::LDRBBroW:
|
|
case AArch64::LDRBBroX:
|
|
case AArch64::LDRBroW:
|
|
case AArch64::LDRBroX:
|
|
case AArch64::LDRDroW:
|
|
case AArch64::LDRDroX:
|
|
case AArch64::LDRHHroW:
|
|
case AArch64::LDRHHroX:
|
|
case AArch64::LDRHroW:
|
|
case AArch64::LDRHroX:
|
|
case AArch64::LDRQroW:
|
|
case AArch64::LDRQroX:
|
|
case AArch64::LDRSBWroW:
|
|
case AArch64::LDRSBWroX:
|
|
case AArch64::LDRSBXroW:
|
|
case AArch64::LDRSBXroX:
|
|
case AArch64::LDRSHWroW:
|
|
case AArch64::LDRSHWroX:
|
|
case AArch64::LDRSHXroW:
|
|
case AArch64::LDRSHXroX:
|
|
case AArch64::LDRSWroW:
|
|
case AArch64::LDRSWroX:
|
|
case AArch64::LDRSroW:
|
|
case AArch64::LDRSroX:
|
|
case AArch64::LDRWroW:
|
|
case AArch64::LDRWroX:
|
|
case AArch64::LDRXroW:
|
|
case AArch64::LDRXroX:
|
|
case AArch64::PRFMroW:
|
|
case AArch64::PRFMroX:
|
|
case AArch64::STRBBroW:
|
|
case AArch64::STRBBroX:
|
|
case AArch64::STRBroW:
|
|
case AArch64::STRBroX:
|
|
case AArch64::STRDroW:
|
|
case AArch64::STRDroX:
|
|
case AArch64::STRHHroW:
|
|
case AArch64::STRHHroX:
|
|
case AArch64::STRHroW:
|
|
case AArch64::STRHroX:
|
|
case AArch64::STRQroW:
|
|
case AArch64::STRQroX:
|
|
case AArch64::STRSroW:
|
|
case AArch64::STRSroX:
|
|
case AArch64::STRWroW:
|
|
case AArch64::STRWroX:
|
|
case AArch64::STRXroW:
|
|
case AArch64::STRXroX: {
|
|
unsigned IsSigned = MI.getOperand(3).getImm();
|
|
return !IsSigned;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool AArch64InstrInfo::isSEHInstruction(const MachineInstr &MI) {
|
|
unsigned Opc = MI.getOpcode();
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case AArch64::SEH_StackAlloc:
|
|
case AArch64::SEH_SaveFPLR:
|
|
case AArch64::SEH_SaveFPLR_X:
|
|
case AArch64::SEH_SaveReg:
|
|
case AArch64::SEH_SaveReg_X:
|
|
case AArch64::SEH_SaveRegP:
|
|
case AArch64::SEH_SaveRegP_X:
|
|
case AArch64::SEH_SaveFReg:
|
|
case AArch64::SEH_SaveFReg_X:
|
|
case AArch64::SEH_SaveFRegP:
|
|
case AArch64::SEH_SaveFRegP_X:
|
|
case AArch64::SEH_SetFP:
|
|
case AArch64::SEH_AddFP:
|
|
case AArch64::SEH_Nop:
|
|
case AArch64::SEH_PrologEnd:
|
|
case AArch64::SEH_EpilogStart:
|
|
case AArch64::SEH_EpilogEnd:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
|
|
Register &SrcReg, Register &DstReg,
|
|
unsigned &SubIdx) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::SBFMXri: // aka sxtw
|
|
case AArch64::UBFMXri: // aka uxtw
|
|
// Check for the 32 -> 64 bit extension case, these instructions can do
|
|
// much more.
|
|
if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
|
|
return false;
|
|
// This is a signed or unsigned 32 -> 64 bit extension.
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
DstReg = MI.getOperand(0).getReg();
|
|
SubIdx = AArch64::sub_32;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
|
|
const MachineInstr &MIa, const MachineInstr &MIb) const {
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
|
|
int64_t OffsetA = 0, OffsetB = 0;
|
|
unsigned WidthA = 0, WidthB = 0;
|
|
bool OffsetAIsScalable = false, OffsetBIsScalable = false;
|
|
|
|
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
|
|
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
|
|
|
|
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
|
|
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Retrieve the base, offset from the base and width. Width
|
|
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
|
|
// base are identical, and the offset of a lower memory access +
|
|
// the width doesn't overlap the offset of a higher memory access,
|
|
// then the memory accesses are different.
|
|
// If OffsetAIsScalable and OffsetBIsScalable are both true, they
|
|
// are assumed to have the same scale (vscale).
|
|
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, OffsetAIsScalable,
|
|
WidthA, TRI) &&
|
|
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, OffsetBIsScalable,
|
|
WidthB, TRI)) {
|
|
if (BaseOpA->isIdenticalTo(*BaseOpB) &&
|
|
OffsetAIsScalable == OffsetBIsScalable) {
|
|
int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
|
|
int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
|
|
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
|
|
if (LowOffset + LowWidth <= HighOffset)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const {
|
|
if (TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF))
|
|
return true;
|
|
switch (MI.getOpcode()) {
|
|
case AArch64::HINT:
|
|
// CSDB hints are scheduling barriers.
|
|
if (MI.getOperand(0).getImm() == 0x14)
|
|
return true;
|
|
break;
|
|
case AArch64::DSB:
|
|
case AArch64::ISB:
|
|
// DSB and ISB also are scheduling barriers.
|
|
return true;
|
|
default:;
|
|
}
|
|
return isSEHInstruction(MI);
|
|
}
|
|
|
|
/// analyzeCompare - For a comparison instruction, return the source registers
|
|
/// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
|
|
/// Return true if the comparison instruction can be analyzed.
|
|
bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
|
|
Register &SrcReg2, int &CmpMask,
|
|
int &CmpValue) const {
|
|
// The first operand can be a frame index where we'd normally expect a
|
|
// register.
|
|
assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
|
|
if (!MI.getOperand(1).isReg())
|
|
return false;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::PTEST_PP:
|
|
SrcReg = MI.getOperand(0).getReg();
|
|
SrcReg2 = MI.getOperand(1).getReg();
|
|
// Not sure about the mask and value for now...
|
|
CmpMask = ~0;
|
|
CmpValue = 0;
|
|
return true;
|
|
case AArch64::SUBSWrr:
|
|
case AArch64::SUBSWrs:
|
|
case AArch64::SUBSWrx:
|
|
case AArch64::SUBSXrr:
|
|
case AArch64::SUBSXrs:
|
|
case AArch64::SUBSXrx:
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWrs:
|
|
case AArch64::ADDSWrx:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXrs:
|
|
case AArch64::ADDSXrx:
|
|
// Replace SUBSWrr with SUBWrr if NZCV is not used.
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = MI.getOperand(2).getReg();
|
|
CmpMask = ~0;
|
|
CmpValue = 0;
|
|
return true;
|
|
case AArch64::SUBSWri:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::SUBSXri:
|
|
case AArch64::ADDSXri:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
CmpMask = ~0;
|
|
// FIXME: In order to convert CmpValue to 0 or 1
|
|
CmpValue = MI.getOperand(2).getImm() != 0;
|
|
return true;
|
|
case AArch64::ANDSWri:
|
|
case AArch64::ANDSXri:
|
|
// ANDS does not use the same encoding scheme as the others xxxS
|
|
// instructions.
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
CmpMask = ~0;
|
|
// FIXME:The return val type of decodeLogicalImmediate is uint64_t,
|
|
// while the type of CmpValue is int. When converting uint64_t to int,
|
|
// the high 32 bits of uint64_t will be lost.
|
|
// In fact it causes a bug in spec2006-483.xalancbmk
|
|
// CmpValue is only used to compare with zero in OptimizeCompareInstr
|
|
CmpValue = AArch64_AM::decodeLogicalImmediate(
|
|
MI.getOperand(2).getImm(),
|
|
MI.getOpcode() == AArch64::ANDSWri ? 32 : 64) != 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool UpdateOperandRegClass(MachineInstr &Instr) {
|
|
MachineBasicBlock *MBB = Instr.getParent();
|
|
assert(MBB && "Can't get MachineBasicBlock here");
|
|
MachineFunction *MF = MBB->getParent();
|
|
assert(MF && "Can't get MachineFunction here");
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
|
|
for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx;
|
|
++OpIdx) {
|
|
MachineOperand &MO = Instr.getOperand(OpIdx);
|
|
const TargetRegisterClass *OpRegCstraints =
|
|
Instr.getRegClassConstraint(OpIdx, TII, TRI);
|
|
|
|
// If there's no constraint, there's nothing to do.
|
|
if (!OpRegCstraints)
|
|
continue;
|
|
// If the operand is a frame index, there's nothing to do here.
|
|
// A frame index operand will resolve correctly during PEI.
|
|
if (MO.isFI())
|
|
continue;
|
|
|
|
assert(MO.isReg() &&
|
|
"Operand has register constraints without being a register!");
|
|
|
|
Register Reg = MO.getReg();
|
|
if (Register::isPhysicalRegister(Reg)) {
|
|
if (!OpRegCstraints->contains(Reg))
|
|
return false;
|
|
} else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
|
|
!MRI->constrainRegClass(Reg, OpRegCstraints))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return the opcode that does not set flags when possible - otherwise
|
|
/// return the original opcode. The caller is responsible to do the actual
|
|
/// substitution and legality checking.
|
|
static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) {
|
|
// Don't convert all compare instructions, because for some the zero register
|
|
// encoding becomes the sp register.
|
|
bool MIDefinesZeroReg = false;
|
|
if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR))
|
|
MIDefinesZeroReg = true;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return MI.getOpcode();
|
|
case AArch64::ADDSWrr:
|
|
return AArch64::ADDWrr;
|
|
case AArch64::ADDSWri:
|
|
return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
|
|
case AArch64::ADDSWrs:
|
|
return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
|
|
case AArch64::ADDSWrx:
|
|
return AArch64::ADDWrx;
|
|
case AArch64::ADDSXrr:
|
|
return AArch64::ADDXrr;
|
|
case AArch64::ADDSXri:
|
|
return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
|
|
case AArch64::ADDSXrs:
|
|
return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
|
|
case AArch64::ADDSXrx:
|
|
return AArch64::ADDXrx;
|
|
case AArch64::SUBSWrr:
|
|
return AArch64::SUBWrr;
|
|
case AArch64::SUBSWri:
|
|
return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
|
|
case AArch64::SUBSWrs:
|
|
return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
|
|
case AArch64::SUBSWrx:
|
|
return AArch64::SUBWrx;
|
|
case AArch64::SUBSXrr:
|
|
return AArch64::SUBXrr;
|
|
case AArch64::SUBSXri:
|
|
return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
|
|
case AArch64::SUBSXrs:
|
|
return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
|
|
case AArch64::SUBSXrx:
|
|
return AArch64::SUBXrx;
|
|
}
|
|
}
|
|
|
|
enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 };
|
|
|
|
/// True when condition flags are accessed (either by writing or reading)
|
|
/// on the instruction trace starting at From and ending at To.
|
|
///
|
|
/// Note: If From and To are from different blocks it's assumed CC are accessed
|
|
/// on the path.
|
|
static bool areCFlagsAccessedBetweenInstrs(
|
|
MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
|
|
const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) {
|
|
// Early exit if To is at the beginning of the BB.
|
|
if (To == To->getParent()->begin())
|
|
return true;
|
|
|
|
// Check whether the instructions are in the same basic block
|
|
// If not, assume the condition flags might get modified somewhere.
|
|
if (To->getParent() != From->getParent())
|
|
return true;
|
|
|
|
// From must be above To.
|
|
assert(std::any_of(
|
|
++To.getReverse(), To->getParent()->rend(),
|
|
[From](MachineInstr &MI) { return MI.getIterator() == From; }));
|
|
|
|
// We iterate backward starting at \p To until we hit \p From.
|
|
for (const MachineInstr &Instr :
|
|
instructionsWithoutDebug(++To.getReverse(), From.getReverse())) {
|
|
if (((AccessToCheck & AK_Write) &&
|
|
Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
|
|
((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// optimizePTestInstr - Attempt to remove a ptest of a predicate-generating
|
|
/// operation which could set the flags in an identical manner
|
|
bool AArch64InstrInfo::optimizePTestInstr(
|
|
MachineInstr *PTest, unsigned MaskReg, unsigned PredReg,
|
|
const MachineRegisterInfo *MRI) const {
|
|
auto *Mask = MRI->getUniqueVRegDef(MaskReg);
|
|
auto *Pred = MRI->getUniqueVRegDef(PredReg);
|
|
auto NewOp = Pred->getOpcode();
|
|
bool OpChanged = false;
|
|
|
|
unsigned MaskOpcode = Mask->getOpcode();
|
|
unsigned PredOpcode = Pred->getOpcode();
|
|
bool PredIsPTestLike = isPTestLikeOpcode(PredOpcode);
|
|
bool PredIsWhileLike = isWhileOpcode(PredOpcode);
|
|
|
|
if (isPTrueOpcode(MaskOpcode) && (PredIsPTestLike || PredIsWhileLike)) {
|
|
// For PTEST(PTRUE, OTHER_INST), PTEST is redundant when PTRUE doesn't
|
|
// deactivate any lanes OTHER_INST might set.
|
|
uint64_t MaskElementSize = getElementSizeForOpcode(MaskOpcode);
|
|
uint64_t PredElementSize = getElementSizeForOpcode(PredOpcode);
|
|
|
|
// Must be an all active predicate of matching element size.
|
|
if ((PredElementSize != MaskElementSize) ||
|
|
(Mask->getOperand(1).getImm() != 31))
|
|
return false;
|
|
|
|
// Fallthough to simply remove the PTEST.
|
|
} else if ((Mask == Pred) && (PredIsPTestLike || PredIsWhileLike)) {
|
|
// For PTEST(PG, PG), PTEST is redundant when PG is the result of an
|
|
// instruction that sets the flags as PTEST would.
|
|
|
|
// Fallthough to simply remove the PTEST.
|
|
} else if (PredIsPTestLike) {
|
|
// For PTEST(PG_1, PTEST_LIKE(PG2, ...)), PTEST is redundant when both
|
|
// instructions use the same predicate.
|
|
auto PTestLikeMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
|
|
if (Mask != PTestLikeMask)
|
|
return false;
|
|
|
|
// Fallthough to simply remove the PTEST.
|
|
} else {
|
|
switch (Pred->getOpcode()) {
|
|
case AArch64::BRKB_PPzP:
|
|
case AArch64::BRKPB_PPzPP: {
|
|
// Op 0 is chain, 1 is the mask, 2 the previous predicate to
|
|
// propagate, 3 the new predicate.
|
|
|
|
// Check to see if our mask is the same as the brkpb's. If
|
|
// not the resulting flag bits may be different and we
|
|
// can't remove the ptest.
|
|
auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
|
|
if (Mask != PredMask)
|
|
return false;
|
|
|
|
// Switch to the new opcode
|
|
NewOp = Pred->getOpcode() == AArch64::BRKB_PPzP ? AArch64::BRKBS_PPzP
|
|
: AArch64::BRKPBS_PPzPP;
|
|
OpChanged = true;
|
|
break;
|
|
}
|
|
case AArch64::BRKN_PPzP: {
|
|
auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
|
|
if (Mask != PredMask)
|
|
return false;
|
|
|
|
NewOp = AArch64::BRKNS_PPzP;
|
|
OpChanged = true;
|
|
break;
|
|
}
|
|
default:
|
|
// Bail out if we don't recognize the input
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
// If the predicate is in a different block (possibly because its been
|
|
// hoisted out), then assume the flags are set in between statements.
|
|
if (Pred->getParent() != PTest->getParent())
|
|
return false;
|
|
|
|
// If another instruction between the propagation and test sets the
|
|
// flags, don't remove the ptest.
|
|
MachineBasicBlock::iterator I = Pred, E = PTest;
|
|
++I; // Skip past the predicate op itself.
|
|
for (; I != E; ++I) {
|
|
const MachineInstr &Inst = *I;
|
|
|
|
// TODO: If the ptest flags are unused, we could still remove it.
|
|
if (Inst.modifiesRegister(AArch64::NZCV, TRI))
|
|
return false;
|
|
}
|
|
|
|
// If we pass all the checks, it's safe to remove the PTEST and use the flags
|
|
// as they are prior to PTEST. Sometimes this requires the tested PTEST
|
|
// operand to be replaced with an equivalent instruction that also sets the
|
|
// flags.
|
|
Pred->setDesc(get(NewOp));
|
|
PTest->eraseFromParent();
|
|
if (OpChanged) {
|
|
bool succeeded = UpdateOperandRegClass(*Pred);
|
|
(void)succeeded;
|
|
assert(succeeded && "Operands have incompatible register classes!");
|
|
Pred->addRegisterDefined(AArch64::NZCV, TRI);
|
|
}
|
|
|
|
// Ensure that the flags def is live.
|
|
if (Pred->registerDefIsDead(AArch64::NZCV, TRI)) {
|
|
unsigned i = 0, e = Pred->getNumOperands();
|
|
for (; i != e; ++i) {
|
|
MachineOperand &MO = Pred->getOperand(i);
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == AArch64::NZCV) {
|
|
MO.setIsDead(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Try to optimize a compare instruction. A compare instruction is an
|
|
/// instruction which produces AArch64::NZCV. It can be truly compare
|
|
/// instruction
|
|
/// when there are no uses of its destination register.
|
|
///
|
|
/// The following steps are tried in order:
|
|
/// 1. Convert CmpInstr into an unconditional version.
|
|
/// 2. Remove CmpInstr if above there is an instruction producing a needed
|
|
/// condition code or an instruction which can be converted into such an
|
|
/// instruction.
|
|
/// Only comparison with zero is supported.
|
|
bool AArch64InstrInfo::optimizeCompareInstr(
|
|
MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask,
|
|
int CmpValue, const MachineRegisterInfo *MRI) const {
|
|
assert(CmpInstr.getParent());
|
|
assert(MRI);
|
|
|
|
// Replace SUBSWrr with SUBWrr if NZCV is not used.
|
|
int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true);
|
|
if (DeadNZCVIdx != -1) {
|
|
if (CmpInstr.definesRegister(AArch64::WZR) ||
|
|
CmpInstr.definesRegister(AArch64::XZR)) {
|
|
CmpInstr.eraseFromParent();
|
|
return true;
|
|
}
|
|
unsigned Opc = CmpInstr.getOpcode();
|
|
unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr);
|
|
if (NewOpc == Opc)
|
|
return false;
|
|
const MCInstrDesc &MCID = get(NewOpc);
|
|
CmpInstr.setDesc(MCID);
|
|
CmpInstr.RemoveOperand(DeadNZCVIdx);
|
|
bool succeeded = UpdateOperandRegClass(CmpInstr);
|
|
(void)succeeded;
|
|
assert(succeeded && "Some operands reg class are incompatible!");
|
|
return true;
|
|
}
|
|
|
|
if (CmpInstr.getOpcode() == AArch64::PTEST_PP)
|
|
return optimizePTestInstr(&CmpInstr, SrcReg, SrcReg2, MRI);
|
|
|
|
// Continue only if we have a "ri" where immediate is zero.
|
|
// FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
|
|
// function.
|
|
assert((CmpValue == 0 || CmpValue == 1) && "CmpValue must be 0 or 1!");
|
|
if (CmpValue != 0 || SrcReg2 != 0)
|
|
return false;
|
|
|
|
// CmpInstr is a Compare instruction if destination register is not used.
|
|
if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
|
|
return false;
|
|
|
|
return substituteCmpToZero(CmpInstr, SrcReg, MRI);
|
|
}
|
|
|
|
/// Get opcode of S version of Instr.
|
|
/// If Instr is S version its opcode is returned.
|
|
/// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
|
|
/// or we are not interested in it.
|
|
static unsigned sForm(MachineInstr &Instr) {
|
|
switch (Instr.getOpcode()) {
|
|
default:
|
|
return AArch64::INSTRUCTION_LIST_END;
|
|
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::SUBSWrr:
|
|
case AArch64::SUBSWri:
|
|
case AArch64::SUBSXrr:
|
|
case AArch64::SUBSXri:
|
|
return Instr.getOpcode();
|
|
|
|
case AArch64::ADDWrr:
|
|
return AArch64::ADDSWrr;
|
|
case AArch64::ADDWri:
|
|
return AArch64::ADDSWri;
|
|
case AArch64::ADDXrr:
|
|
return AArch64::ADDSXrr;
|
|
case AArch64::ADDXri:
|
|
return AArch64::ADDSXri;
|
|
case AArch64::ADCWr:
|
|
return AArch64::ADCSWr;
|
|
case AArch64::ADCXr:
|
|
return AArch64::ADCSXr;
|
|
case AArch64::SUBWrr:
|
|
return AArch64::SUBSWrr;
|
|
case AArch64::SUBWri:
|
|
return AArch64::SUBSWri;
|
|
case AArch64::SUBXrr:
|
|
return AArch64::SUBSXrr;
|
|
case AArch64::SUBXri:
|
|
return AArch64::SUBSXri;
|
|
case AArch64::SBCWr:
|
|
return AArch64::SBCSWr;
|
|
case AArch64::SBCXr:
|
|
return AArch64::SBCSXr;
|
|
case AArch64::ANDWri:
|
|
return AArch64::ANDSWri;
|
|
case AArch64::ANDXri:
|
|
return AArch64::ANDSXri;
|
|
}
|
|
}
|
|
|
|
/// Check if AArch64::NZCV should be alive in successors of MBB.
|
|
static bool areCFlagsAliveInSuccessors(MachineBasicBlock *MBB) {
|
|
for (auto *BB : MBB->successors())
|
|
if (BB->isLiveIn(AArch64::NZCV))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct UsedNZCV {
|
|
bool N = false;
|
|
bool Z = false;
|
|
bool C = false;
|
|
bool V = false;
|
|
|
|
UsedNZCV() = default;
|
|
|
|
UsedNZCV &operator|=(const UsedNZCV &UsedFlags) {
|
|
this->N |= UsedFlags.N;
|
|
this->Z |= UsedFlags.Z;
|
|
this->C |= UsedFlags.C;
|
|
this->V |= UsedFlags.V;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Find a condition code used by the instruction.
|
|
/// Returns AArch64CC::Invalid if either the instruction does not use condition
|
|
/// codes or we don't optimize CmpInstr in the presence of such instructions.
|
|
static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) {
|
|
switch (Instr.getOpcode()) {
|
|
default:
|
|
return AArch64CC::Invalid;
|
|
|
|
case AArch64::Bcc: {
|
|
int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
|
|
assert(Idx >= 2);
|
|
return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 2).getImm());
|
|
}
|
|
|
|
case AArch64::CSINVWr:
|
|
case AArch64::CSINVXr:
|
|
case AArch64::CSINCWr:
|
|
case AArch64::CSINCXr:
|
|
case AArch64::CSELWr:
|
|
case AArch64::CSELXr:
|
|
case AArch64::CSNEGWr:
|
|
case AArch64::CSNEGXr:
|
|
case AArch64::FCSELSrrr:
|
|
case AArch64::FCSELDrrr: {
|
|
int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
|
|
assert(Idx >= 1);
|
|
return static_cast<AArch64CC::CondCode>(Instr.getOperand(Idx - 1).getImm());
|
|
}
|
|
}
|
|
}
|
|
|
|
static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) {
|
|
assert(CC != AArch64CC::Invalid);
|
|
UsedNZCV UsedFlags;
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
|
|
case AArch64CC::EQ: // Z set
|
|
case AArch64CC::NE: // Z clear
|
|
UsedFlags.Z = true;
|
|
break;
|
|
|
|
case AArch64CC::HI: // Z clear and C set
|
|
case AArch64CC::LS: // Z set or C clear
|
|
UsedFlags.Z = true;
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64CC::HS: // C set
|
|
case AArch64CC::LO: // C clear
|
|
UsedFlags.C = true;
|
|
break;
|
|
|
|
case AArch64CC::MI: // N set
|
|
case AArch64CC::PL: // N clear
|
|
UsedFlags.N = true;
|
|
break;
|
|
|
|
case AArch64CC::VS: // V set
|
|
case AArch64CC::VC: // V clear
|
|
UsedFlags.V = true;
|
|
break;
|
|
|
|
case AArch64CC::GT: // Z clear, N and V the same
|
|
case AArch64CC::LE: // Z set, N and V differ
|
|
UsedFlags.Z = true;
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64CC::GE: // N and V the same
|
|
case AArch64CC::LT: // N and V differ
|
|
UsedFlags.N = true;
|
|
UsedFlags.V = true;
|
|
break;
|
|
}
|
|
return UsedFlags;
|
|
}
|
|
|
|
static bool isADDSRegImm(unsigned Opcode) {
|
|
return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri;
|
|
}
|
|
|
|
static bool isSUBSRegImm(unsigned Opcode) {
|
|
return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri;
|
|
}
|
|
|
|
/// Check if CmpInstr can be substituted by MI.
|
|
///
|
|
/// CmpInstr can be substituted:
|
|
/// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
|
|
/// - and, MI and CmpInstr are from the same MachineBB
|
|
/// - and, condition flags are not alive in successors of the CmpInstr parent
|
|
/// - and, if MI opcode is the S form there must be no defs of flags between
|
|
/// MI and CmpInstr
|
|
/// or if MI opcode is not the S form there must be neither defs of flags
|
|
/// nor uses of flags between MI and CmpInstr.
|
|
/// - and C/V flags are not used after CmpInstr
|
|
static bool canInstrSubstituteCmpInstr(MachineInstr *MI, MachineInstr *CmpInstr,
|
|
const TargetRegisterInfo *TRI) {
|
|
assert(MI);
|
|
assert(sForm(*MI) != AArch64::INSTRUCTION_LIST_END);
|
|
assert(CmpInstr);
|
|
|
|
const unsigned CmpOpcode = CmpInstr->getOpcode();
|
|
if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode))
|
|
return false;
|
|
|
|
if (MI->getParent() != CmpInstr->getParent())
|
|
return false;
|
|
|
|
if (areCFlagsAliveInSuccessors(CmpInstr->getParent()))
|
|
return false;
|
|
|
|
AccessKind AccessToCheck = AK_Write;
|
|
if (sForm(*MI) != MI->getOpcode())
|
|
AccessToCheck = AK_All;
|
|
if (areCFlagsAccessedBetweenInstrs(MI, CmpInstr, TRI, AccessToCheck))
|
|
return false;
|
|
|
|
UsedNZCV NZCVUsedAfterCmp;
|
|
for (const MachineInstr &Instr :
|
|
instructionsWithoutDebug(std::next(CmpInstr->getIterator()),
|
|
CmpInstr->getParent()->instr_end())) {
|
|
if (Instr.readsRegister(AArch64::NZCV, TRI)) {
|
|
AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr);
|
|
if (CC == AArch64CC::Invalid) // Unsupported conditional instruction
|
|
return false;
|
|
NZCVUsedAfterCmp |= getUsedNZCV(CC);
|
|
}
|
|
|
|
if (Instr.modifiesRegister(AArch64::NZCV, TRI))
|
|
break;
|
|
}
|
|
|
|
return !NZCVUsedAfterCmp.C && !NZCVUsedAfterCmp.V;
|
|
}
|
|
|
|
/// Substitute an instruction comparing to zero with another instruction
|
|
/// which produces needed condition flags.
|
|
///
|
|
/// Return true on success.
|
|
bool AArch64InstrInfo::substituteCmpToZero(
|
|
MachineInstr &CmpInstr, unsigned SrcReg,
|
|
const MachineRegisterInfo *MRI) const {
|
|
assert(MRI);
|
|
// Get the unique definition of SrcReg.
|
|
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
|
|
if (!MI)
|
|
return false;
|
|
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
unsigned NewOpc = sForm(*MI);
|
|
if (NewOpc == AArch64::INSTRUCTION_LIST_END)
|
|
return false;
|
|
|
|
if (!canInstrSubstituteCmpInstr(MI, &CmpInstr, TRI))
|
|
return false;
|
|
|
|
// Update the instruction to set NZCV.
|
|
MI->setDesc(get(NewOpc));
|
|
CmpInstr.eraseFromParent();
|
|
bool succeeded = UpdateOperandRegClass(*MI);
|
|
(void)succeeded;
|
|
assert(succeeded && "Some operands reg class are incompatible!");
|
|
MI->addRegisterDefined(AArch64::NZCV, TRI);
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
|
|
if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD &&
|
|
MI.getOpcode() != AArch64::CATCHRET)
|
|
return false;
|
|
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
auto &Subtarget = MBB.getParent()->getSubtarget<AArch64Subtarget>();
|
|
auto TRI = Subtarget.getRegisterInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
if (MI.getOpcode() == AArch64::CATCHRET) {
|
|
// Skip to the first instruction before the epilog.
|
|
const TargetInstrInfo *TII =
|
|
MBB.getParent()->getSubtarget().getInstrInfo();
|
|
MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
|
|
auto MBBI = MachineBasicBlock::iterator(MI);
|
|
MachineBasicBlock::iterator FirstEpilogSEH = std::prev(MBBI);
|
|
while (FirstEpilogSEH->getFlag(MachineInstr::FrameDestroy) &&
|
|
FirstEpilogSEH != MBB.begin())
|
|
FirstEpilogSEH = std::prev(FirstEpilogSEH);
|
|
if (FirstEpilogSEH != MBB.begin())
|
|
FirstEpilogSEH = std::next(FirstEpilogSEH);
|
|
BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADRP))
|
|
.addReg(AArch64::X0, RegState::Define)
|
|
.addMBB(TargetMBB);
|
|
BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADDXri))
|
|
.addReg(AArch64::X0, RegState::Define)
|
|
.addReg(AArch64::X0)
|
|
.addMBB(TargetMBB)
|
|
.addImm(0);
|
|
return true;
|
|
}
|
|
|
|
Register Reg = MI.getOperand(0).getReg();
|
|
const GlobalValue *GV =
|
|
cast<GlobalValue>((*MI.memoperands_begin())->getValue());
|
|
const TargetMachine &TM = MBB.getParent()->getTarget();
|
|
unsigned OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
|
|
const unsigned char MO_NC = AArch64II::MO_NC;
|
|
|
|
if ((OpFlags & AArch64II::MO_GOT) != 0) {
|
|
BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
|
|
.addGlobalAddress(GV, 0, OpFlags);
|
|
if (Subtarget.isTargetILP32()) {
|
|
unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
|
|
.addDef(Reg32, RegState::Dead)
|
|
.addUse(Reg, RegState::Kill)
|
|
.addImm(0)
|
|
.addMemOperand(*MI.memoperands_begin())
|
|
.addDef(Reg, RegState::Implicit);
|
|
} else {
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(0)
|
|
.addMemOperand(*MI.memoperands_begin());
|
|
}
|
|
} else if (TM.getCodeModel() == CodeModel::Large) {
|
|
assert(!Subtarget.isTargetILP32() && "how can large exist in ILP32?");
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC)
|
|
.addImm(0);
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC)
|
|
.addImm(16);
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC)
|
|
.addImm(32);
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G3)
|
|
.addImm(48);
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(0)
|
|
.addMemOperand(*MI.memoperands_begin());
|
|
} else if (TM.getCodeModel() == CodeModel::Tiny) {
|
|
BuildMI(MBB, MI, DL, get(AArch64::ADR), Reg)
|
|
.addGlobalAddress(GV, 0, OpFlags);
|
|
} else {
|
|
BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
|
|
.addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
|
|
unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
|
|
if (Subtarget.isTargetILP32()) {
|
|
unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
|
|
.addDef(Reg32, RegState::Dead)
|
|
.addUse(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, LoFlags)
|
|
.addMemOperand(*MI.memoperands_begin())
|
|
.addDef(Reg, RegState::Implicit);
|
|
} else {
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, LoFlags)
|
|
.addMemOperand(*MI.memoperands_begin());
|
|
}
|
|
}
|
|
|
|
MBB.erase(MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if this instruction simply sets its single destination register
|
|
// to zero. This is equivalent to a register rename of the zero-register.
|
|
bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::MOVZWi:
|
|
case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
|
|
if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) {
|
|
assert(MI.getDesc().getNumOperands() == 3 &&
|
|
MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
|
|
return true;
|
|
}
|
|
break;
|
|
case AArch64::ANDWri: // and Rd, Rzr, #imm
|
|
return MI.getOperand(1).getReg() == AArch64::WZR;
|
|
case AArch64::ANDXri:
|
|
return MI.getOperand(1).getReg() == AArch64::XZR;
|
|
case TargetOpcode::COPY:
|
|
return MI.getOperand(1).getReg() == AArch64::WZR;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if this instruction simply renames a general register without
|
|
// modifying bits.
|
|
bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::COPY: {
|
|
// GPR32 copies will by lowered to ORRXrs
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
return (AArch64::GPR32RegClass.contains(DstReg) ||
|
|
AArch64::GPR64RegClass.contains(DstReg));
|
|
}
|
|
case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
|
|
if (MI.getOperand(1).getReg() == AArch64::XZR) {
|
|
assert(MI.getDesc().getNumOperands() == 4 &&
|
|
MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
|
|
return true;
|
|
}
|
|
break;
|
|
case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
|
|
if (MI.getOperand(2).getImm() == 0) {
|
|
assert(MI.getDesc().getNumOperands() == 4 &&
|
|
MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if this instruction simply renames a general register without
|
|
// modifying bits.
|
|
bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::COPY: {
|
|
// FPR64 copies will by lowered to ORR.16b
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
return (AArch64::FPR64RegClass.contains(DstReg) ||
|
|
AArch64::FPR128RegClass.contains(DstReg));
|
|
}
|
|
case AArch64::ORRv16i8:
|
|
if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
|
|
assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() &&
|
|
"invalid ORRv16i8 operands");
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDRBui:
|
|
case AArch64::LDRHui:
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDRQui:
|
|
if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
|
|
MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::STRWui:
|
|
case AArch64::STRXui:
|
|
case AArch64::STRBui:
|
|
case AArch64::STRHui:
|
|
case AArch64::STRSui:
|
|
case AArch64::STRDui:
|
|
case AArch64::STRQui:
|
|
case AArch64::LDR_PXI:
|
|
case AArch64::STR_PXI:
|
|
if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
|
|
MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Check all MachineMemOperands for a hint to suppress pairing.
|
|
bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) {
|
|
return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
|
|
return MMO->getFlags() & MOSuppressPair;
|
|
});
|
|
}
|
|
|
|
/// Set a flag on the first MachineMemOperand to suppress pairing.
|
|
void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) {
|
|
if (MI.memoperands_empty())
|
|
return;
|
|
(*MI.memoperands_begin())->setFlags(MOSuppressPair);
|
|
}
|
|
|
|
/// Check all MachineMemOperands for a hint that the load/store is strided.
|
|
bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) {
|
|
return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
|
|
return MMO->getFlags() & MOStridedAccess;
|
|
});
|
|
}
|
|
|
|
bool AArch64InstrInfo::isUnscaledLdSt(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case AArch64::STURSi:
|
|
case AArch64::STURDi:
|
|
case AArch64::STURQi:
|
|
case AArch64::STURBBi:
|
|
case AArch64::STURHHi:
|
|
case AArch64::STURWi:
|
|
case AArch64::STURXi:
|
|
case AArch64::LDURSi:
|
|
case AArch64::LDURDi:
|
|
case AArch64::LDURQi:
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDURXi:
|
|
case AArch64::LDURSWi:
|
|
case AArch64::LDURHHi:
|
|
case AArch64::LDURBBi:
|
|
case AArch64::LDURSBWi:
|
|
case AArch64::LDURSHWi:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Optional<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc) {
|
|
switch (Opc) {
|
|
default: return {};
|
|
case AArch64::PRFMui: return AArch64::PRFUMi;
|
|
case AArch64::LDRXui: return AArch64::LDURXi;
|
|
case AArch64::LDRWui: return AArch64::LDURWi;
|
|
case AArch64::LDRBui: return AArch64::LDURBi;
|
|
case AArch64::LDRHui: return AArch64::LDURHi;
|
|
case AArch64::LDRSui: return AArch64::LDURSi;
|
|
case AArch64::LDRDui: return AArch64::LDURDi;
|
|
case AArch64::LDRQui: return AArch64::LDURQi;
|
|
case AArch64::LDRBBui: return AArch64::LDURBBi;
|
|
case AArch64::LDRHHui: return AArch64::LDURHHi;
|
|
case AArch64::LDRSBXui: return AArch64::LDURSBXi;
|
|
case AArch64::LDRSBWui: return AArch64::LDURSBWi;
|
|
case AArch64::LDRSHXui: return AArch64::LDURSHXi;
|
|
case AArch64::LDRSHWui: return AArch64::LDURSHWi;
|
|
case AArch64::LDRSWui: return AArch64::LDURSWi;
|
|
case AArch64::STRXui: return AArch64::STURXi;
|
|
case AArch64::STRWui: return AArch64::STURWi;
|
|
case AArch64::STRBui: return AArch64::STURBi;
|
|
case AArch64::STRHui: return AArch64::STURHi;
|
|
case AArch64::STRSui: return AArch64::STURSi;
|
|
case AArch64::STRDui: return AArch64::STURDi;
|
|
case AArch64::STRQui: return AArch64::STURQi;
|
|
case AArch64::STRBBui: return AArch64::STURBBi;
|
|
case AArch64::STRHHui: return AArch64::STURHHi;
|
|
}
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return 2;
|
|
case AArch64::LDPXi:
|
|
case AArch64::LDPDi:
|
|
case AArch64::STPXi:
|
|
case AArch64::STPDi:
|
|
case AArch64::LDNPXi:
|
|
case AArch64::LDNPDi:
|
|
case AArch64::STNPXi:
|
|
case AArch64::STNPDi:
|
|
case AArch64::LDPQi:
|
|
case AArch64::STPQi:
|
|
case AArch64::LDNPQi:
|
|
case AArch64::STNPQi:
|
|
case AArch64::LDPWi:
|
|
case AArch64::LDPSi:
|
|
case AArch64::STPWi:
|
|
case AArch64::STPSi:
|
|
case AArch64::LDNPWi:
|
|
case AArch64::LDNPSi:
|
|
case AArch64::STNPWi:
|
|
case AArch64::STNPSi:
|
|
case AArch64::LDG:
|
|
case AArch64::STGPi:
|
|
case AArch64::LD1B_IMM:
|
|
case AArch64::LD1H_IMM:
|
|
case AArch64::LD1W_IMM:
|
|
case AArch64::LD1D_IMM:
|
|
case AArch64::ST1B_IMM:
|
|
case AArch64::ST1H_IMM:
|
|
case AArch64::ST1W_IMM:
|
|
case AArch64::ST1D_IMM:
|
|
case AArch64::LD1B_H_IMM:
|
|
case AArch64::LD1SB_H_IMM:
|
|
case AArch64::LD1H_S_IMM:
|
|
case AArch64::LD1SH_S_IMM:
|
|
case AArch64::LD1W_D_IMM:
|
|
case AArch64::LD1SW_D_IMM:
|
|
case AArch64::ST1B_H_IMM:
|
|
case AArch64::ST1H_S_IMM:
|
|
case AArch64::ST1W_D_IMM:
|
|
case AArch64::LD1B_S_IMM:
|
|
case AArch64::LD1SB_S_IMM:
|
|
case AArch64::LD1H_D_IMM:
|
|
case AArch64::LD1SH_D_IMM:
|
|
case AArch64::ST1B_S_IMM:
|
|
case AArch64::ST1H_D_IMM:
|
|
case AArch64::LD1B_D_IMM:
|
|
case AArch64::LD1SB_D_IMM:
|
|
case AArch64::ST1B_D_IMM:
|
|
return 3;
|
|
case AArch64::ADDG:
|
|
case AArch64::STGOffset:
|
|
case AArch64::LDR_PXI:
|
|
case AArch64::STR_PXI:
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
// Scaled instructions.
|
|
case AArch64::STRSui:
|
|
case AArch64::STRDui:
|
|
case AArch64::STRQui:
|
|
case AArch64::STRXui:
|
|
case AArch64::STRWui:
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDRQui:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDRSWui:
|
|
// Unscaled instructions.
|
|
case AArch64::STURSi:
|
|
case AArch64::STURDi:
|
|
case AArch64::STURQi:
|
|
case AArch64::STURWi:
|
|
case AArch64::STURXi:
|
|
case AArch64::LDURSi:
|
|
case AArch64::LDURDi:
|
|
case AArch64::LDURQi:
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDURXi:
|
|
case AArch64::LDURSWi:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc,
|
|
bool &Is64Bit) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Opcode has no flag setting equivalent!");
|
|
// 32-bit cases:
|
|
case AArch64::ADDWri:
|
|
Is64Bit = false;
|
|
return AArch64::ADDSWri;
|
|
case AArch64::ADDWrr:
|
|
Is64Bit = false;
|
|
return AArch64::ADDSWrr;
|
|
case AArch64::ADDWrs:
|
|
Is64Bit = false;
|
|
return AArch64::ADDSWrs;
|
|
case AArch64::ADDWrx:
|
|
Is64Bit = false;
|
|
return AArch64::ADDSWrx;
|
|
case AArch64::ANDWri:
|
|
Is64Bit = false;
|
|
return AArch64::ANDSWri;
|
|
case AArch64::ANDWrr:
|
|
Is64Bit = false;
|
|
return AArch64::ANDSWrr;
|
|
case AArch64::ANDWrs:
|
|
Is64Bit = false;
|
|
return AArch64::ANDSWrs;
|
|
case AArch64::BICWrr:
|
|
Is64Bit = false;
|
|
return AArch64::BICSWrr;
|
|
case AArch64::BICWrs:
|
|
Is64Bit = false;
|
|
return AArch64::BICSWrs;
|
|
case AArch64::SUBWri:
|
|
Is64Bit = false;
|
|
return AArch64::SUBSWri;
|
|
case AArch64::SUBWrr:
|
|
Is64Bit = false;
|
|
return AArch64::SUBSWrr;
|
|
case AArch64::SUBWrs:
|
|
Is64Bit = false;
|
|
return AArch64::SUBSWrs;
|
|
case AArch64::SUBWrx:
|
|
Is64Bit = false;
|
|
return AArch64::SUBSWrx;
|
|
// 64-bit cases:
|
|
case AArch64::ADDXri:
|
|
Is64Bit = true;
|
|
return AArch64::ADDSXri;
|
|
case AArch64::ADDXrr:
|
|
Is64Bit = true;
|
|
return AArch64::ADDSXrr;
|
|
case AArch64::ADDXrs:
|
|
Is64Bit = true;
|
|
return AArch64::ADDSXrs;
|
|
case AArch64::ADDXrx:
|
|
Is64Bit = true;
|
|
return AArch64::ADDSXrx;
|
|
case AArch64::ANDXri:
|
|
Is64Bit = true;
|
|
return AArch64::ANDSXri;
|
|
case AArch64::ANDXrr:
|
|
Is64Bit = true;
|
|
return AArch64::ANDSXrr;
|
|
case AArch64::ANDXrs:
|
|
Is64Bit = true;
|
|
return AArch64::ANDSXrs;
|
|
case AArch64::BICXrr:
|
|
Is64Bit = true;
|
|
return AArch64::BICSXrr;
|
|
case AArch64::BICXrs:
|
|
Is64Bit = true;
|
|
return AArch64::BICSXrs;
|
|
case AArch64::SUBXri:
|
|
Is64Bit = true;
|
|
return AArch64::SUBSXri;
|
|
case AArch64::SUBXrr:
|
|
Is64Bit = true;
|
|
return AArch64::SUBSXrr;
|
|
case AArch64::SUBXrs:
|
|
Is64Bit = true;
|
|
return AArch64::SUBSXrs;
|
|
case AArch64::SUBXrx:
|
|
Is64Bit = true;
|
|
return AArch64::SUBSXrx;
|
|
}
|
|
}
|
|
|
|
// Is this a candidate for ld/st merging or pairing? For example, we don't
|
|
// touch volatiles or load/stores that have a hint to avoid pair formation.
|
|
bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr &MI) const {
|
|
// If this is a volatile load/store, don't mess with it.
|
|
if (MI.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Make sure this is a reg/fi+imm (as opposed to an address reloc).
|
|
assert((MI.getOperand(1).isReg() || MI.getOperand(1).isFI()) &&
|
|
"Expected a reg or frame index operand.");
|
|
if (!MI.getOperand(2).isImm())
|
|
return false;
|
|
|
|
// Can't merge/pair if the instruction modifies the base register.
|
|
// e.g., ldr x0, [x0]
|
|
// This case will never occur with an FI base.
|
|
if (MI.getOperand(1).isReg()) {
|
|
Register BaseReg = MI.getOperand(1).getReg();
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
if (MI.modifiesRegister(BaseReg, TRI))
|
|
return false;
|
|
}
|
|
|
|
// Check if this load/store has a hint to avoid pair formation.
|
|
// MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
|
|
if (isLdStPairSuppressed(MI))
|
|
return false;
|
|
|
|
// Do not pair any callee-save store/reload instructions in the
|
|
// prologue/epilogue if the CFI information encoded the operations as separate
|
|
// instructions, as that will cause the size of the actual prologue to mismatch
|
|
// with the prologue size recorded in the Windows CFI.
|
|
const MCAsmInfo *MAI = MI.getMF()->getTarget().getMCAsmInfo();
|
|
bool NeedsWinCFI = MAI->usesWindowsCFI() &&
|
|
MI.getMF()->getFunction().needsUnwindTableEntry();
|
|
if (NeedsWinCFI && (MI.getFlag(MachineInstr::FrameSetup) ||
|
|
MI.getFlag(MachineInstr::FrameDestroy)))
|
|
return false;
|
|
|
|
// On some CPUs quad load/store pairs are slower than two single load/stores.
|
|
if (Subtarget.isPaired128Slow()) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::LDURQi:
|
|
case AArch64::STURQi:
|
|
case AArch64::LDRQui:
|
|
case AArch64::STRQui:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstrInfo::getMemOperandsWithOffsetWidth(
|
|
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
|
|
int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (!LdSt.mayLoadOrStore())
|
|
return false;
|
|
|
|
const MachineOperand *BaseOp;
|
|
if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, OffsetIsScalable,
|
|
Width, TRI))
|
|
return false;
|
|
BaseOps.push_back(BaseOp);
|
|
return true;
|
|
}
|
|
|
|
Optional<ExtAddrMode>
|
|
AArch64InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MachineOperand *Base; // Filled with the base operand of MI.
|
|
int64_t Offset; // Filled with the offset of MI.
|
|
bool OffsetIsScalable;
|
|
if (!getMemOperandWithOffset(MemI, Base, Offset, OffsetIsScalable, TRI))
|
|
return None;
|
|
|
|
if (!Base->isReg())
|
|
return None;
|
|
ExtAddrMode AM;
|
|
AM.BaseReg = Base->getReg();
|
|
AM.Displacement = Offset;
|
|
AM.ScaledReg = 0;
|
|
return AM;
|
|
}
|
|
|
|
bool AArch64InstrInfo::getMemOperandWithOffsetWidth(
|
|
const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
|
|
bool &OffsetIsScalable, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const {
|
|
assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
|
|
// Handle only loads/stores with base register followed by immediate offset.
|
|
if (LdSt.getNumExplicitOperands() == 3) {
|
|
// Non-paired instruction (e.g., ldr x1, [x0, #8]).
|
|
if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
|
|
!LdSt.getOperand(2).isImm())
|
|
return false;
|
|
} else if (LdSt.getNumExplicitOperands() == 4) {
|
|
// Paired instruction (e.g., ldp x1, x2, [x0, #8]).
|
|
if (!LdSt.getOperand(1).isReg() ||
|
|
(!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()) ||
|
|
!LdSt.getOperand(3).isImm())
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
// Get the scaling factor for the instruction and set the width for the
|
|
// instruction.
|
|
TypeSize Scale(0U, false);
|
|
int64_t Dummy1, Dummy2;
|
|
|
|
// If this returns false, then it's an instruction we don't want to handle.
|
|
if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2))
|
|
return false;
|
|
|
|
// Compute the offset. Offset is calculated as the immediate operand
|
|
// multiplied by the scaling factor. Unscaled instructions have scaling factor
|
|
// set to 1.
|
|
if (LdSt.getNumExplicitOperands() == 3) {
|
|
BaseOp = &LdSt.getOperand(1);
|
|
Offset = LdSt.getOperand(2).getImm() * Scale.getKnownMinSize();
|
|
} else {
|
|
assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands");
|
|
BaseOp = &LdSt.getOperand(2);
|
|
Offset = LdSt.getOperand(3).getImm() * Scale.getKnownMinSize();
|
|
}
|
|
OffsetIsScalable = Scale.isScalable();
|
|
|
|
if (!BaseOp->isReg() && !BaseOp->isFI())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
MachineOperand &
|
|
AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const {
|
|
assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
|
|
MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1);
|
|
assert(OfsOp.isImm() && "Offset operand wasn't immediate.");
|
|
return OfsOp;
|
|
}
|
|
|
|
bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, TypeSize &Scale,
|
|
unsigned &Width, int64_t &MinOffset,
|
|
int64_t &MaxOffset) {
|
|
const unsigned SVEMaxBytesPerVector = AArch64::SVEMaxBitsPerVector / 8;
|
|
switch (Opcode) {
|
|
// Not a memory operation or something we want to handle.
|
|
default:
|
|
Scale = TypeSize::Fixed(0);
|
|
Width = 0;
|
|
MinOffset = MaxOffset = 0;
|
|
return false;
|
|
case AArch64::STRWpost:
|
|
case AArch64::LDRWpost:
|
|
Width = 32;
|
|
Scale = TypeSize::Fixed(4);
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::LDURQi:
|
|
case AArch64::STURQi:
|
|
Width = 16;
|
|
Scale = TypeSize::Fixed(1);
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::PRFUMi:
|
|
case AArch64::LDURXi:
|
|
case AArch64::LDURDi:
|
|
case AArch64::STURXi:
|
|
case AArch64::STURDi:
|
|
Width = 8;
|
|
Scale = TypeSize::Fixed(1);
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDURSi:
|
|
case AArch64::LDURSWi:
|
|
case AArch64::STURWi:
|
|
case AArch64::STURSi:
|
|
Width = 4;
|
|
Scale = TypeSize::Fixed(1);
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::LDURHi:
|
|
case AArch64::LDURHHi:
|
|
case AArch64::LDURSHXi:
|
|
case AArch64::LDURSHWi:
|
|
case AArch64::STURHi:
|
|
case AArch64::STURHHi:
|
|
Width = 2;
|
|
Scale = TypeSize::Fixed(1);
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::LDURBi:
|
|
case AArch64::LDURBBi:
|
|
case AArch64::LDURSBXi:
|
|
case AArch64::LDURSBWi:
|
|
case AArch64::STURBi:
|
|
case AArch64::STURBBi:
|
|
Width = 1;
|
|
Scale = TypeSize::Fixed(1);
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::LDPQi:
|
|
case AArch64::LDNPQi:
|
|
case AArch64::STPQi:
|
|
case AArch64::STNPQi:
|
|
Scale = TypeSize::Fixed(16);
|
|
Width = 32;
|
|
MinOffset = -64;
|
|
MaxOffset = 63;
|
|
break;
|
|
case AArch64::LDRQui:
|
|
case AArch64::STRQui:
|
|
Scale = TypeSize::Fixed(16);
|
|
Width = 16;
|
|
MinOffset = 0;
|
|
MaxOffset = 4095;
|
|
break;
|
|
case AArch64::LDPXi:
|
|
case AArch64::LDPDi:
|
|
case AArch64::LDNPXi:
|
|
case AArch64::LDNPDi:
|
|
case AArch64::STPXi:
|
|
case AArch64::STPDi:
|
|
case AArch64::STNPXi:
|
|
case AArch64::STNPDi:
|
|
Scale = TypeSize::Fixed(8);
|
|
Width = 16;
|
|
MinOffset = -64;
|
|
MaxOffset = 63;
|
|
break;
|
|
case AArch64::PRFMui:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDRDui:
|
|
case AArch64::STRXui:
|
|
case AArch64::STRDui:
|
|
Scale = TypeSize::Fixed(8);
|
|
Width = 8;
|
|
MinOffset = 0;
|
|
MaxOffset = 4095;
|
|
break;
|
|
case AArch64::LDPWi:
|
|
case AArch64::LDPSi:
|
|
case AArch64::LDNPWi:
|
|
case AArch64::LDNPSi:
|
|
case AArch64::STPWi:
|
|
case AArch64::STPSi:
|
|
case AArch64::STNPWi:
|
|
case AArch64::STNPSi:
|
|
Scale = TypeSize::Fixed(4);
|
|
Width = 8;
|
|
MinOffset = -64;
|
|
MaxOffset = 63;
|
|
break;
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDRSWui:
|
|
case AArch64::STRWui:
|
|
case AArch64::STRSui:
|
|
Scale = TypeSize::Fixed(4);
|
|
Width = 4;
|
|
MinOffset = 0;
|
|
MaxOffset = 4095;
|
|
break;
|
|
case AArch64::LDRHui:
|
|
case AArch64::LDRHHui:
|
|
case AArch64::LDRSHWui:
|
|
case AArch64::LDRSHXui:
|
|
case AArch64::STRHui:
|
|
case AArch64::STRHHui:
|
|
Scale = TypeSize::Fixed(2);
|
|
Width = 2;
|
|
MinOffset = 0;
|
|
MaxOffset = 4095;
|
|
break;
|
|
case AArch64::LDRBui:
|
|
case AArch64::LDRBBui:
|
|
case AArch64::LDRSBWui:
|
|
case AArch64::LDRSBXui:
|
|
case AArch64::STRBui:
|
|
case AArch64::STRBBui:
|
|
Scale = TypeSize::Fixed(1);
|
|
Width = 1;
|
|
MinOffset = 0;
|
|
MaxOffset = 4095;
|
|
break;
|
|
case AArch64::ADDG:
|
|
Scale = TypeSize::Fixed(16);
|
|
Width = 0;
|
|
MinOffset = 0;
|
|
MaxOffset = 63;
|
|
break;
|
|
case AArch64::TAGPstack:
|
|
Scale = TypeSize::Fixed(16);
|
|
Width = 0;
|
|
// TAGP with a negative offset turns into SUBP, which has a maximum offset
|
|
// of 63 (not 64!).
|
|
MinOffset = -63;
|
|
MaxOffset = 63;
|
|
break;
|
|
case AArch64::LDG:
|
|
case AArch64::STGOffset:
|
|
case AArch64::STZGOffset:
|
|
Scale = TypeSize::Fixed(16);
|
|
Width = 16;
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::STR_ZZZZXI:
|
|
case AArch64::LDR_ZZZZXI:
|
|
Scale = TypeSize::Scalable(16);
|
|
Width = SVEMaxBytesPerVector * 4;
|
|
MinOffset = -256;
|
|
MaxOffset = 252;
|
|
break;
|
|
case AArch64::STR_ZZZXI:
|
|
case AArch64::LDR_ZZZXI:
|
|
Scale = TypeSize::Scalable(16);
|
|
Width = SVEMaxBytesPerVector * 3;
|
|
MinOffset = -256;
|
|
MaxOffset = 253;
|
|
break;
|
|
case AArch64::STR_ZZXI:
|
|
case AArch64::LDR_ZZXI:
|
|
Scale = TypeSize::Scalable(16);
|
|
Width = SVEMaxBytesPerVector * 2;
|
|
MinOffset = -256;
|
|
MaxOffset = 254;
|
|
break;
|
|
case AArch64::LDR_PXI:
|
|
case AArch64::STR_PXI:
|
|
Scale = TypeSize::Scalable(2);
|
|
Width = SVEMaxBytesPerVector / 8;
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::LDR_ZXI:
|
|
case AArch64::STR_ZXI:
|
|
Scale = TypeSize::Scalable(16);
|
|
Width = SVEMaxBytesPerVector;
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::LD1B_IMM:
|
|
case AArch64::LD1H_IMM:
|
|
case AArch64::LD1W_IMM:
|
|
case AArch64::LD1D_IMM:
|
|
case AArch64::ST1B_IMM:
|
|
case AArch64::ST1H_IMM:
|
|
case AArch64::ST1W_IMM:
|
|
case AArch64::ST1D_IMM:
|
|
// A full vectors worth of data
|
|
// Width = mbytes * elements
|
|
Scale = TypeSize::Scalable(16);
|
|
Width = SVEMaxBytesPerVector;
|
|
MinOffset = -8;
|
|
MaxOffset = 7;
|
|
break;
|
|
case AArch64::LD1B_H_IMM:
|
|
case AArch64::LD1SB_H_IMM:
|
|
case AArch64::LD1H_S_IMM:
|
|
case AArch64::LD1SH_S_IMM:
|
|
case AArch64::LD1W_D_IMM:
|
|
case AArch64::LD1SW_D_IMM:
|
|
case AArch64::ST1B_H_IMM:
|
|
case AArch64::ST1H_S_IMM:
|
|
case AArch64::ST1W_D_IMM:
|
|
// A half vector worth of data
|
|
// Width = mbytes * elements
|
|
Scale = TypeSize::Scalable(8);
|
|
Width = SVEMaxBytesPerVector / 2;
|
|
MinOffset = -8;
|
|
MaxOffset = 7;
|
|
break;
|
|
case AArch64::LD1B_S_IMM:
|
|
case AArch64::LD1SB_S_IMM:
|
|
case AArch64::LD1H_D_IMM:
|
|
case AArch64::LD1SH_D_IMM:
|
|
case AArch64::ST1B_S_IMM:
|
|
case AArch64::ST1H_D_IMM:
|
|
// A quarter vector worth of data
|
|
// Width = mbytes * elements
|
|
Scale = TypeSize::Scalable(4);
|
|
Width = SVEMaxBytesPerVector / 4;
|
|
MinOffset = -8;
|
|
MaxOffset = 7;
|
|
break;
|
|
case AArch64::LD1B_D_IMM:
|
|
case AArch64::LD1SB_D_IMM:
|
|
case AArch64::ST1B_D_IMM:
|
|
// A eighth vector worth of data
|
|
// Width = mbytes * elements
|
|
Scale = TypeSize::Scalable(2);
|
|
Width = SVEMaxBytesPerVector / 8;
|
|
MinOffset = -8;
|
|
MaxOffset = 7;
|
|
break;
|
|
case AArch64::ST2GOffset:
|
|
case AArch64::STZ2GOffset:
|
|
Scale = TypeSize::Fixed(16);
|
|
Width = 32;
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
break;
|
|
case AArch64::STGPi:
|
|
Scale = TypeSize::Fixed(16);
|
|
Width = 16;
|
|
MinOffset = -64;
|
|
MaxOffset = 63;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Scaling factor for unscaled load or store.
|
|
int AArch64InstrInfo::getMemScale(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Opcode has unknown scale!");
|
|
case AArch64::LDRBBui:
|
|
case AArch64::LDURBBi:
|
|
case AArch64::LDRSBWui:
|
|
case AArch64::LDURSBWi:
|
|
case AArch64::STRBBui:
|
|
case AArch64::STURBBi:
|
|
return 1;
|
|
case AArch64::LDRHHui:
|
|
case AArch64::LDURHHi:
|
|
case AArch64::LDRSHWui:
|
|
case AArch64::LDURSHWi:
|
|
case AArch64::STRHHui:
|
|
case AArch64::STURHHi:
|
|
return 2;
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDURSi:
|
|
case AArch64::LDRSWui:
|
|
case AArch64::LDURSWi:
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDURWi:
|
|
case AArch64::STRSui:
|
|
case AArch64::STURSi:
|
|
case AArch64::STRWui:
|
|
case AArch64::STURWi:
|
|
case AArch64::LDPSi:
|
|
case AArch64::LDPSWi:
|
|
case AArch64::LDPWi:
|
|
case AArch64::STPSi:
|
|
case AArch64::STPWi:
|
|
return 4;
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDURDi:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDURXi:
|
|
case AArch64::STRDui:
|
|
case AArch64::STURDi:
|
|
case AArch64::STRXui:
|
|
case AArch64::STURXi:
|
|
case AArch64::LDPDi:
|
|
case AArch64::LDPXi:
|
|
case AArch64::STPDi:
|
|
case AArch64::STPXi:
|
|
return 8;
|
|
case AArch64::LDRQui:
|
|
case AArch64::LDURQi:
|
|
case AArch64::STRQui:
|
|
case AArch64::STURQi:
|
|
case AArch64::LDPQi:
|
|
case AArch64::STPQi:
|
|
case AArch64::STGOffset:
|
|
case AArch64::STZGOffset:
|
|
case AArch64::ST2GOffset:
|
|
case AArch64::STZ2GOffset:
|
|
case AArch64::STGPi:
|
|
return 16;
|
|
}
|
|
}
|
|
|
|
// Scale the unscaled offsets. Returns false if the unscaled offset can't be
|
|
// scaled.
|
|
static bool scaleOffset(unsigned Opc, int64_t &Offset) {
|
|
int Scale = AArch64InstrInfo::getMemScale(Opc);
|
|
|
|
// If the byte-offset isn't a multiple of the stride, we can't scale this
|
|
// offset.
|
|
if (Offset % Scale != 0)
|
|
return false;
|
|
|
|
// Convert the byte-offset used by unscaled into an "element" offset used
|
|
// by the scaled pair load/store instructions.
|
|
Offset /= Scale;
|
|
return true;
|
|
}
|
|
|
|
static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) {
|
|
if (FirstOpc == SecondOpc)
|
|
return true;
|
|
// We can also pair sign-ext and zero-ext instructions.
|
|
switch (FirstOpc) {
|
|
default:
|
|
return false;
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDURWi:
|
|
return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi;
|
|
case AArch64::LDRSWui:
|
|
case AArch64::LDURSWi:
|
|
return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi;
|
|
}
|
|
// These instructions can't be paired based on their opcodes.
|
|
return false;
|
|
}
|
|
|
|
static bool shouldClusterFI(const MachineFrameInfo &MFI, int FI1,
|
|
int64_t Offset1, unsigned Opcode1, int FI2,
|
|
int64_t Offset2, unsigned Opcode2) {
|
|
// Accesses through fixed stack object frame indices may access a different
|
|
// fixed stack slot. Check that the object offsets + offsets match.
|
|
if (MFI.isFixedObjectIndex(FI1) && MFI.isFixedObjectIndex(FI2)) {
|
|
int64_t ObjectOffset1 = MFI.getObjectOffset(FI1);
|
|
int64_t ObjectOffset2 = MFI.getObjectOffset(FI2);
|
|
assert(ObjectOffset1 <= ObjectOffset2 && "Object offsets are not ordered.");
|
|
// Convert to scaled object offsets.
|
|
int Scale1 = AArch64InstrInfo::getMemScale(Opcode1);
|
|
if (ObjectOffset1 % Scale1 != 0)
|
|
return false;
|
|
ObjectOffset1 /= Scale1;
|
|
int Scale2 = AArch64InstrInfo::getMemScale(Opcode2);
|
|
if (ObjectOffset2 % Scale2 != 0)
|
|
return false;
|
|
ObjectOffset2 /= Scale2;
|
|
ObjectOffset1 += Offset1;
|
|
ObjectOffset2 += Offset2;
|
|
return ObjectOffset1 + 1 == ObjectOffset2;
|
|
}
|
|
|
|
return FI1 == FI2;
|
|
}
|
|
|
|
/// Detect opportunities for ldp/stp formation.
|
|
///
|
|
/// Only called for LdSt for which getMemOperandWithOffset returns true.
|
|
bool AArch64InstrInfo::shouldClusterMemOps(
|
|
ArrayRef<const MachineOperand *> BaseOps1,
|
|
ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
|
|
unsigned NumBytes) const {
|
|
assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
|
|
const MachineOperand &BaseOp1 = *BaseOps1.front();
|
|
const MachineOperand &BaseOp2 = *BaseOps2.front();
|
|
const MachineInstr &FirstLdSt = *BaseOp1.getParent();
|
|
const MachineInstr &SecondLdSt = *BaseOp2.getParent();
|
|
if (BaseOp1.getType() != BaseOp2.getType())
|
|
return false;
|
|
|
|
assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
|
|
"Only base registers and frame indices are supported.");
|
|
|
|
// Check for both base regs and base FI.
|
|
if (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg())
|
|
return false;
|
|
|
|
// Only cluster up to a single pair.
|
|
if (NumLoads > 2)
|
|
return false;
|
|
|
|
if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt))
|
|
return false;
|
|
|
|
// Can we pair these instructions based on their opcodes?
|
|
unsigned FirstOpc = FirstLdSt.getOpcode();
|
|
unsigned SecondOpc = SecondLdSt.getOpcode();
|
|
if (!canPairLdStOpc(FirstOpc, SecondOpc))
|
|
return false;
|
|
|
|
// Can't merge volatiles or load/stores that have a hint to avoid pair
|
|
// formation, for example.
|
|
if (!isCandidateToMergeOrPair(FirstLdSt) ||
|
|
!isCandidateToMergeOrPair(SecondLdSt))
|
|
return false;
|
|
|
|
// isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
|
|
int64_t Offset1 = FirstLdSt.getOperand(2).getImm();
|
|
if (isUnscaledLdSt(FirstOpc) && !scaleOffset(FirstOpc, Offset1))
|
|
return false;
|
|
|
|
int64_t Offset2 = SecondLdSt.getOperand(2).getImm();
|
|
if (isUnscaledLdSt(SecondOpc) && !scaleOffset(SecondOpc, Offset2))
|
|
return false;
|
|
|
|
// Pairwise instructions have a 7-bit signed offset field.
|
|
if (Offset1 > 63 || Offset1 < -64)
|
|
return false;
|
|
|
|
// The caller should already have ordered First/SecondLdSt by offset.
|
|
// Note: except for non-equal frame index bases
|
|
if (BaseOp1.isFI()) {
|
|
assert((!BaseOp1.isIdenticalTo(BaseOp2) || Offset1 <= Offset2) &&
|
|
"Caller should have ordered offsets.");
|
|
|
|
const MachineFrameInfo &MFI =
|
|
FirstLdSt.getParent()->getParent()->getFrameInfo();
|
|
return shouldClusterFI(MFI, BaseOp1.getIndex(), Offset1, FirstOpc,
|
|
BaseOp2.getIndex(), Offset2, SecondOpc);
|
|
}
|
|
|
|
assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
|
|
|
|
return Offset1 + 1 == Offset2;
|
|
}
|
|
|
|
static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
|
|
unsigned Reg, unsigned SubIdx,
|
|
unsigned State,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (!SubIdx)
|
|
return MIB.addReg(Reg, State);
|
|
|
|
if (Register::isPhysicalRegister(Reg))
|
|
return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
|
|
return MIB.addReg(Reg, State, SubIdx);
|
|
}
|
|
|
|
static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
|
|
unsigned NumRegs) {
|
|
// We really want the positive remainder mod 32 here, that happens to be
|
|
// easily obtainable with a mask.
|
|
return ((DestReg - SrcReg) & 0x1f) < NumRegs;
|
|
}
|
|
|
|
void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc,
|
|
unsigned Opcode,
|
|
ArrayRef<unsigned> Indices) const {
|
|
assert(Subtarget.hasNEON() && "Unexpected register copy without NEON");
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
|
|
uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
|
|
unsigned NumRegs = Indices.size();
|
|
|
|
int SubReg = 0, End = NumRegs, Incr = 1;
|
|
if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
|
|
SubReg = NumRegs - 1;
|
|
End = -1;
|
|
Incr = -1;
|
|
}
|
|
|
|
for (; SubReg != End; SubReg += Incr) {
|
|
const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
|
|
AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
|
|
AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
|
|
AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
|
|
}
|
|
}
|
|
|
|
void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
DebugLoc DL, unsigned DestReg,
|
|
unsigned SrcReg, bool KillSrc,
|
|
unsigned Opcode, unsigned ZeroReg,
|
|
llvm::ArrayRef<unsigned> Indices) const {
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
unsigned NumRegs = Indices.size();
|
|
|
|
#ifndef NDEBUG
|
|
uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
|
|
uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
|
|
assert(DestEncoding % NumRegs == 0 && SrcEncoding % NumRegs == 0 &&
|
|
"GPR reg sequences should not be able to overlap");
|
|
#endif
|
|
|
|
for (unsigned SubReg = 0; SubReg != NumRegs; ++SubReg) {
|
|
const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
|
|
AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
|
|
MIB.addReg(ZeroReg);
|
|
AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
|
|
MIB.addImm(0);
|
|
}
|
|
}
|
|
|
|
void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc) const {
|
|
if (AArch64::GPR32spRegClass.contains(DestReg) &&
|
|
(AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
|
|
// If either operand is WSP, expand to ADD #0.
|
|
if (Subtarget.hasZeroCycleRegMove()) {
|
|
// Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
|
|
MCRegister DestRegX = TRI->getMatchingSuperReg(
|
|
DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
|
|
MCRegister SrcRegX = TRI->getMatchingSuperReg(
|
|
SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
|
|
// This instruction is reading and writing X registers. This may upset
|
|
// the register scavenger and machine verifier, so we need to indicate
|
|
// that we are reading an undefined value from SrcRegX, but a proper
|
|
// value from SrcReg.
|
|
BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
|
|
.addReg(SrcRegX, RegState::Undef)
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
|
|
.addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
}
|
|
} else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroingGP()) {
|
|
BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg)
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
} else {
|
|
if (Subtarget.hasZeroCycleRegMove()) {
|
|
// Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
|
|
MCRegister DestRegX = TRI->getMatchingSuperReg(
|
|
DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
|
|
MCRegister SrcRegX = TRI->getMatchingSuperReg(
|
|
SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
|
|
// This instruction is reading and writing X registers. This may upset
|
|
// the register scavenger and machine verifier, so we need to indicate
|
|
// that we are reading an undefined value from SrcRegX, but a proper
|
|
// value from SrcReg.
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
|
|
.addReg(AArch64::XZR)
|
|
.addReg(SrcRegX, RegState::Undef)
|
|
.addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
|
|
} else {
|
|
// Otherwise, expand to ORR WZR.
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
|
|
.addReg(AArch64::WZR)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Copy a Predicate register by ORRing with itself.
|
|
if (AArch64::PPRRegClass.contains(DestReg) &&
|
|
AArch64::PPRRegClass.contains(SrcReg)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected SVE register.");
|
|
BuildMI(MBB, I, DL, get(AArch64::ORR_PPzPP), DestReg)
|
|
.addReg(SrcReg) // Pg
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
// Copy a Z register by ORRing with itself.
|
|
if (AArch64::ZPRRegClass.contains(DestReg) &&
|
|
AArch64::ZPRRegClass.contains(SrcReg)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected SVE register.");
|
|
BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
// Copy a Z register pair by copying the individual sub-registers.
|
|
if (AArch64::ZPR2RegClass.contains(DestReg) &&
|
|
AArch64::ZPR2RegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a Z register triple by copying the individual sub-registers.
|
|
if (AArch64::ZPR3RegClass.contains(DestReg) &&
|
|
AArch64::ZPR3RegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
|
|
AArch64::zsub2};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a Z register quad by copying the individual sub-registers.
|
|
if (AArch64::ZPR4RegClass.contains(DestReg) &&
|
|
AArch64::ZPR4RegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
|
|
AArch64::zsub2, AArch64::zsub3};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
if (AArch64::GPR64spRegClass.contains(DestReg) &&
|
|
(AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
|
|
if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
|
|
// If either operand is SP, expand to ADD #0.
|
|
BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
} else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroingGP()) {
|
|
BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg)
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
} else {
|
|
// Otherwise, expand to ORR XZR.
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
|
|
.addReg(AArch64::XZR)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Copy a DDDD register quad by copying the individual sub-registers.
|
|
if (AArch64::DDDDRegClass.contains(DestReg) &&
|
|
AArch64::DDDDRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
|
|
AArch64::dsub2, AArch64::dsub3};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a DDD register triple by copying the individual sub-registers.
|
|
if (AArch64::DDDRegClass.contains(DestReg) &&
|
|
AArch64::DDDRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
|
|
AArch64::dsub2};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a DD register pair by copying the individual sub-registers.
|
|
if (AArch64::DDRegClass.contains(DestReg) &&
|
|
AArch64::DDRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a QQQQ register quad by copying the individual sub-registers.
|
|
if (AArch64::QQQQRegClass.contains(DestReg) &&
|
|
AArch64::QQQQRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
|
|
AArch64::qsub2, AArch64::qsub3};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a QQQ register triple by copying the individual sub-registers.
|
|
if (AArch64::QQQRegClass.contains(DestReg) &&
|
|
AArch64::QQQRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
|
|
AArch64::qsub2};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a QQ register pair by copying the individual sub-registers.
|
|
if (AArch64::QQRegClass.contains(DestReg) &&
|
|
AArch64::QQRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1};
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
if (AArch64::XSeqPairsClassRegClass.contains(DestReg) &&
|
|
AArch64::XSeqPairsClassRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::sube64, AArch64::subo64};
|
|
copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRXrs,
|
|
AArch64::XZR, Indices);
|
|
return;
|
|
}
|
|
|
|
if (AArch64::WSeqPairsClassRegClass.contains(DestReg) &&
|
|
AArch64::WSeqPairsClassRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = {AArch64::sube32, AArch64::subo32};
|
|
copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRWrs,
|
|
AArch64::WZR, Indices);
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR128RegClass.contains(DestReg) &&
|
|
AArch64::FPR128RegClass.contains(SrcReg)) {
|
|
if (Subtarget.hasNEON()) {
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::STRQpre))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addReg(AArch64::SP)
|
|
.addImm(-16);
|
|
BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(DestReg, RegState::Define)
|
|
.addReg(AArch64::SP)
|
|
.addImm(16);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR64RegClass.contains(DestReg) &&
|
|
AArch64::FPR64RegClass.contains(SrcReg)) {
|
|
if (Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR32RegClass.contains(DestReg) &&
|
|
AArch64::FPR32RegClass.contains(SrcReg)) {
|
|
if (Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR16RegClass.contains(DestReg) &&
|
|
AArch64::FPR16RegClass.contains(SrcReg)) {
|
|
if (Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
|
|
&AArch64::FPR32RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
|
|
&AArch64::FPR32RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR8RegClass.contains(DestReg) &&
|
|
AArch64::FPR8RegClass.contains(SrcReg)) {
|
|
if (Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
|
|
&AArch64::FPR32RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
|
|
&AArch64::FPR32RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Copies between GPR64 and FPR64.
|
|
if (AArch64::FPR64RegClass.contains(DestReg) &&
|
|
AArch64::GPR64RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (AArch64::GPR64RegClass.contains(DestReg) &&
|
|
AArch64::FPR64RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
// Copies between GPR32 and FPR32.
|
|
if (AArch64::FPR32RegClass.contains(DestReg) &&
|
|
AArch64::GPR32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (AArch64::GPR32RegClass.contains(DestReg) &&
|
|
AArch64::FPR32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (DestReg == AArch64::NZCV) {
|
|
assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
|
|
BuildMI(MBB, I, DL, get(AArch64::MSR))
|
|
.addImm(AArch64SysReg::NZCV)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
|
|
return;
|
|
}
|
|
|
|
if (SrcReg == AArch64::NZCV) {
|
|
assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
|
|
BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg)
|
|
.addImm(AArch64SysReg::NZCV)
|
|
.addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unimplemented reg-to-reg copy");
|
|
}
|
|
|
|
static void storeRegPairToStackSlot(const TargetRegisterInfo &TRI,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator InsertBefore,
|
|
const MCInstrDesc &MCID,
|
|
Register SrcReg, bool IsKill,
|
|
unsigned SubIdx0, unsigned SubIdx1, int FI,
|
|
MachineMemOperand *MMO) {
|
|
Register SrcReg0 = SrcReg;
|
|
Register SrcReg1 = SrcReg;
|
|
if (Register::isPhysicalRegister(SrcReg)) {
|
|
SrcReg0 = TRI.getSubReg(SrcReg, SubIdx0);
|
|
SubIdx0 = 0;
|
|
SrcReg1 = TRI.getSubReg(SrcReg, SubIdx1);
|
|
SubIdx1 = 0;
|
|
}
|
|
BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
|
|
.addReg(SrcReg0, getKillRegState(IsKill), SubIdx0)
|
|
.addReg(SrcReg1, getKillRegState(IsKill), SubIdx1)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
void AArch64InstrInfo::storeRegToStackSlot(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
|
|
bool isKill, int FI, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
unsigned Opc = 0;
|
|
bool Offset = true;
|
|
unsigned StackID = TargetStackID::Default;
|
|
switch (TRI->getSpillSize(*RC)) {
|
|
case 1:
|
|
if (AArch64::FPR8RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRBui;
|
|
break;
|
|
case 2:
|
|
if (AArch64::FPR16RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRHui;
|
|
else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
|
|
Opc = AArch64::STR_PXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 4:
|
|
if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::STRWui;
|
|
if (Register::isVirtualRegister(SrcReg))
|
|
MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
|
|
else
|
|
assert(SrcReg != AArch64::WSP);
|
|
} else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRSui;
|
|
break;
|
|
case 8:
|
|
if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::STRXui;
|
|
if (Register::isVirtualRegister(SrcReg))
|
|
MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
|
|
else
|
|
assert(SrcReg != AArch64::SP);
|
|
} else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::STRDui;
|
|
} else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
|
|
storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
|
|
get(AArch64::STPWi), SrcReg, isKill,
|
|
AArch64::sube32, AArch64::subo32, FI, MMO);
|
|
return;
|
|
}
|
|
break;
|
|
case 16:
|
|
if (AArch64::FPR128RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRQui;
|
|
else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Twov1d;
|
|
Offset = false;
|
|
} else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
|
|
storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
|
|
get(AArch64::STPXi), SrcReg, isKill,
|
|
AArch64::sube64, AArch64::subo64, FI, MMO);
|
|
return;
|
|
} else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
|
|
Opc = AArch64::STR_ZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 24:
|
|
if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Threev1d;
|
|
Offset = false;
|
|
}
|
|
break;
|
|
case 32:
|
|
if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Fourv1d;
|
|
Offset = false;
|
|
} else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Twov2d;
|
|
Offset = false;
|
|
} else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
|
|
Opc = AArch64::STR_ZZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 48:
|
|
if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Threev2d;
|
|
Offset = false;
|
|
} else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
|
|
Opc = AArch64::STR_ZZZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 64:
|
|
if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Fourv2d;
|
|
Offset = false;
|
|
} else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
|
|
Opc = AArch64::STR_ZZZZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
}
|
|
assert(Opc && "Unknown register class");
|
|
MFI.setStackID(FI, StackID);
|
|
|
|
const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addFrameIndex(FI);
|
|
|
|
if (Offset)
|
|
MI.addImm(0);
|
|
MI.addMemOperand(MMO);
|
|
}
|
|
|
|
static void loadRegPairFromStackSlot(const TargetRegisterInfo &TRI,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator InsertBefore,
|
|
const MCInstrDesc &MCID,
|
|
Register DestReg, unsigned SubIdx0,
|
|
unsigned SubIdx1, int FI,
|
|
MachineMemOperand *MMO) {
|
|
Register DestReg0 = DestReg;
|
|
Register DestReg1 = DestReg;
|
|
bool IsUndef = true;
|
|
if (Register::isPhysicalRegister(DestReg)) {
|
|
DestReg0 = TRI.getSubReg(DestReg, SubIdx0);
|
|
SubIdx0 = 0;
|
|
DestReg1 = TRI.getSubReg(DestReg, SubIdx1);
|
|
SubIdx1 = 0;
|
|
IsUndef = false;
|
|
}
|
|
BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
|
|
.addReg(DestReg0, RegState::Define | getUndefRegState(IsUndef), SubIdx0)
|
|
.addReg(DestReg1, RegState::Define | getUndefRegState(IsUndef), SubIdx1)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
void AArch64InstrInfo::loadRegFromStackSlot(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
|
|
int FI, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
|
|
unsigned Opc = 0;
|
|
bool Offset = true;
|
|
unsigned StackID = TargetStackID::Default;
|
|
switch (TRI->getSpillSize(*RC)) {
|
|
case 1:
|
|
if (AArch64::FPR8RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRBui;
|
|
break;
|
|
case 2:
|
|
if (AArch64::FPR16RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRHui;
|
|
else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
|
|
Opc = AArch64::LDR_PXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 4:
|
|
if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::LDRWui;
|
|
if (Register::isVirtualRegister(DestReg))
|
|
MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
|
|
else
|
|
assert(DestReg != AArch64::WSP);
|
|
} else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRSui;
|
|
break;
|
|
case 8:
|
|
if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::LDRXui;
|
|
if (Register::isVirtualRegister(DestReg))
|
|
MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
|
|
else
|
|
assert(DestReg != AArch64::SP);
|
|
} else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::LDRDui;
|
|
} else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
|
|
loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
|
|
get(AArch64::LDPWi), DestReg, AArch64::sube32,
|
|
AArch64::subo32, FI, MMO);
|
|
return;
|
|
}
|
|
break;
|
|
case 16:
|
|
if (AArch64::FPR128RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRQui;
|
|
else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Twov1d;
|
|
Offset = false;
|
|
} else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
|
|
loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
|
|
get(AArch64::LDPXi), DestReg, AArch64::sube64,
|
|
AArch64::subo64, FI, MMO);
|
|
return;
|
|
} else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
|
|
Opc = AArch64::LDR_ZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 24:
|
|
if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Threev1d;
|
|
Offset = false;
|
|
}
|
|
break;
|
|
case 32:
|
|
if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Fourv1d;
|
|
Offset = false;
|
|
} else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Twov2d;
|
|
Offset = false;
|
|
} else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
|
|
Opc = AArch64::LDR_ZZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 48:
|
|
if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Threev2d;
|
|
Offset = false;
|
|
} else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
|
|
Opc = AArch64::LDR_ZZZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
case 64:
|
|
if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Fourv2d;
|
|
Offset = false;
|
|
} else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
|
|
Opc = AArch64::LDR_ZZZZXI;
|
|
StackID = TargetStackID::ScalableVector;
|
|
}
|
|
break;
|
|
}
|
|
|
|
assert(Opc && "Unknown register class");
|
|
MFI.setStackID(FI, StackID);
|
|
|
|
const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
|
|
.addReg(DestReg, getDefRegState(true))
|
|
.addFrameIndex(FI);
|
|
if (Offset)
|
|
MI.addImm(0);
|
|
MI.addMemOperand(MMO);
|
|
}
|
|
|
|
bool llvm::isNZCVTouchedInInstructionRange(const MachineInstr &DefMI,
|
|
const MachineInstr &UseMI,
|
|
const TargetRegisterInfo *TRI) {
|
|
return any_of(instructionsWithoutDebug(std::next(DefMI.getIterator()),
|
|
UseMI.getIterator()),
|
|
[TRI](const MachineInstr &I) {
|
|
return I.modifiesRegister(AArch64::NZCV, TRI) ||
|
|
I.readsRegister(AArch64::NZCV, TRI);
|
|
});
|
|
}
|
|
|
|
void AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
|
|
const StackOffset &Offset, int64_t &ByteSized, int64_t &VGSized) {
|
|
// The smallest scalable element supported by scaled SVE addressing
|
|
// modes are predicates, which are 2 scalable bytes in size. So the scalable
|
|
// byte offset must always be a multiple of 2.
|
|
assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
|
|
|
|
// VGSized offsets are divided by '2', because the VG register is the
|
|
// the number of 64bit granules as opposed to 128bit vector chunks,
|
|
// which is how the 'n' in e.g. MVT::nxv1i8 is modelled.
|
|
// So, for a stack offset of 16 MVT::nxv1i8's, the size is n x 16 bytes.
|
|
// VG = n * 2 and the dwarf offset must be VG * 8 bytes.
|
|
ByteSized = Offset.getFixed();
|
|
VGSized = Offset.getScalable() / 2;
|
|
}
|
|
|
|
/// Returns the offset in parts to which this frame offset can be
|
|
/// decomposed for the purpose of describing a frame offset.
|
|
/// For non-scalable offsets this is simply its byte size.
|
|
void AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
|
|
const StackOffset &Offset, int64_t &NumBytes, int64_t &NumPredicateVectors,
|
|
int64_t &NumDataVectors) {
|
|
// The smallest scalable element supported by scaled SVE addressing
|
|
// modes are predicates, which are 2 scalable bytes in size. So the scalable
|
|
// byte offset must always be a multiple of 2.
|
|
assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
|
|
|
|
NumBytes = Offset.getFixed();
|
|
NumDataVectors = 0;
|
|
NumPredicateVectors = Offset.getScalable() / 2;
|
|
// This method is used to get the offsets to adjust the frame offset.
|
|
// If the function requires ADDPL to be used and needs more than two ADDPL
|
|
// instructions, part of the offset is folded into NumDataVectors so that it
|
|
// uses ADDVL for part of it, reducing the number of ADDPL instructions.
|
|
if (NumPredicateVectors % 8 == 0 || NumPredicateVectors < -64 ||
|
|
NumPredicateVectors > 62) {
|
|
NumDataVectors = NumPredicateVectors / 8;
|
|
NumPredicateVectors -= NumDataVectors * 8;
|
|
}
|
|
}
|
|
|
|
// Helper function to emit a frame offset adjustment from a given
|
|
// pointer (SrcReg), stored into DestReg. This function is explicit
|
|
// in that it requires the opcode.
|
|
static void emitFrameOffsetAdj(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, unsigned DestReg,
|
|
unsigned SrcReg, int64_t Offset, unsigned Opc,
|
|
const TargetInstrInfo *TII,
|
|
MachineInstr::MIFlag Flag, bool NeedsWinCFI,
|
|
bool *HasWinCFI) {
|
|
int Sign = 1;
|
|
unsigned MaxEncoding, ShiftSize;
|
|
switch (Opc) {
|
|
case AArch64::ADDXri:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::SUBXri:
|
|
case AArch64::SUBSXri:
|
|
MaxEncoding = 0xfff;
|
|
ShiftSize = 12;
|
|
break;
|
|
case AArch64::ADDVL_XXI:
|
|
case AArch64::ADDPL_XXI:
|
|
MaxEncoding = 31;
|
|
ShiftSize = 0;
|
|
if (Offset < 0) {
|
|
MaxEncoding = 32;
|
|
Sign = -1;
|
|
Offset = -Offset;
|
|
}
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unsupported opcode");
|
|
}
|
|
|
|
// FIXME: If the offset won't fit in 24-bits, compute the offset into a
|
|
// scratch register. If DestReg is a virtual register, use it as the
|
|
// scratch register; otherwise, create a new virtual register (to be
|
|
// replaced by the scavenger at the end of PEI). That case can be optimized
|
|
// slightly if DestReg is SP which is always 16-byte aligned, so the scratch
|
|
// register can be loaded with offset%8 and the add/sub can use an extending
|
|
// instruction with LSL#3.
|
|
// Currently the function handles any offsets but generates a poor sequence
|
|
// of code.
|
|
// assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
|
|
|
|
const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
|
|
Register TmpReg = DestReg;
|
|
if (TmpReg == AArch64::XZR)
|
|
TmpReg = MBB.getParent()->getRegInfo().createVirtualRegister(
|
|
&AArch64::GPR64RegClass);
|
|
do {
|
|
uint64_t ThisVal = std::min<uint64_t>(Offset, MaxEncodableValue);
|
|
unsigned LocalShiftSize = 0;
|
|
if (ThisVal > MaxEncoding) {
|
|
ThisVal = ThisVal >> ShiftSize;
|
|
LocalShiftSize = ShiftSize;
|
|
}
|
|
assert((ThisVal >> ShiftSize) <= MaxEncoding &&
|
|
"Encoding cannot handle value that big");
|
|
|
|
Offset -= ThisVal << LocalShiftSize;
|
|
if (Offset == 0)
|
|
TmpReg = DestReg;
|
|
auto MBI = BuildMI(MBB, MBBI, DL, TII->get(Opc), TmpReg)
|
|
.addReg(SrcReg)
|
|
.addImm(Sign * (int)ThisVal);
|
|
if (ShiftSize)
|
|
MBI = MBI.addImm(
|
|
AArch64_AM::getShifterImm(AArch64_AM::LSL, LocalShiftSize));
|
|
MBI = MBI.setMIFlag(Flag);
|
|
|
|
if (NeedsWinCFI) {
|
|
assert(Sign == 1 && "SEH directives should always have a positive sign");
|
|
int Imm = (int)(ThisVal << LocalShiftSize);
|
|
if ((DestReg == AArch64::FP && SrcReg == AArch64::SP) ||
|
|
(SrcReg == AArch64::FP && DestReg == AArch64::SP)) {
|
|
if (HasWinCFI)
|
|
*HasWinCFI = true;
|
|
if (Imm == 0)
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_SetFP)).setMIFlag(Flag);
|
|
else
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_AddFP))
|
|
.addImm(Imm)
|
|
.setMIFlag(Flag);
|
|
assert(Offset == 0 && "Expected remaining offset to be zero to "
|
|
"emit a single SEH directive");
|
|
} else if (DestReg == AArch64::SP) {
|
|
if (HasWinCFI)
|
|
*HasWinCFI = true;
|
|
assert(SrcReg == AArch64::SP && "Unexpected SrcReg for SEH_StackAlloc");
|
|
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
|
|
.addImm(Imm)
|
|
.setMIFlag(Flag);
|
|
}
|
|
if (HasWinCFI)
|
|
*HasWinCFI = true;
|
|
}
|
|
|
|
SrcReg = TmpReg;
|
|
} while (Offset);
|
|
}
|
|
|
|
void llvm::emitFrameOffset(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
StackOffset Offset, const TargetInstrInfo *TII,
|
|
MachineInstr::MIFlag Flag, bool SetNZCV,
|
|
bool NeedsWinCFI, bool *HasWinCFI) {
|
|
int64_t Bytes, NumPredicateVectors, NumDataVectors;
|
|
AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
|
|
Offset, Bytes, NumPredicateVectors, NumDataVectors);
|
|
|
|
// First emit non-scalable frame offsets, or a simple 'mov'.
|
|
if (Bytes || (!Offset && SrcReg != DestReg)) {
|
|
assert((DestReg != AArch64::SP || Bytes % 8 == 0) &&
|
|
"SP increment/decrement not 8-byte aligned");
|
|
unsigned Opc = SetNZCV ? AArch64::ADDSXri : AArch64::ADDXri;
|
|
if (Bytes < 0) {
|
|
Bytes = -Bytes;
|
|
Opc = SetNZCV ? AArch64::SUBSXri : AArch64::SUBXri;
|
|
}
|
|
emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, Bytes, Opc, TII, Flag,
|
|
NeedsWinCFI, HasWinCFI);
|
|
SrcReg = DestReg;
|
|
}
|
|
|
|
assert(!(SetNZCV && (NumPredicateVectors || NumDataVectors)) &&
|
|
"SetNZCV not supported with SVE vectors");
|
|
assert(!(NeedsWinCFI && (NumPredicateVectors || NumDataVectors)) &&
|
|
"WinCFI not supported with SVE vectors");
|
|
|
|
if (NumDataVectors) {
|
|
emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumDataVectors,
|
|
AArch64::ADDVL_XXI, TII, Flag, NeedsWinCFI, nullptr);
|
|
SrcReg = DestReg;
|
|
}
|
|
|
|
if (NumPredicateVectors) {
|
|
assert(DestReg != AArch64::SP && "Unaligned access to SP");
|
|
emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumPredicateVectors,
|
|
AArch64::ADDPL_XXI, TII, Flag, NeedsWinCFI, nullptr);
|
|
}
|
|
}
|
|
|
|
MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, int FrameIndex,
|
|
LiveIntervals *LIS, VirtRegMap *VRM) const {
|
|
// This is a bit of a hack. Consider this instruction:
|
|
//
|
|
// %0 = COPY %sp; GPR64all:%0
|
|
//
|
|
// We explicitly chose GPR64all for the virtual register so such a copy might
|
|
// be eliminated by RegisterCoalescer. However, that may not be possible, and
|
|
// %0 may even spill. We can't spill %sp, and since it is in the GPR64all
|
|
// register class, TargetInstrInfo::foldMemoryOperand() is going to try.
|
|
//
|
|
// To prevent that, we are going to constrain the %0 register class here.
|
|
//
|
|
// <rdar://problem/11522048>
|
|
//
|
|
if (MI.isFullCopy()) {
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (SrcReg == AArch64::SP && Register::isVirtualRegister(DstReg)) {
|
|
MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
|
|
return nullptr;
|
|
}
|
|
if (DstReg == AArch64::SP && Register::isVirtualRegister(SrcReg)) {
|
|
MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Handle the case where a copy is being spilled or filled but the source
|
|
// and destination register class don't match. For example:
|
|
//
|
|
// %0 = COPY %xzr; GPR64common:%0
|
|
//
|
|
// In this case we can still safely fold away the COPY and generate the
|
|
// following spill code:
|
|
//
|
|
// STRXui %xzr, %stack.0
|
|
//
|
|
// This also eliminates spilled cross register class COPYs (e.g. between x and
|
|
// d regs) of the same size. For example:
|
|
//
|
|
// %0 = COPY %1; GPR64:%0, FPR64:%1
|
|
//
|
|
// will be filled as
|
|
//
|
|
// LDRDui %0, fi<#0>
|
|
//
|
|
// instead of
|
|
//
|
|
// LDRXui %Temp, fi<#0>
|
|
// %0 = FMOV %Temp
|
|
//
|
|
if (MI.isCopy() && Ops.size() == 1 &&
|
|
// Make sure we're only folding the explicit COPY defs/uses.
|
|
(Ops[0] == 0 || Ops[0] == 1)) {
|
|
bool IsSpill = Ops[0] == 0;
|
|
bool IsFill = !IsSpill;
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
const MachineOperand &DstMO = MI.getOperand(0);
|
|
const MachineOperand &SrcMO = MI.getOperand(1);
|
|
Register DstReg = DstMO.getReg();
|
|
Register SrcReg = SrcMO.getReg();
|
|
// This is slightly expensive to compute for physical regs since
|
|
// getMinimalPhysRegClass is slow.
|
|
auto getRegClass = [&](unsigned Reg) {
|
|
return Register::isVirtualRegister(Reg) ? MRI.getRegClass(Reg)
|
|
: TRI.getMinimalPhysRegClass(Reg);
|
|
};
|
|
|
|
if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) {
|
|
assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) ==
|
|
TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
|
|
"Mismatched register size in non subreg COPY");
|
|
if (IsSpill)
|
|
storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex,
|
|
getRegClass(SrcReg), &TRI);
|
|
else
|
|
loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex,
|
|
getRegClass(DstReg), &TRI);
|
|
return &*--InsertPt;
|
|
}
|
|
|
|
// Handle cases like spilling def of:
|
|
//
|
|
// %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
|
|
//
|
|
// where the physical register source can be widened and stored to the full
|
|
// virtual reg destination stack slot, in this case producing:
|
|
//
|
|
// STRXui %xzr, %stack.0
|
|
//
|
|
if (IsSpill && DstMO.isUndef() && Register::isPhysicalRegister(SrcReg)) {
|
|
assert(SrcMO.getSubReg() == 0 &&
|
|
"Unexpected subreg on physical register");
|
|
const TargetRegisterClass *SpillRC;
|
|
unsigned SpillSubreg;
|
|
switch (DstMO.getSubReg()) {
|
|
default:
|
|
SpillRC = nullptr;
|
|
break;
|
|
case AArch64::sub_32:
|
|
case AArch64::ssub:
|
|
if (AArch64::GPR32RegClass.contains(SrcReg)) {
|
|
SpillRC = &AArch64::GPR64RegClass;
|
|
SpillSubreg = AArch64::sub_32;
|
|
} else if (AArch64::FPR32RegClass.contains(SrcReg)) {
|
|
SpillRC = &AArch64::FPR64RegClass;
|
|
SpillSubreg = AArch64::ssub;
|
|
} else
|
|
SpillRC = nullptr;
|
|
break;
|
|
case AArch64::dsub:
|
|
if (AArch64::FPR64RegClass.contains(SrcReg)) {
|
|
SpillRC = &AArch64::FPR128RegClass;
|
|
SpillSubreg = AArch64::dsub;
|
|
} else
|
|
SpillRC = nullptr;
|
|
break;
|
|
}
|
|
|
|
if (SpillRC)
|
|
if (unsigned WidenedSrcReg =
|
|
TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) {
|
|
storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(),
|
|
FrameIndex, SpillRC, &TRI);
|
|
return &*--InsertPt;
|
|
}
|
|
}
|
|
|
|
// Handle cases like filling use of:
|
|
//
|
|
// %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
|
|
//
|
|
// where we can load the full virtual reg source stack slot, into the subreg
|
|
// destination, in this case producing:
|
|
//
|
|
// LDRWui %0:sub_32<def,read-undef>, %stack.0
|
|
//
|
|
if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) {
|
|
const TargetRegisterClass *FillRC;
|
|
switch (DstMO.getSubReg()) {
|
|
default:
|
|
FillRC = nullptr;
|
|
break;
|
|
case AArch64::sub_32:
|
|
FillRC = &AArch64::GPR32RegClass;
|
|
break;
|
|
case AArch64::ssub:
|
|
FillRC = &AArch64::FPR32RegClass;
|
|
break;
|
|
case AArch64::dsub:
|
|
FillRC = &AArch64::FPR64RegClass;
|
|
break;
|
|
}
|
|
|
|
if (FillRC) {
|
|
assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) ==
|
|
TRI.getRegSizeInBits(*FillRC) &&
|
|
"Mismatched regclass size on folded subreg COPY");
|
|
loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI);
|
|
MachineInstr &LoadMI = *--InsertPt;
|
|
MachineOperand &LoadDst = LoadMI.getOperand(0);
|
|
assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load");
|
|
LoadDst.setSubReg(DstMO.getSubReg());
|
|
LoadDst.setIsUndef();
|
|
return &LoadMI;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Cannot fold.
|
|
return nullptr;
|
|
}
|
|
|
|
int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI,
|
|
StackOffset &SOffset,
|
|
bool *OutUseUnscaledOp,
|
|
unsigned *OutUnscaledOp,
|
|
int64_t *EmittableOffset) {
|
|
// Set output values in case of early exit.
|
|
if (EmittableOffset)
|
|
*EmittableOffset = 0;
|
|
if (OutUseUnscaledOp)
|
|
*OutUseUnscaledOp = false;
|
|
if (OutUnscaledOp)
|
|
*OutUnscaledOp = 0;
|
|
|
|
// Exit early for structured vector spills/fills as they can't take an
|
|
// immediate offset.
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::LD1Twov2d:
|
|
case AArch64::LD1Threev2d:
|
|
case AArch64::LD1Fourv2d:
|
|
case AArch64::LD1Twov1d:
|
|
case AArch64::LD1Threev1d:
|
|
case AArch64::LD1Fourv1d:
|
|
case AArch64::ST1Twov2d:
|
|
case AArch64::ST1Threev2d:
|
|
case AArch64::ST1Fourv2d:
|
|
case AArch64::ST1Twov1d:
|
|
case AArch64::ST1Threev1d:
|
|
case AArch64::ST1Fourv1d:
|
|
case AArch64::IRG:
|
|
case AArch64::IRGstack:
|
|
case AArch64::STGloop:
|
|
case AArch64::STZGloop:
|
|
return AArch64FrameOffsetCannotUpdate;
|
|
}
|
|
|
|
// Get the min/max offset and the scale.
|
|
TypeSize ScaleValue(0U, false);
|
|
unsigned Width;
|
|
int64_t MinOff, MaxOff;
|
|
if (!AArch64InstrInfo::getMemOpInfo(MI.getOpcode(), ScaleValue, Width, MinOff,
|
|
MaxOff))
|
|
llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
|
|
|
|
// Construct the complete offset.
|
|
bool IsMulVL = ScaleValue.isScalable();
|
|
unsigned Scale = ScaleValue.getKnownMinSize();
|
|
int64_t Offset = IsMulVL ? SOffset.getScalable() : SOffset.getFixed();
|
|
|
|
const MachineOperand &ImmOpnd =
|
|
MI.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI.getOpcode()));
|
|
Offset += ImmOpnd.getImm() * Scale;
|
|
|
|
// If the offset doesn't match the scale, we rewrite the instruction to
|
|
// use the unscaled instruction instead. Likewise, if we have a negative
|
|
// offset and there is an unscaled op to use.
|
|
Optional<unsigned> UnscaledOp =
|
|
AArch64InstrInfo::getUnscaledLdSt(MI.getOpcode());
|
|
bool useUnscaledOp = UnscaledOp && (Offset % Scale || Offset < 0);
|
|
if (useUnscaledOp &&
|
|
!AArch64InstrInfo::getMemOpInfo(*UnscaledOp, ScaleValue, Width, MinOff,
|
|
MaxOff))
|
|
llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
|
|
|
|
Scale = ScaleValue.getKnownMinSize();
|
|
assert(IsMulVL == ScaleValue.isScalable() &&
|
|
"Unscaled opcode has different value for scalable");
|
|
|
|
int64_t Remainder = Offset % Scale;
|
|
assert(!(Remainder && useUnscaledOp) &&
|
|
"Cannot have remainder when using unscaled op");
|
|
|
|
assert(MinOff < MaxOff && "Unexpected Min/Max offsets");
|
|
int64_t NewOffset = Offset / Scale;
|
|
if (MinOff <= NewOffset && NewOffset <= MaxOff)
|
|
Offset = Remainder;
|
|
else {
|
|
NewOffset = NewOffset < 0 ? MinOff : MaxOff;
|
|
Offset = Offset - NewOffset * Scale + Remainder;
|
|
}
|
|
|
|
if (EmittableOffset)
|
|
*EmittableOffset = NewOffset;
|
|
if (OutUseUnscaledOp)
|
|
*OutUseUnscaledOp = useUnscaledOp;
|
|
if (OutUnscaledOp && UnscaledOp)
|
|
*OutUnscaledOp = *UnscaledOp;
|
|
|
|
if (IsMulVL)
|
|
SOffset = StackOffset::get(SOffset.getFixed(), Offset);
|
|
else
|
|
SOffset = StackOffset::get(Offset, SOffset.getScalable());
|
|
return AArch64FrameOffsetCanUpdate |
|
|
(SOffset ? 0 : AArch64FrameOffsetIsLegal);
|
|
}
|
|
|
|
bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
|
|
unsigned FrameReg, StackOffset &Offset,
|
|
const AArch64InstrInfo *TII) {
|
|
unsigned Opcode = MI.getOpcode();
|
|
unsigned ImmIdx = FrameRegIdx + 1;
|
|
|
|
if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
|
|
Offset += StackOffset::getFixed(MI.getOperand(ImmIdx).getImm());
|
|
emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
|
|
MI.getOperand(0).getReg(), FrameReg, Offset, TII,
|
|
MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
|
|
MI.eraseFromParent();
|
|
Offset = StackOffset();
|
|
return true;
|
|
}
|
|
|
|
int64_t NewOffset;
|
|
unsigned UnscaledOp;
|
|
bool UseUnscaledOp;
|
|
int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
|
|
&UnscaledOp, &NewOffset);
|
|
if (Status & AArch64FrameOffsetCanUpdate) {
|
|
if (Status & AArch64FrameOffsetIsLegal)
|
|
// Replace the FrameIndex with FrameReg.
|
|
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
|
|
if (UseUnscaledOp)
|
|
MI.setDesc(TII->get(UnscaledOp));
|
|
|
|
MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
|
|
return !Offset;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void AArch64InstrInfo::getNoop(MCInst &NopInst) const {
|
|
NopInst.setOpcode(AArch64::HINT);
|
|
NopInst.addOperand(MCOperand::createImm(0));
|
|
}
|
|
|
|
// AArch64 supports MachineCombiner.
|
|
bool AArch64InstrInfo::useMachineCombiner() const { return true; }
|
|
|
|
// True when Opc sets flag
|
|
static bool isCombineInstrSettingFlag(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::SUBSWrr:
|
|
case AArch64::SUBSXrr:
|
|
// Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
|
|
case AArch64::SUBSWri:
|
|
case AArch64::SUBSXri:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// 32b Opcodes that can be combined with a MUL
|
|
static bool isCombineInstrCandidate32(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AArch64::ADDWrr:
|
|
case AArch64::ADDWri:
|
|
case AArch64::SUBWrr:
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::SUBSWrr:
|
|
// Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
|
|
case AArch64::SUBWri:
|
|
case AArch64::SUBSWri:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// 64b Opcodes that can be combined with a MUL
|
|
static bool isCombineInstrCandidate64(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AArch64::ADDXrr:
|
|
case AArch64::ADDXri:
|
|
case AArch64::SUBXrr:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::SUBSXrr:
|
|
// Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
|
|
case AArch64::SUBXri:
|
|
case AArch64::SUBSXri:
|
|
case AArch64::ADDv8i8:
|
|
case AArch64::ADDv16i8:
|
|
case AArch64::ADDv4i16:
|
|
case AArch64::ADDv8i16:
|
|
case AArch64::ADDv2i32:
|
|
case AArch64::ADDv4i32:
|
|
case AArch64::SUBv8i8:
|
|
case AArch64::SUBv16i8:
|
|
case AArch64::SUBv4i16:
|
|
case AArch64::SUBv8i16:
|
|
case AArch64::SUBv2i32:
|
|
case AArch64::SUBv4i32:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// FP Opcodes that can be combined with a FMUL.
|
|
static bool isCombineInstrCandidateFP(const MachineInstr &Inst) {
|
|
switch (Inst.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::FADDHrr:
|
|
case AArch64::FADDSrr:
|
|
case AArch64::FADDDrr:
|
|
case AArch64::FADDv4f16:
|
|
case AArch64::FADDv8f16:
|
|
case AArch64::FADDv2f32:
|
|
case AArch64::FADDv2f64:
|
|
case AArch64::FADDv4f32:
|
|
case AArch64::FSUBHrr:
|
|
case AArch64::FSUBSrr:
|
|
case AArch64::FSUBDrr:
|
|
case AArch64::FSUBv4f16:
|
|
case AArch64::FSUBv8f16:
|
|
case AArch64::FSUBv2f32:
|
|
case AArch64::FSUBv2f64:
|
|
case AArch64::FSUBv4f32:
|
|
TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options;
|
|
// We can fuse FADD/FSUB with FMUL, if fusion is either allowed globally by
|
|
// the target options or if FADD/FSUB has the contract fast-math flag.
|
|
return Options.UnsafeFPMath ||
|
|
Options.AllowFPOpFusion == FPOpFusion::Fast ||
|
|
Inst.getFlag(MachineInstr::FmContract);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Opcodes that can be combined with a MUL
|
|
static bool isCombineInstrCandidate(unsigned Opc) {
|
|
return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
|
|
}
|
|
|
|
//
|
|
// Utility routine that checks if \param MO is defined by an
|
|
// \param CombineOpc instruction in the basic block \param MBB
|
|
static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO,
|
|
unsigned CombineOpc, unsigned ZeroReg = 0,
|
|
bool CheckZeroReg = false) {
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineInstr *MI = nullptr;
|
|
|
|
if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
|
|
MI = MRI.getUniqueVRegDef(MO.getReg());
|
|
// And it needs to be in the trace (otherwise, it won't have a depth).
|
|
if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc)
|
|
return false;
|
|
// Must only used by the user we combine with.
|
|
if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
|
|
return false;
|
|
|
|
if (CheckZeroReg) {
|
|
assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
|
|
MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
|
|
MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
|
|
// The third input reg must be zero.
|
|
if (MI->getOperand(3).getReg() != ZeroReg)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Is \param MO defined by an integer multiply and can be combined?
|
|
static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
|
|
unsigned MulOpc, unsigned ZeroReg) {
|
|
return canCombine(MBB, MO, MulOpc, ZeroReg, true);
|
|
}
|
|
|
|
//
|
|
// Is \param MO defined by a floating-point multiply and can be combined?
|
|
static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO,
|
|
unsigned MulOpc) {
|
|
return canCombine(MBB, MO, MulOpc);
|
|
}
|
|
|
|
// TODO: There are many more machine instruction opcodes to match:
|
|
// 1. Other data types (integer, vectors)
|
|
// 2. Other math / logic operations (xor, or)
|
|
// 3. Other forms of the same operation (intrinsics and other variants)
|
|
bool AArch64InstrInfo::isAssociativeAndCommutative(
|
|
const MachineInstr &Inst) const {
|
|
switch (Inst.getOpcode()) {
|
|
case AArch64::FADDDrr:
|
|
case AArch64::FADDSrr:
|
|
case AArch64::FADDv2f32:
|
|
case AArch64::FADDv2f64:
|
|
case AArch64::FADDv4f32:
|
|
case AArch64::FMULDrr:
|
|
case AArch64::FMULSrr:
|
|
case AArch64::FMULX32:
|
|
case AArch64::FMULX64:
|
|
case AArch64::FMULXv2f32:
|
|
case AArch64::FMULXv2f64:
|
|
case AArch64::FMULXv4f32:
|
|
case AArch64::FMULv2f32:
|
|
case AArch64::FMULv2f64:
|
|
case AArch64::FMULv4f32:
|
|
return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Find instructions that can be turned into madd.
|
|
static bool getMaddPatterns(MachineInstr &Root,
|
|
SmallVectorImpl<MachineCombinerPattern> &Patterns) {
|
|
unsigned Opc = Root.getOpcode();
|
|
MachineBasicBlock &MBB = *Root.getParent();
|
|
bool Found = false;
|
|
|
|
if (!isCombineInstrCandidate(Opc))
|
|
return false;
|
|
if (isCombineInstrSettingFlag(Opc)) {
|
|
int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
|
|
// When NZCV is live bail out.
|
|
if (Cmp_NZCV == -1)
|
|
return false;
|
|
unsigned NewOpc = convertToNonFlagSettingOpc(Root);
|
|
// When opcode can't change bail out.
|
|
// CHECKME: do we miss any cases for opcode conversion?
|
|
if (NewOpc == Opc)
|
|
return false;
|
|
Opc = NewOpc;
|
|
}
|
|
|
|
auto setFound = [&](int Opcode, int Operand, unsigned ZeroReg,
|
|
MachineCombinerPattern Pattern) {
|
|
if (canCombineWithMUL(MBB, Root.getOperand(Operand), Opcode, ZeroReg)) {
|
|
Patterns.push_back(Pattern);
|
|
Found = true;
|
|
}
|
|
};
|
|
|
|
auto setVFound = [&](int Opcode, int Operand, MachineCombinerPattern Pattern) {
|
|
if (canCombine(MBB, Root.getOperand(Operand), Opcode)) {
|
|
Patterns.push_back(Pattern);
|
|
Found = true;
|
|
}
|
|
};
|
|
|
|
typedef MachineCombinerPattern MCP;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
break;
|
|
case AArch64::ADDWrr:
|
|
assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
|
|
"ADDWrr does not have register operands");
|
|
setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDW_OP1);
|
|
setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULADDW_OP2);
|
|
break;
|
|
case AArch64::ADDXrr:
|
|
setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDX_OP1);
|
|
setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULADDX_OP2);
|
|
break;
|
|
case AArch64::SUBWrr:
|
|
setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBW_OP1);
|
|
setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULSUBW_OP2);
|
|
break;
|
|
case AArch64::SUBXrr:
|
|
setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBX_OP1);
|
|
setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULSUBX_OP2);
|
|
break;
|
|
case AArch64::ADDWri:
|
|
setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDWI_OP1);
|
|
break;
|
|
case AArch64::ADDXri:
|
|
setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDXI_OP1);
|
|
break;
|
|
case AArch64::SUBWri:
|
|
setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBWI_OP1);
|
|
break;
|
|
case AArch64::SUBXri:
|
|
setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBXI_OP1);
|
|
break;
|
|
case AArch64::ADDv8i8:
|
|
setVFound(AArch64::MULv8i8, 1, MCP::MULADDv8i8_OP1);
|
|
setVFound(AArch64::MULv8i8, 2, MCP::MULADDv8i8_OP2);
|
|
break;
|
|
case AArch64::ADDv16i8:
|
|
setVFound(AArch64::MULv16i8, 1, MCP::MULADDv16i8_OP1);
|
|
setVFound(AArch64::MULv16i8, 2, MCP::MULADDv16i8_OP2);
|
|
break;
|
|
case AArch64::ADDv4i16:
|
|
setVFound(AArch64::MULv4i16, 1, MCP::MULADDv4i16_OP1);
|
|
setVFound(AArch64::MULv4i16, 2, MCP::MULADDv4i16_OP2);
|
|
setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULADDv4i16_indexed_OP1);
|
|
setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULADDv4i16_indexed_OP2);
|
|
break;
|
|
case AArch64::ADDv8i16:
|
|
setVFound(AArch64::MULv8i16, 1, MCP::MULADDv8i16_OP1);
|
|
setVFound(AArch64::MULv8i16, 2, MCP::MULADDv8i16_OP2);
|
|
setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULADDv8i16_indexed_OP1);
|
|
setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULADDv8i16_indexed_OP2);
|
|
break;
|
|
case AArch64::ADDv2i32:
|
|
setVFound(AArch64::MULv2i32, 1, MCP::MULADDv2i32_OP1);
|
|
setVFound(AArch64::MULv2i32, 2, MCP::MULADDv2i32_OP2);
|
|
setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULADDv2i32_indexed_OP1);
|
|
setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULADDv2i32_indexed_OP2);
|
|
break;
|
|
case AArch64::ADDv4i32:
|
|
setVFound(AArch64::MULv4i32, 1, MCP::MULADDv4i32_OP1);
|
|
setVFound(AArch64::MULv4i32, 2, MCP::MULADDv4i32_OP2);
|
|
setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULADDv4i32_indexed_OP1);
|
|
setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULADDv4i32_indexed_OP2);
|
|
break;
|
|
case AArch64::SUBv8i8:
|
|
setVFound(AArch64::MULv8i8, 1, MCP::MULSUBv8i8_OP1);
|
|
setVFound(AArch64::MULv8i8, 2, MCP::MULSUBv8i8_OP2);
|
|
break;
|
|
case AArch64::SUBv16i8:
|
|
setVFound(AArch64::MULv16i8, 1, MCP::MULSUBv16i8_OP1);
|
|
setVFound(AArch64::MULv16i8, 2, MCP::MULSUBv16i8_OP2);
|
|
break;
|
|
case AArch64::SUBv4i16:
|
|
setVFound(AArch64::MULv4i16, 1, MCP::MULSUBv4i16_OP1);
|
|
setVFound(AArch64::MULv4i16, 2, MCP::MULSUBv4i16_OP2);
|
|
setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULSUBv4i16_indexed_OP1);
|
|
setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULSUBv4i16_indexed_OP2);
|
|
break;
|
|
case AArch64::SUBv8i16:
|
|
setVFound(AArch64::MULv8i16, 1, MCP::MULSUBv8i16_OP1);
|
|
setVFound(AArch64::MULv8i16, 2, MCP::MULSUBv8i16_OP2);
|
|
setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULSUBv8i16_indexed_OP1);
|
|
setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULSUBv8i16_indexed_OP2);
|
|
break;
|
|
case AArch64::SUBv2i32:
|
|
setVFound(AArch64::MULv2i32, 1, MCP::MULSUBv2i32_OP1);
|
|
setVFound(AArch64::MULv2i32, 2, MCP::MULSUBv2i32_OP2);
|
|
setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULSUBv2i32_indexed_OP1);
|
|
setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULSUBv2i32_indexed_OP2);
|
|
break;
|
|
case AArch64::SUBv4i32:
|
|
setVFound(AArch64::MULv4i32, 1, MCP::MULSUBv4i32_OP1);
|
|
setVFound(AArch64::MULv4i32, 2, MCP::MULSUBv4i32_OP2);
|
|
setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULSUBv4i32_indexed_OP1);
|
|
setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULSUBv4i32_indexed_OP2);
|
|
break;
|
|
}
|
|
return Found;
|
|
}
|
|
/// Floating-Point Support
|
|
|
|
/// Find instructions that can be turned into madd.
|
|
static bool getFMAPatterns(MachineInstr &Root,
|
|
SmallVectorImpl<MachineCombinerPattern> &Patterns) {
|
|
|
|
if (!isCombineInstrCandidateFP(Root))
|
|
return false;
|
|
|
|
MachineBasicBlock &MBB = *Root.getParent();
|
|
bool Found = false;
|
|
|
|
auto Match = [&](int Opcode, int Operand,
|
|
MachineCombinerPattern Pattern) -> bool {
|
|
if (canCombineWithFMUL(MBB, Root.getOperand(Operand), Opcode)) {
|
|
Patterns.push_back(Pattern);
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
typedef MachineCombinerPattern MCP;
|
|
|
|
switch (Root.getOpcode()) {
|
|
default:
|
|
assert(false && "Unsupported FP instruction in combiner\n");
|
|
break;
|
|
case AArch64::FADDHrr:
|
|
assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
|
|
"FADDHrr does not have register operands");
|
|
|
|
Found = Match(AArch64::FMULHrr, 1, MCP::FMULADDH_OP1);
|
|
Found |= Match(AArch64::FMULHrr, 2, MCP::FMULADDH_OP2);
|
|
break;
|
|
case AArch64::FADDSrr:
|
|
assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
|
|
"FADDSrr does not have register operands");
|
|
|
|
Found |= Match(AArch64::FMULSrr, 1, MCP::FMULADDS_OP1) ||
|
|
Match(AArch64::FMULv1i32_indexed, 1, MCP::FMLAv1i32_indexed_OP1);
|
|
|
|
Found |= Match(AArch64::FMULSrr, 2, MCP::FMULADDS_OP2) ||
|
|
Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLAv1i32_indexed_OP2);
|
|
break;
|
|
case AArch64::FADDDrr:
|
|
Found |= Match(AArch64::FMULDrr, 1, MCP::FMULADDD_OP1) ||
|
|
Match(AArch64::FMULv1i64_indexed, 1, MCP::FMLAv1i64_indexed_OP1);
|
|
|
|
Found |= Match(AArch64::FMULDrr, 2, MCP::FMULADDD_OP2) ||
|
|
Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLAv1i64_indexed_OP2);
|
|
break;
|
|
case AArch64::FADDv4f16:
|
|
Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLAv4i16_indexed_OP1) ||
|
|
Match(AArch64::FMULv4f16, 1, MCP::FMLAv4f16_OP1);
|
|
|
|
Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLAv4i16_indexed_OP2) ||
|
|
Match(AArch64::FMULv4f16, 2, MCP::FMLAv4f16_OP2);
|
|
break;
|
|
case AArch64::FADDv8f16:
|
|
Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLAv8i16_indexed_OP1) ||
|
|
Match(AArch64::FMULv8f16, 1, MCP::FMLAv8f16_OP1);
|
|
|
|
Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLAv8i16_indexed_OP2) ||
|
|
Match(AArch64::FMULv8f16, 2, MCP::FMLAv8f16_OP2);
|
|
break;
|
|
case AArch64::FADDv2f32:
|
|
Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLAv2i32_indexed_OP1) ||
|
|
Match(AArch64::FMULv2f32, 1, MCP::FMLAv2f32_OP1);
|
|
|
|
Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLAv2i32_indexed_OP2) ||
|
|
Match(AArch64::FMULv2f32, 2, MCP::FMLAv2f32_OP2);
|
|
break;
|
|
case AArch64::FADDv2f64:
|
|
Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLAv2i64_indexed_OP1) ||
|
|
Match(AArch64::FMULv2f64, 1, MCP::FMLAv2f64_OP1);
|
|
|
|
Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLAv2i64_indexed_OP2) ||
|
|
Match(AArch64::FMULv2f64, 2, MCP::FMLAv2f64_OP2);
|
|
break;
|
|
case AArch64::FADDv4f32:
|
|
Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLAv4i32_indexed_OP1) ||
|
|
Match(AArch64::FMULv4f32, 1, MCP::FMLAv4f32_OP1);
|
|
|
|
Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLAv4i32_indexed_OP2) ||
|
|
Match(AArch64::FMULv4f32, 2, MCP::FMLAv4f32_OP2);
|
|
break;
|
|
case AArch64::FSUBHrr:
|
|
Found = Match(AArch64::FMULHrr, 1, MCP::FMULSUBH_OP1);
|
|
Found |= Match(AArch64::FMULHrr, 2, MCP::FMULSUBH_OP2);
|
|
Found |= Match(AArch64::FNMULHrr, 1, MCP::FNMULSUBH_OP1);
|
|
break;
|
|
case AArch64::FSUBSrr:
|
|
Found = Match(AArch64::FMULSrr, 1, MCP::FMULSUBS_OP1);
|
|
|
|
Found |= Match(AArch64::FMULSrr, 2, MCP::FMULSUBS_OP2) ||
|
|
Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLSv1i32_indexed_OP2);
|
|
|
|
Found |= Match(AArch64::FNMULSrr, 1, MCP::FNMULSUBS_OP1);
|
|
break;
|
|
case AArch64::FSUBDrr:
|
|
Found = Match(AArch64::FMULDrr, 1, MCP::FMULSUBD_OP1);
|
|
|
|
Found |= Match(AArch64::FMULDrr, 2, MCP::FMULSUBD_OP2) ||
|
|
Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLSv1i64_indexed_OP2);
|
|
|
|
Found |= Match(AArch64::FNMULDrr, 1, MCP::FNMULSUBD_OP1);
|
|
break;
|
|
case AArch64::FSUBv4f16:
|
|
Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLSv4i16_indexed_OP2) ||
|
|
Match(AArch64::FMULv4f16, 2, MCP::FMLSv4f16_OP2);
|
|
|
|
Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLSv4i16_indexed_OP1) ||
|
|
Match(AArch64::FMULv4f16, 1, MCP::FMLSv4f16_OP1);
|
|
break;
|
|
case AArch64::FSUBv8f16:
|
|
Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLSv8i16_indexed_OP2) ||
|
|
Match(AArch64::FMULv8f16, 2, MCP::FMLSv8f16_OP2);
|
|
|
|
Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLSv8i16_indexed_OP1) ||
|
|
Match(AArch64::FMULv8f16, 1, MCP::FMLSv8f16_OP1);
|
|
break;
|
|
case AArch64::FSUBv2f32:
|
|
Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLSv2i32_indexed_OP2) ||
|
|
Match(AArch64::FMULv2f32, 2, MCP::FMLSv2f32_OP2);
|
|
|
|
Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLSv2i32_indexed_OP1) ||
|
|
Match(AArch64::FMULv2f32, 1, MCP::FMLSv2f32_OP1);
|
|
break;
|
|
case AArch64::FSUBv2f64:
|
|
Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLSv2i64_indexed_OP2) ||
|
|
Match(AArch64::FMULv2f64, 2, MCP::FMLSv2f64_OP2);
|
|
|
|
Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLSv2i64_indexed_OP1) ||
|
|
Match(AArch64::FMULv2f64, 1, MCP::FMLSv2f64_OP1);
|
|
break;
|
|
case AArch64::FSUBv4f32:
|
|
Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLSv4i32_indexed_OP2) ||
|
|
Match(AArch64::FMULv4f32, 2, MCP::FMLSv4f32_OP2);
|
|
|
|
Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLSv4i32_indexed_OP1) ||
|
|
Match(AArch64::FMULv4f32, 1, MCP::FMLSv4f32_OP1);
|
|
break;
|
|
}
|
|
return Found;
|
|
}
|
|
|
|
/// Return true when a code sequence can improve throughput. It
|
|
/// should be called only for instructions in loops.
|
|
/// \param Pattern - combiner pattern
|
|
bool AArch64InstrInfo::isThroughputPattern(
|
|
MachineCombinerPattern Pattern) const {
|
|
switch (Pattern) {
|
|
default:
|
|
break;
|
|
case MachineCombinerPattern::FMULADDH_OP1:
|
|
case MachineCombinerPattern::FMULADDH_OP2:
|
|
case MachineCombinerPattern::FMULSUBH_OP1:
|
|
case MachineCombinerPattern::FMULSUBH_OP2:
|
|
case MachineCombinerPattern::FMULADDS_OP1:
|
|
case MachineCombinerPattern::FMULADDS_OP2:
|
|
case MachineCombinerPattern::FMULSUBS_OP1:
|
|
case MachineCombinerPattern::FMULSUBS_OP2:
|
|
case MachineCombinerPattern::FMULADDD_OP1:
|
|
case MachineCombinerPattern::FMULADDD_OP2:
|
|
case MachineCombinerPattern::FMULSUBD_OP1:
|
|
case MachineCombinerPattern::FMULSUBD_OP2:
|
|
case MachineCombinerPattern::FNMULSUBH_OP1:
|
|
case MachineCombinerPattern::FNMULSUBS_OP1:
|
|
case MachineCombinerPattern::FNMULSUBD_OP1:
|
|
case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv4f16_OP2:
|
|
case MachineCombinerPattern::FMLAv4f16_OP1:
|
|
case MachineCombinerPattern::FMLAv8f16_OP1:
|
|
case MachineCombinerPattern::FMLAv8f16_OP2:
|
|
case MachineCombinerPattern::FMLAv2f32_OP2:
|
|
case MachineCombinerPattern::FMLAv2f32_OP1:
|
|
case MachineCombinerPattern::FMLAv2f64_OP1:
|
|
case MachineCombinerPattern::FMLAv2f64_OP2:
|
|
case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv4f32_OP1:
|
|
case MachineCombinerPattern::FMLAv4f32_OP2:
|
|
case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv4i16_indexed_OP1:
|
|
case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv8i16_indexed_OP1:
|
|
case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv4f16_OP1:
|
|
case MachineCombinerPattern::FMLSv4f16_OP2:
|
|
case MachineCombinerPattern::FMLSv8f16_OP1:
|
|
case MachineCombinerPattern::FMLSv8f16_OP2:
|
|
case MachineCombinerPattern::FMLSv2f32_OP2:
|
|
case MachineCombinerPattern::FMLSv2f64_OP2:
|
|
case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLSv4f32_OP2:
|
|
case MachineCombinerPattern::MULADDv8i8_OP1:
|
|
case MachineCombinerPattern::MULADDv8i8_OP2:
|
|
case MachineCombinerPattern::MULADDv16i8_OP1:
|
|
case MachineCombinerPattern::MULADDv16i8_OP2:
|
|
case MachineCombinerPattern::MULADDv4i16_OP1:
|
|
case MachineCombinerPattern::MULADDv4i16_OP2:
|
|
case MachineCombinerPattern::MULADDv8i16_OP1:
|
|
case MachineCombinerPattern::MULADDv8i16_OP2:
|
|
case MachineCombinerPattern::MULADDv2i32_OP1:
|
|
case MachineCombinerPattern::MULADDv2i32_OP2:
|
|
case MachineCombinerPattern::MULADDv4i32_OP1:
|
|
case MachineCombinerPattern::MULADDv4i32_OP2:
|
|
case MachineCombinerPattern::MULSUBv8i8_OP1:
|
|
case MachineCombinerPattern::MULSUBv8i8_OP2:
|
|
case MachineCombinerPattern::MULSUBv16i8_OP1:
|
|
case MachineCombinerPattern::MULSUBv16i8_OP2:
|
|
case MachineCombinerPattern::MULSUBv4i16_OP1:
|
|
case MachineCombinerPattern::MULSUBv4i16_OP2:
|
|
case MachineCombinerPattern::MULSUBv8i16_OP1:
|
|
case MachineCombinerPattern::MULSUBv8i16_OP2:
|
|
case MachineCombinerPattern::MULSUBv2i32_OP1:
|
|
case MachineCombinerPattern::MULSUBv2i32_OP2:
|
|
case MachineCombinerPattern::MULSUBv4i32_OP1:
|
|
case MachineCombinerPattern::MULSUBv4i32_OP2:
|
|
case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
|
|
case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
|
|
case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
|
|
case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
|
|
case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
|
|
case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
|
|
case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
|
|
case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
|
|
case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
|
|
case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
|
|
case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
|
|
case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
|
|
case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
|
|
case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
|
|
case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
|
|
case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
|
|
return true;
|
|
} // end switch (Pattern)
|
|
return false;
|
|
}
|
|
/// Return true when there is potentially a faster code sequence for an
|
|
/// instruction chain ending in \p Root. All potential patterns are listed in
|
|
/// the \p Pattern vector. Pattern should be sorted in priority order since the
|
|
/// pattern evaluator stops checking as soon as it finds a faster sequence.
|
|
|
|
bool AArch64InstrInfo::getMachineCombinerPatterns(
|
|
MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
|
|
bool DoRegPressureReduce) const {
|
|
// Integer patterns
|
|
if (getMaddPatterns(Root, Patterns))
|
|
return true;
|
|
// Floating point patterns
|
|
if (getFMAPatterns(Root, Patterns))
|
|
return true;
|
|
|
|
return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
|
|
DoRegPressureReduce);
|
|
}
|
|
|
|
enum class FMAInstKind { Default, Indexed, Accumulator };
|
|
/// genFusedMultiply - Generate fused multiply instructions.
|
|
/// This function supports both integer and floating point instructions.
|
|
/// A typical example:
|
|
/// F|MUL I=A,B,0
|
|
/// F|ADD R,I,C
|
|
/// ==> F|MADD R,A,B,C
|
|
/// \param MF Containing MachineFunction
|
|
/// \param MRI Register information
|
|
/// \param TII Target information
|
|
/// \param Root is the F|ADD instruction
|
|
/// \param [out] InsInstrs is a vector of machine instructions and will
|
|
/// contain the generated madd instruction
|
|
/// \param IdxMulOpd is index of operand in Root that is the result of
|
|
/// the F|MUL. In the example above IdxMulOpd is 1.
|
|
/// \param MaddOpc the opcode fo the f|madd instruction
|
|
/// \param RC Register class of operands
|
|
/// \param kind of fma instruction (addressing mode) to be generated
|
|
/// \param ReplacedAddend is the result register from the instruction
|
|
/// replacing the non-combined operand, if any.
|
|
static MachineInstr *
|
|
genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo *TII, MachineInstr &Root,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd,
|
|
unsigned MaddOpc, const TargetRegisterClass *RC,
|
|
FMAInstKind kind = FMAInstKind::Default,
|
|
const Register *ReplacedAddend = nullptr) {
|
|
assert(IdxMulOpd == 1 || IdxMulOpd == 2);
|
|
|
|
unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
|
|
MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
|
|
Register ResultReg = Root.getOperand(0).getReg();
|
|
Register SrcReg0 = MUL->getOperand(1).getReg();
|
|
bool Src0IsKill = MUL->getOperand(1).isKill();
|
|
Register SrcReg1 = MUL->getOperand(2).getReg();
|
|
bool Src1IsKill = MUL->getOperand(2).isKill();
|
|
|
|
unsigned SrcReg2;
|
|
bool Src2IsKill;
|
|
if (ReplacedAddend) {
|
|
// If we just generated a new addend, we must be it's only use.
|
|
SrcReg2 = *ReplacedAddend;
|
|
Src2IsKill = true;
|
|
} else {
|
|
SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
|
|
Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
|
|
}
|
|
|
|
if (Register::isVirtualRegister(ResultReg))
|
|
MRI.constrainRegClass(ResultReg, RC);
|
|
if (Register::isVirtualRegister(SrcReg0))
|
|
MRI.constrainRegClass(SrcReg0, RC);
|
|
if (Register::isVirtualRegister(SrcReg1))
|
|
MRI.constrainRegClass(SrcReg1, RC);
|
|
if (Register::isVirtualRegister(SrcReg2))
|
|
MRI.constrainRegClass(SrcReg2, RC);
|
|
|
|
MachineInstrBuilder MIB;
|
|
if (kind == FMAInstKind::Default)
|
|
MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
|
|
.addReg(SrcReg0, getKillRegState(Src0IsKill))
|
|
.addReg(SrcReg1, getKillRegState(Src1IsKill))
|
|
.addReg(SrcReg2, getKillRegState(Src2IsKill));
|
|
else if (kind == FMAInstKind::Indexed)
|
|
MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
|
|
.addReg(SrcReg2, getKillRegState(Src2IsKill))
|
|
.addReg(SrcReg0, getKillRegState(Src0IsKill))
|
|
.addReg(SrcReg1, getKillRegState(Src1IsKill))
|
|
.addImm(MUL->getOperand(3).getImm());
|
|
else if (kind == FMAInstKind::Accumulator)
|
|
MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
|
|
.addReg(SrcReg2, getKillRegState(Src2IsKill))
|
|
.addReg(SrcReg0, getKillRegState(Src0IsKill))
|
|
.addReg(SrcReg1, getKillRegState(Src1IsKill));
|
|
else
|
|
assert(false && "Invalid FMA instruction kind \n");
|
|
// Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
|
|
InsInstrs.push_back(MIB);
|
|
return MUL;
|
|
}
|
|
|
|
/// genFusedMultiplyAcc - Helper to generate fused multiply accumulate
|
|
/// instructions.
|
|
///
|
|
/// \see genFusedMultiply
|
|
static MachineInstr *genFusedMultiplyAcc(
|
|
MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
|
|
MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
|
|
return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
|
|
/// genNeg - Helper to generate an intermediate negation of the second operand
|
|
/// of Root
|
|
static Register genNeg(MachineFunction &MF, MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo *TII, MachineInstr &Root,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
|
|
unsigned MnegOpc, const TargetRegisterClass *RC) {
|
|
Register NewVR = MRI.createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(MnegOpc), NewVR)
|
|
.add(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB);
|
|
|
|
assert(InstrIdxForVirtReg.empty());
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
|
|
return NewVR;
|
|
}
|
|
|
|
/// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
|
|
/// instructions with an additional negation of the accumulator
|
|
static MachineInstr *genFusedMultiplyAccNeg(
|
|
MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
|
|
MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
|
|
unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
|
|
assert(IdxMulOpd == 1);
|
|
|
|
Register NewVR =
|
|
genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
|
|
return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
|
|
FMAInstKind::Accumulator, &NewVR);
|
|
}
|
|
|
|
/// genFusedMultiplyIdx - Helper to generate fused multiply accumulate
|
|
/// instructions.
|
|
///
|
|
/// \see genFusedMultiply
|
|
static MachineInstr *genFusedMultiplyIdx(
|
|
MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
|
|
MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
|
|
return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
|
|
FMAInstKind::Indexed);
|
|
}
|
|
|
|
/// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
|
|
/// instructions with an additional negation of the accumulator
|
|
static MachineInstr *genFusedMultiplyIdxNeg(
|
|
MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
|
|
MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
|
|
unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
|
|
assert(IdxMulOpd == 1);
|
|
|
|
Register NewVR =
|
|
genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
|
|
|
|
return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
|
|
FMAInstKind::Indexed, &NewVR);
|
|
}
|
|
|
|
/// genMaddR - Generate madd instruction and combine mul and add using
|
|
/// an extra virtual register
|
|
/// Example - an ADD intermediate needs to be stored in a register:
|
|
/// MUL I=A,B,0
|
|
/// ADD R,I,Imm
|
|
/// ==> ORR V, ZR, Imm
|
|
/// ==> MADD R,A,B,V
|
|
/// \param MF Containing MachineFunction
|
|
/// \param MRI Register information
|
|
/// \param TII Target information
|
|
/// \param Root is the ADD instruction
|
|
/// \param [out] InsInstrs is a vector of machine instructions and will
|
|
/// contain the generated madd instruction
|
|
/// \param IdxMulOpd is index of operand in Root that is the result of
|
|
/// the MUL. In the example above IdxMulOpd is 1.
|
|
/// \param MaddOpc the opcode fo the madd instruction
|
|
/// \param VR is a virtual register that holds the value of an ADD operand
|
|
/// (V in the example above).
|
|
/// \param RC Register class of operands
|
|
static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo *TII, MachineInstr &Root,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR,
|
|
const TargetRegisterClass *RC) {
|
|
assert(IdxMulOpd == 1 || IdxMulOpd == 2);
|
|
|
|
MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
|
|
Register ResultReg = Root.getOperand(0).getReg();
|
|
Register SrcReg0 = MUL->getOperand(1).getReg();
|
|
bool Src0IsKill = MUL->getOperand(1).isKill();
|
|
Register SrcReg1 = MUL->getOperand(2).getReg();
|
|
bool Src1IsKill = MUL->getOperand(2).isKill();
|
|
|
|
if (Register::isVirtualRegister(ResultReg))
|
|
MRI.constrainRegClass(ResultReg, RC);
|
|
if (Register::isVirtualRegister(SrcReg0))
|
|
MRI.constrainRegClass(SrcReg0, RC);
|
|
if (Register::isVirtualRegister(SrcReg1))
|
|
MRI.constrainRegClass(SrcReg1, RC);
|
|
if (Register::isVirtualRegister(VR))
|
|
MRI.constrainRegClass(VR, RC);
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
|
|
.addReg(SrcReg0, getKillRegState(Src0IsKill))
|
|
.addReg(SrcReg1, getKillRegState(Src1IsKill))
|
|
.addReg(VR);
|
|
// Insert the MADD
|
|
InsInstrs.push_back(MIB);
|
|
return MUL;
|
|
}
|
|
|
|
/// When getMachineCombinerPatterns() finds potential patterns,
|
|
/// this function generates the instructions that could replace the
|
|
/// original code sequence
|
|
void AArch64InstrInfo::genAlternativeCodeSequence(
|
|
MachineInstr &Root, MachineCombinerPattern Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
|
|
MachineBasicBlock &MBB = *Root.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
|
|
MachineInstr *MUL = nullptr;
|
|
const TargetRegisterClass *RC;
|
|
unsigned Opc;
|
|
switch (Pattern) {
|
|
default:
|
|
// Reassociate instructions.
|
|
TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
|
|
DelInstrs, InstrIdxForVirtReg);
|
|
return;
|
|
case MachineCombinerPattern::MULADDW_OP1:
|
|
case MachineCombinerPattern::MULADDX_OP1:
|
|
// MUL I=A,B,0
|
|
// ADD R,I,C
|
|
// ==> MADD R,A,B,C
|
|
// --- Create(MADD);
|
|
if (Pattern == MachineCombinerPattern::MULADDW_OP1) {
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDW_OP2:
|
|
case MachineCombinerPattern::MULADDX_OP2:
|
|
// MUL I=A,B,0
|
|
// ADD R,C,I
|
|
// ==> MADD R,A,B,C
|
|
// --- Create(MADD);
|
|
if (Pattern == MachineCombinerPattern::MULADDW_OP2) {
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDWI_OP1:
|
|
case MachineCombinerPattern::MULADDXI_OP1: {
|
|
// MUL I=A,B,0
|
|
// ADD R,I,Imm
|
|
// ==> ORR V, ZR, Imm
|
|
// ==> MADD R,A,B,V
|
|
// --- Create(MADD);
|
|
const TargetRegisterClass *OrrRC;
|
|
unsigned BitSize, OrrOpc, ZeroReg;
|
|
if (Pattern == MachineCombinerPattern::MULADDWI_OP1) {
|
|
OrrOpc = AArch64::ORRWri;
|
|
OrrRC = &AArch64::GPR32spRegClass;
|
|
BitSize = 32;
|
|
ZeroReg = AArch64::WZR;
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
OrrOpc = AArch64::ORRXri;
|
|
OrrRC = &AArch64::GPR64spRegClass;
|
|
BitSize = 64;
|
|
ZeroReg = AArch64::XZR;
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
Register NewVR = MRI.createVirtualRegister(OrrRC);
|
|
uint64_t Imm = Root.getOperand(2).getImm();
|
|
|
|
if (Root.getOperand(3).isImm()) {
|
|
unsigned Val = Root.getOperand(3).getImm();
|
|
Imm = Imm << Val;
|
|
}
|
|
uint64_t UImm = SignExtend64(Imm, BitSize);
|
|
uint64_t Encoding;
|
|
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
|
|
.addReg(ZeroReg)
|
|
.addImm(Encoding);
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
|
|
}
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::MULSUBW_OP1:
|
|
case MachineCombinerPattern::MULSUBX_OP1: {
|
|
// MUL I=A,B,0
|
|
// SUB R,I, C
|
|
// ==> SUB V, 0, C
|
|
// ==> MADD R,A,B,V // = -C + A*B
|
|
// --- Create(MADD);
|
|
const TargetRegisterClass *SubRC;
|
|
unsigned SubOpc, ZeroReg;
|
|
if (Pattern == MachineCombinerPattern::MULSUBW_OP1) {
|
|
SubOpc = AArch64::SUBWrr;
|
|
SubRC = &AArch64::GPR32spRegClass;
|
|
ZeroReg = AArch64::WZR;
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
SubOpc = AArch64::SUBXrr;
|
|
SubRC = &AArch64::GPR64spRegClass;
|
|
ZeroReg = AArch64::XZR;
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
Register NewVR = MRI.createVirtualRegister(SubRC);
|
|
// SUB NewVR, 0, C
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR)
|
|
.addReg(ZeroReg)
|
|
.add(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::MULSUBW_OP2:
|
|
case MachineCombinerPattern::MULSUBX_OP2:
|
|
// MUL I=A,B,0
|
|
// SUB R,C,I
|
|
// ==> MSUB R,A,B,C (computes C - A*B)
|
|
// --- Create(MSUB);
|
|
if (Pattern == MachineCombinerPattern::MULSUBW_OP2) {
|
|
Opc = AArch64::MSUBWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
Opc = AArch64::MSUBXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBWI_OP1:
|
|
case MachineCombinerPattern::MULSUBXI_OP1: {
|
|
// MUL I=A,B,0
|
|
// SUB R,I, Imm
|
|
// ==> ORR V, ZR, -Imm
|
|
// ==> MADD R,A,B,V // = -Imm + A*B
|
|
// --- Create(MADD);
|
|
const TargetRegisterClass *OrrRC;
|
|
unsigned BitSize, OrrOpc, ZeroReg;
|
|
if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) {
|
|
OrrOpc = AArch64::ORRWri;
|
|
OrrRC = &AArch64::GPR32spRegClass;
|
|
BitSize = 32;
|
|
ZeroReg = AArch64::WZR;
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
OrrOpc = AArch64::ORRXri;
|
|
OrrRC = &AArch64::GPR64spRegClass;
|
|
BitSize = 64;
|
|
ZeroReg = AArch64::XZR;
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
Register NewVR = MRI.createVirtualRegister(OrrRC);
|
|
uint64_t Imm = Root.getOperand(2).getImm();
|
|
if (Root.getOperand(3).isImm()) {
|
|
unsigned Val = Root.getOperand(3).getImm();
|
|
Imm = Imm << Val;
|
|
}
|
|
uint64_t UImm = SignExtend64(-Imm, BitSize);
|
|
uint64_t Encoding;
|
|
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
|
|
.addReg(ZeroReg)
|
|
.addImm(Encoding);
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MachineCombinerPattern::MULADDv8i8_OP1:
|
|
Opc = AArch64::MLAv8i8;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv8i8_OP2:
|
|
Opc = AArch64::MLAv8i8;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv16i8_OP1:
|
|
Opc = AArch64::MLAv16i8;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv16i8_OP2:
|
|
Opc = AArch64::MLAv16i8;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv4i16_OP1:
|
|
Opc = AArch64::MLAv4i16;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv4i16_OP2:
|
|
Opc = AArch64::MLAv4i16;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv8i16_OP1:
|
|
Opc = AArch64::MLAv8i16;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv8i16_OP2:
|
|
Opc = AArch64::MLAv8i16;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv2i32_OP1:
|
|
Opc = AArch64::MLAv2i32;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv2i32_OP2:
|
|
Opc = AArch64::MLAv2i32;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv4i32_OP1:
|
|
Opc = AArch64::MLAv4i32;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv4i32_OP2:
|
|
Opc = AArch64::MLAv4i32;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::MULSUBv8i8_OP1:
|
|
Opc = AArch64::MLAv8i8;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i8,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv8i8_OP2:
|
|
Opc = AArch64::MLSv8i8;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv16i8_OP1:
|
|
Opc = AArch64::MLAv16i8;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv16i8,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv16i8_OP2:
|
|
Opc = AArch64::MLSv16i8;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv4i16_OP1:
|
|
Opc = AArch64::MLAv4i16;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv4i16_OP2:
|
|
Opc = AArch64::MLSv4i16;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv8i16_OP1:
|
|
Opc = AArch64::MLAv8i16;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv8i16_OP2:
|
|
Opc = AArch64::MLSv8i16;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv2i32_OP1:
|
|
Opc = AArch64::MLAv2i32;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv2i32_OP2:
|
|
Opc = AArch64::MLSv2i32;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv4i32_OP1:
|
|
Opc = AArch64::MLAv4i32;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv4i32_OP2:
|
|
Opc = AArch64::MLSv4i32;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
|
|
Opc = AArch64::MLAv4i16_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
|
|
Opc = AArch64::MLAv4i16_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
|
|
Opc = AArch64::MLAv8i16_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
|
|
Opc = AArch64::MLAv8i16_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
|
|
Opc = AArch64::MLAv2i32_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
|
|
Opc = AArch64::MLAv2i32_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
|
|
Opc = AArch64::MLAv4i32_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
|
|
Opc = AArch64::MLAv4i32_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
|
|
Opc = AArch64::MLAv4i16_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
|
|
Opc = AArch64::MLSv4i16_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
|
|
Opc = AArch64::MLAv8i16_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
|
|
Opc = AArch64::MLSv8i16_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
|
|
Opc = AArch64::MLAv2i32_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
|
|
Opc = AArch64::MLSv2i32_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
|
|
Opc = AArch64::MLAv4i32_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
|
|
InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
|
|
RC);
|
|
break;
|
|
case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
|
|
Opc = AArch64::MLSv4i32_indexed;
|
|
RC = &AArch64::FPR128RegClass;
|
|
MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
|
|
// Floating Point Support
|
|
case MachineCombinerPattern::FMULADDH_OP1:
|
|
Opc = AArch64::FMADDHrrr;
|
|
RC = &AArch64::FPR16RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULADDS_OP1:
|
|
Opc = AArch64::FMADDSrrr;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULADDD_OP1:
|
|
Opc = AArch64::FMADDDrrr;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMULADDH_OP2:
|
|
Opc = AArch64::FMADDHrrr;
|
|
RC = &AArch64::FPR16RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULADDS_OP2:
|
|
Opc = AArch64::FMADDSrrr;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULADDD_OP2:
|
|
Opc = AArch64::FMADDDrrr;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
|
|
Opc = AArch64::FMLAv1i32_indexed;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
|
|
Opc = AArch64::FMLAv1i32_indexed;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
|
|
Opc = AArch64::FMLAv1i64_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
|
|
Opc = AArch64::FMLAv1i64_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FMLAv4i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv4f16_OP1:
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FMLAv4f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FMLAv4i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv4f16_OP2:
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FMLAv4f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv2f32_OP1:
|
|
RC = &AArch64::FPR64RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) {
|
|
Opc = AArch64::FMLAv2i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLAv2f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv2f32_OP2:
|
|
RC = &AArch64::FPR64RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) {
|
|
Opc = AArch64::FMLAv2i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLAv2f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
|
|
RC = &AArch64::FPR128RegClass;
|
|
Opc = AArch64::FMLAv8i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv8f16_OP1:
|
|
RC = &AArch64::FPR128RegClass;
|
|
Opc = AArch64::FMLAv8f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
Opc = AArch64::FMLAv8i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
case MachineCombinerPattern::FMLAv8f16_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
Opc = AArch64::FMLAv8f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv2f64_OP1:
|
|
RC = &AArch64::FPR128RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) {
|
|
Opc = AArch64::FMLAv2i64_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLAv2f64;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv2f64_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) {
|
|
Opc = AArch64::FMLAv2i64_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLAv2f64;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
|
|
case MachineCombinerPattern::FMLAv4f32_OP1:
|
|
RC = &AArch64::FPR128RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) {
|
|
Opc = AArch64::FMLAv4i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLAv4f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
|
|
case MachineCombinerPattern::FMLAv4f32_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) {
|
|
Opc = AArch64::FMLAv4i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLAv4f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMULSUBH_OP1:
|
|
Opc = AArch64::FNMSUBHrrr;
|
|
RC = &AArch64::FPR16RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULSUBS_OP1:
|
|
Opc = AArch64::FNMSUBSrrr;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULSUBD_OP1:
|
|
Opc = AArch64::FNMSUBDrrr;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FNMULSUBH_OP1:
|
|
Opc = AArch64::FNMADDHrrr;
|
|
RC = &AArch64::FPR16RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FNMULSUBS_OP1:
|
|
Opc = AArch64::FNMADDSrrr;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FNMULSUBD_OP1:
|
|
Opc = AArch64::FNMADDDrrr;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMULSUBH_OP2:
|
|
Opc = AArch64::FMSUBHrrr;
|
|
RC = &AArch64::FPR16RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULSUBS_OP2:
|
|
Opc = AArch64::FMSUBSrrr;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::FMULSUBD_OP2:
|
|
Opc = AArch64::FMSUBDrrr;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
|
|
Opc = AArch64::FMLSv1i32_indexed;
|
|
RC = &AArch64::FPR32RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
|
|
Opc = AArch64::FMLSv1i64_indexed;
|
|
RC = &AArch64::FPR64RegClass;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLSv4f16_OP1:
|
|
case MachineCombinerPattern::FMLSv4i16_indexed_OP1: {
|
|
RC = &AArch64::FPR64RegClass;
|
|
Register NewVR = MRI.createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f16), NewVR)
|
|
.add(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
if (Pattern == MachineCombinerPattern::FMLSv4f16_OP1) {
|
|
Opc = AArch64::FMLAv4f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator, &NewVR);
|
|
} else {
|
|
Opc = AArch64::FMLAv4i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed, &NewVR);
|
|
}
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::FMLSv4f16_OP2:
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FMLSv4f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
break;
|
|
case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FMLSv4i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLSv2f32_OP2:
|
|
case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
|
|
RC = &AArch64::FPR64RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) {
|
|
Opc = AArch64::FMLSv2i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLSv2f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLSv8f16_OP1:
|
|
case MachineCombinerPattern::FMLSv8i16_indexed_OP1: {
|
|
RC = &AArch64::FPR128RegClass;
|
|
Register NewVR = MRI.createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv8f16), NewVR)
|
|
.add(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
if (Pattern == MachineCombinerPattern::FMLSv8f16_OP1) {
|
|
Opc = AArch64::FMLAv8f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator, &NewVR);
|
|
} else {
|
|
Opc = AArch64::FMLAv8i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed, &NewVR);
|
|
}
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::FMLSv8f16_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
Opc = AArch64::FMLSv8f16;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
break;
|
|
case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
Opc = AArch64::FMLSv8i16_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLSv2f64_OP2:
|
|
case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) {
|
|
Opc = AArch64::FMLSv2i64_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLSv2f64;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
|
|
case MachineCombinerPattern::FMLSv4f32_OP2:
|
|
case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
|
|
RC = &AArch64::FPR128RegClass;
|
|
if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) {
|
|
Opc = AArch64::FMLSv4i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Indexed);
|
|
} else {
|
|
Opc = AArch64::FMLSv4f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
|
|
FMAInstKind::Accumulator);
|
|
}
|
|
break;
|
|
case MachineCombinerPattern::FMLSv2f32_OP1:
|
|
case MachineCombinerPattern::FMLSv2i32_indexed_OP1: {
|
|
RC = &AArch64::FPR64RegClass;
|
|
Register NewVR = MRI.createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f32), NewVR)
|
|
.add(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) {
|
|
Opc = AArch64::FMLAv2i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed, &NewVR);
|
|
} else {
|
|
Opc = AArch64::FMLAv2f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator, &NewVR);
|
|
}
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::FMLSv4f32_OP1:
|
|
case MachineCombinerPattern::FMLSv4i32_indexed_OP1: {
|
|
RC = &AArch64::FPR128RegClass;
|
|
Register NewVR = MRI.createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f32), NewVR)
|
|
.add(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) {
|
|
Opc = AArch64::FMLAv4i32_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed, &NewVR);
|
|
} else {
|
|
Opc = AArch64::FMLAv4f32;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator, &NewVR);
|
|
}
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::FMLSv2f64_OP1:
|
|
case MachineCombinerPattern::FMLSv2i64_indexed_OP1: {
|
|
RC = &AArch64::FPR128RegClass;
|
|
Register NewVR = MRI.createVirtualRegister(RC);
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f64), NewVR)
|
|
.add(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) {
|
|
Opc = AArch64::FMLAv2i64_indexed;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Indexed, &NewVR);
|
|
} else {
|
|
Opc = AArch64::FMLAv2f64;
|
|
MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
|
|
FMAInstKind::Accumulator, &NewVR);
|
|
}
|
|
break;
|
|
}
|
|
} // end switch (Pattern)
|
|
// Record MUL and ADD/SUB for deletion
|
|
// FIXME: This assertion fails in CodeGen/AArch64/tailmerging_in_mbp.ll and
|
|
// CodeGen/AArch64/urem-seteq-nonzero.ll.
|
|
// assert(MUL && "MUL was never set");
|
|
DelInstrs.push_back(MUL);
|
|
DelInstrs.push_back(&Root);
|
|
}
|
|
|
|
/// Replace csincr-branch sequence by simple conditional branch
|
|
///
|
|
/// Examples:
|
|
/// 1. \code
|
|
/// csinc w9, wzr, wzr, <condition code>
|
|
/// tbnz w9, #0, 0x44
|
|
/// \endcode
|
|
/// to
|
|
/// \code
|
|
/// b.<inverted condition code>
|
|
/// \endcode
|
|
///
|
|
/// 2. \code
|
|
/// csinc w9, wzr, wzr, <condition code>
|
|
/// tbz w9, #0, 0x44
|
|
/// \endcode
|
|
/// to
|
|
/// \code
|
|
/// b.<condition code>
|
|
/// \endcode
|
|
///
|
|
/// Replace compare and branch sequence by TBZ/TBNZ instruction when the
|
|
/// compare's constant operand is power of 2.
|
|
///
|
|
/// Examples:
|
|
/// \code
|
|
/// and w8, w8, #0x400
|
|
/// cbnz w8, L1
|
|
/// \endcode
|
|
/// to
|
|
/// \code
|
|
/// tbnz w8, #10, L1
|
|
/// \endcode
|
|
///
|
|
/// \param MI Conditional Branch
|
|
/// \return True when the simple conditional branch is generated
|
|
///
|
|
bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const {
|
|
bool IsNegativeBranch = false;
|
|
bool IsTestAndBranch = false;
|
|
unsigned TargetBBInMI = 0;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch instruction?");
|
|
case AArch64::Bcc:
|
|
return false;
|
|
case AArch64::CBZW:
|
|
case AArch64::CBZX:
|
|
TargetBBInMI = 1;
|
|
break;
|
|
case AArch64::CBNZW:
|
|
case AArch64::CBNZX:
|
|
TargetBBInMI = 1;
|
|
IsNegativeBranch = true;
|
|
break;
|
|
case AArch64::TBZW:
|
|
case AArch64::TBZX:
|
|
TargetBBInMI = 2;
|
|
IsTestAndBranch = true;
|
|
break;
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBNZX:
|
|
TargetBBInMI = 2;
|
|
IsNegativeBranch = true;
|
|
IsTestAndBranch = true;
|
|
break;
|
|
}
|
|
// So we increment a zero register and test for bits other
|
|
// than bit 0? Conservatively bail out in case the verifier
|
|
// missed this case.
|
|
if (IsTestAndBranch && MI.getOperand(1).getImm())
|
|
return false;
|
|
|
|
// Find Definition.
|
|
assert(MI.getParent() && "Incomplete machine instruciton\n");
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
Register VReg = MI.getOperand(0).getReg();
|
|
if (!Register::isVirtualRegister(VReg))
|
|
return false;
|
|
|
|
MachineInstr *DefMI = MRI->getVRegDef(VReg);
|
|
|
|
// Look through COPY instructions to find definition.
|
|
while (DefMI->isCopy()) {
|
|
Register CopyVReg = DefMI->getOperand(1).getReg();
|
|
if (!MRI->hasOneNonDBGUse(CopyVReg))
|
|
return false;
|
|
if (!MRI->hasOneDef(CopyVReg))
|
|
return false;
|
|
DefMI = MRI->getVRegDef(CopyVReg);
|
|
}
|
|
|
|
switch (DefMI->getOpcode()) {
|
|
default:
|
|
return false;
|
|
// Fold AND into a TBZ/TBNZ if constant operand is power of 2.
|
|
case AArch64::ANDWri:
|
|
case AArch64::ANDXri: {
|
|
if (IsTestAndBranch)
|
|
return false;
|
|
if (DefMI->getParent() != MBB)
|
|
return false;
|
|
if (!MRI->hasOneNonDBGUse(VReg))
|
|
return false;
|
|
|
|
bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri);
|
|
uint64_t Mask = AArch64_AM::decodeLogicalImmediate(
|
|
DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64);
|
|
if (!isPowerOf2_64(Mask))
|
|
return false;
|
|
|
|
MachineOperand &MO = DefMI->getOperand(1);
|
|
Register NewReg = MO.getReg();
|
|
if (!Register::isVirtualRegister(NewReg))
|
|
return false;
|
|
|
|
assert(!MRI->def_empty(NewReg) && "Register must be defined.");
|
|
|
|
MachineBasicBlock &RefToMBB = *MBB;
|
|
MachineBasicBlock *TBB = MI.getOperand(1).getMBB();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned Imm = Log2_64(Mask);
|
|
unsigned Opc = (Imm < 32)
|
|
? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW)
|
|
: (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX);
|
|
MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc))
|
|
.addReg(NewReg)
|
|
.addImm(Imm)
|
|
.addMBB(TBB);
|
|
// Register lives on to the CBZ now.
|
|
MO.setIsKill(false);
|
|
|
|
// For immediate smaller than 32, we need to use the 32-bit
|
|
// variant (W) in all cases. Indeed the 64-bit variant does not
|
|
// allow to encode them.
|
|
// Therefore, if the input register is 64-bit, we need to take the
|
|
// 32-bit sub-part.
|
|
if (!Is32Bit && Imm < 32)
|
|
NewMI->getOperand(0).setSubReg(AArch64::sub_32);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
// Look for CSINC
|
|
case AArch64::CSINCWr:
|
|
case AArch64::CSINCXr: {
|
|
if (!(DefMI->getOperand(1).getReg() == AArch64::WZR &&
|
|
DefMI->getOperand(2).getReg() == AArch64::WZR) &&
|
|
!(DefMI->getOperand(1).getReg() == AArch64::XZR &&
|
|
DefMI->getOperand(2).getReg() == AArch64::XZR))
|
|
return false;
|
|
|
|
if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
|
|
return false;
|
|
|
|
AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
|
|
// Convert only when the condition code is not modified between
|
|
// the CSINC and the branch. The CC may be used by other
|
|
// instructions in between.
|
|
if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write))
|
|
return false;
|
|
MachineBasicBlock &RefToMBB = *MBB;
|
|
MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
if (IsNegativeBranch)
|
|
CC = AArch64CC::getInvertedCondCode(CC);
|
|
BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
|
|
const unsigned Mask = AArch64II::MO_FRAGMENT;
|
|
return std::make_pair(TF & Mask, TF & ~Mask);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
|
|
using namespace AArch64II;
|
|
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"},
|
|
{MO_G3, "aarch64-g3"}, {MO_G2, "aarch64-g2"},
|
|
{MO_G1, "aarch64-g1"}, {MO_G0, "aarch64-g0"},
|
|
{MO_HI12, "aarch64-hi12"}};
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
|
|
using namespace AArch64II;
|
|
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{MO_COFFSTUB, "aarch64-coffstub"},
|
|
{MO_GOT, "aarch64-got"},
|
|
{MO_NC, "aarch64-nc"},
|
|
{MO_S, "aarch64-s"},
|
|
{MO_TLS, "aarch64-tls"},
|
|
{MO_DLLIMPORT, "aarch64-dllimport"},
|
|
{MO_PREL, "aarch64-prel"},
|
|
{MO_TAGGED, "aarch64-tagged"}};
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
|
|
ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
|
|
AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
|
|
static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
|
|
{{MOSuppressPair, "aarch64-suppress-pair"},
|
|
{MOStridedAccess, "aarch64-strided-access"}};
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
|
|
/// Constants defining how certain sequences should be outlined.
|
|
/// This encompasses how an outlined function should be called, and what kind of
|
|
/// frame should be emitted for that outlined function.
|
|
///
|
|
/// \p MachineOutlinerDefault implies that the function should be called with
|
|
/// a save and restore of LR to the stack.
|
|
///
|
|
/// That is,
|
|
///
|
|
/// I1 Save LR OUTLINED_FUNCTION:
|
|
/// I2 --> BL OUTLINED_FUNCTION I1
|
|
/// I3 Restore LR I2
|
|
/// I3
|
|
/// RET
|
|
///
|
|
/// * Call construction overhead: 3 (save + BL + restore)
|
|
/// * Frame construction overhead: 1 (ret)
|
|
/// * Requires stack fixups? Yes
|
|
///
|
|
/// \p MachineOutlinerTailCall implies that the function is being created from
|
|
/// a sequence of instructions ending in a return.
|
|
///
|
|
/// That is,
|
|
///
|
|
/// I1 OUTLINED_FUNCTION:
|
|
/// I2 --> B OUTLINED_FUNCTION I1
|
|
/// RET I2
|
|
/// RET
|
|
///
|
|
/// * Call construction overhead: 1 (B)
|
|
/// * Frame construction overhead: 0 (Return included in sequence)
|
|
/// * Requires stack fixups? No
|
|
///
|
|
/// \p MachineOutlinerNoLRSave implies that the function should be called using
|
|
/// a BL instruction, but doesn't require LR to be saved and restored. This
|
|
/// happens when LR is known to be dead.
|
|
///
|
|
/// That is,
|
|
///
|
|
/// I1 OUTLINED_FUNCTION:
|
|
/// I2 --> BL OUTLINED_FUNCTION I1
|
|
/// I3 I2
|
|
/// I3
|
|
/// RET
|
|
///
|
|
/// * Call construction overhead: 1 (BL)
|
|
/// * Frame construction overhead: 1 (RET)
|
|
/// * Requires stack fixups? No
|
|
///
|
|
/// \p MachineOutlinerThunk implies that the function is being created from
|
|
/// a sequence of instructions ending in a call. The outlined function is
|
|
/// called with a BL instruction, and the outlined function tail-calls the
|
|
/// original call destination.
|
|
///
|
|
/// That is,
|
|
///
|
|
/// I1 OUTLINED_FUNCTION:
|
|
/// I2 --> BL OUTLINED_FUNCTION I1
|
|
/// BL f I2
|
|
/// B f
|
|
/// * Call construction overhead: 1 (BL)
|
|
/// * Frame construction overhead: 0
|
|
/// * Requires stack fixups? No
|
|
///
|
|
/// \p MachineOutlinerRegSave implies that the function should be called with a
|
|
/// save and restore of LR to an available register. This allows us to avoid
|
|
/// stack fixups. Note that this outlining variant is compatible with the
|
|
/// NoLRSave case.
|
|
///
|
|
/// That is,
|
|
///
|
|
/// I1 Save LR OUTLINED_FUNCTION:
|
|
/// I2 --> BL OUTLINED_FUNCTION I1
|
|
/// I3 Restore LR I2
|
|
/// I3
|
|
/// RET
|
|
///
|
|
/// * Call construction overhead: 3 (save + BL + restore)
|
|
/// * Frame construction overhead: 1 (ret)
|
|
/// * Requires stack fixups? No
|
|
enum MachineOutlinerClass {
|
|
MachineOutlinerDefault, /// Emit a save, restore, call, and return.
|
|
MachineOutlinerTailCall, /// Only emit a branch.
|
|
MachineOutlinerNoLRSave, /// Emit a call and return.
|
|
MachineOutlinerThunk, /// Emit a call and tail-call.
|
|
MachineOutlinerRegSave /// Same as default, but save to a register.
|
|
};
|
|
|
|
enum MachineOutlinerMBBFlags {
|
|
LRUnavailableSomewhere = 0x2,
|
|
HasCalls = 0x4,
|
|
UnsafeRegsDead = 0x8
|
|
};
|
|
|
|
unsigned
|
|
AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
|
|
assert(C.LRUWasSet && "LRU wasn't set?");
|
|
MachineFunction *MF = C.getMF();
|
|
const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
|
|
MF->getSubtarget().getRegisterInfo());
|
|
|
|
// Check if there is an available register across the sequence that we can
|
|
// use.
|
|
for (unsigned Reg : AArch64::GPR64RegClass) {
|
|
if (!ARI->isReservedReg(*MF, Reg) &&
|
|
Reg != AArch64::LR && // LR is not reserved, but don't use it.
|
|
Reg != AArch64::X16 && // X16 is not guaranteed to be preserved.
|
|
Reg != AArch64::X17 && // Ditto for X17.
|
|
C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
|
|
return Reg;
|
|
}
|
|
|
|
// No suitable register. Return 0.
|
|
return 0u;
|
|
}
|
|
|
|
static bool
|
|
outliningCandidatesSigningScopeConsensus(const outliner::Candidate &a,
|
|
const outliner::Candidate &b) {
|
|
const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
|
|
const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
|
|
|
|
return MFIa->shouldSignReturnAddress(false) == MFIb->shouldSignReturnAddress(false) &&
|
|
MFIa->shouldSignReturnAddress(true) == MFIb->shouldSignReturnAddress(true);
|
|
}
|
|
|
|
static bool
|
|
outliningCandidatesSigningKeyConsensus(const outliner::Candidate &a,
|
|
const outliner::Candidate &b) {
|
|
const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
|
|
const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
|
|
|
|
return MFIa->shouldSignWithBKey() == MFIb->shouldSignWithBKey();
|
|
}
|
|
|
|
static bool outliningCandidatesV8_3OpsConsensus(const outliner::Candidate &a,
|
|
const outliner::Candidate &b) {
|
|
const AArch64Subtarget &SubtargetA =
|
|
a.getMF()->getSubtarget<AArch64Subtarget>();
|
|
const AArch64Subtarget &SubtargetB =
|
|
b.getMF()->getSubtarget<AArch64Subtarget>();
|
|
return SubtargetA.hasV8_3aOps() == SubtargetB.hasV8_3aOps();
|
|
}
|
|
|
|
outliner::OutlinedFunction AArch64InstrInfo::getOutliningCandidateInfo(
|
|
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
|
|
outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
|
|
unsigned SequenceSize =
|
|
std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
|
|
[this](unsigned Sum, const MachineInstr &MI) {
|
|
return Sum + getInstSizeInBytes(MI);
|
|
});
|
|
unsigned NumBytesToCreateFrame = 0;
|
|
|
|
// We only allow outlining for functions having exactly matching return
|
|
// address signing attributes, i.e., all share the same value for the
|
|
// attribute "sign-return-address" and all share the same type of key they
|
|
// are signed with.
|
|
// Additionally we require all functions to simultaniously either support
|
|
// v8.3a features or not. Otherwise an outlined function could get signed
|
|
// using dedicated v8.3 instructions and a call from a function that doesn't
|
|
// support v8.3 instructions would therefore be invalid.
|
|
if (std::adjacent_find(
|
|
RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
|
|
[](const outliner::Candidate &a, const outliner::Candidate &b) {
|
|
// Return true if a and b are non-equal w.r.t. return address
|
|
// signing or support of v8.3a features
|
|
if (outliningCandidatesSigningScopeConsensus(a, b) &&
|
|
outliningCandidatesSigningKeyConsensus(a, b) &&
|
|
outliningCandidatesV8_3OpsConsensus(a, b)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}) != RepeatedSequenceLocs.end()) {
|
|
return outliner::OutlinedFunction();
|
|
}
|
|
|
|
// Since at this point all candidates agree on their return address signing
|
|
// picking just one is fine. If the candidate functions potentially sign their
|
|
// return addresses, the outlined function should do the same. Note that in
|
|
// the case of "sign-return-address"="non-leaf" this is an assumption: It is
|
|
// not certainly true that the outlined function will have to sign its return
|
|
// address but this decision is made later, when the decision to outline
|
|
// has already been made.
|
|
// The same holds for the number of additional instructions we need: On
|
|
// v8.3a RET can be replaced by RETAA/RETAB and no AUT instruction is
|
|
// necessary. However, at this point we don't know if the outlined function
|
|
// will have a RET instruction so we assume the worst.
|
|
const TargetRegisterInfo &TRI = getRegisterInfo();
|
|
if (FirstCand.getMF()
|
|
->getInfo<AArch64FunctionInfo>()
|
|
->shouldSignReturnAddress(true)) {
|
|
// One PAC and one AUT instructions
|
|
NumBytesToCreateFrame += 8;
|
|
|
|
// We have to check if sp modifying instructions would get outlined.
|
|
// If so we only allow outlining if sp is unchanged overall, so matching
|
|
// sub and add instructions are okay to outline, all other sp modifications
|
|
// are not
|
|
auto hasIllegalSPModification = [&TRI](outliner::Candidate &C) {
|
|
int SPValue = 0;
|
|
MachineBasicBlock::iterator MBBI = C.front();
|
|
for (;;) {
|
|
if (MBBI->modifiesRegister(AArch64::SP, &TRI)) {
|
|
switch (MBBI->getOpcode()) {
|
|
case AArch64::ADDXri:
|
|
case AArch64::ADDWri:
|
|
assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
|
|
assert(MBBI->getOperand(2).isImm() &&
|
|
"Expected operand to be immediate");
|
|
assert(MBBI->getOperand(1).isReg() &&
|
|
"Expected operand to be a register");
|
|
// Check if the add just increments sp. If so, we search for
|
|
// matching sub instructions that decrement sp. If not, the
|
|
// modification is illegal
|
|
if (MBBI->getOperand(1).getReg() == AArch64::SP)
|
|
SPValue += MBBI->getOperand(2).getImm();
|
|
else
|
|
return true;
|
|
break;
|
|
case AArch64::SUBXri:
|
|
case AArch64::SUBWri:
|
|
assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
|
|
assert(MBBI->getOperand(2).isImm() &&
|
|
"Expected operand to be immediate");
|
|
assert(MBBI->getOperand(1).isReg() &&
|
|
"Expected operand to be a register");
|
|
// Check if the sub just decrements sp. If so, we search for
|
|
// matching add instructions that increment sp. If not, the
|
|
// modification is illegal
|
|
if (MBBI->getOperand(1).getReg() == AArch64::SP)
|
|
SPValue -= MBBI->getOperand(2).getImm();
|
|
else
|
|
return true;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
if (MBBI == C.back())
|
|
break;
|
|
++MBBI;
|
|
}
|
|
if (SPValue)
|
|
return true;
|
|
return false;
|
|
};
|
|
// Remove candidates with illegal stack modifying instructions
|
|
llvm::erase_if(RepeatedSequenceLocs, hasIllegalSPModification);
|
|
|
|
// If the sequence doesn't have enough candidates left, then we're done.
|
|
if (RepeatedSequenceLocs.size() < 2)
|
|
return outliner::OutlinedFunction();
|
|
}
|
|
|
|
// Properties about candidate MBBs that hold for all of them.
|
|
unsigned FlagsSetInAll = 0xF;
|
|
|
|
// Compute liveness information for each candidate, and set FlagsSetInAll.
|
|
std::for_each(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
|
|
[&FlagsSetInAll](outliner::Candidate &C) {
|
|
FlagsSetInAll &= C.Flags;
|
|
});
|
|
|
|
// According to the AArch64 Procedure Call Standard, the following are
|
|
// undefined on entry/exit from a function call:
|
|
//
|
|
// * Registers x16, x17, (and thus w16, w17)
|
|
// * Condition codes (and thus the NZCV register)
|
|
//
|
|
// Because if this, we can't outline any sequence of instructions where
|
|
// one
|
|
// of these registers is live into/across it. Thus, we need to delete
|
|
// those
|
|
// candidates.
|
|
auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
|
|
// If the unsafe registers in this block are all dead, then we don't need
|
|
// to compute liveness here.
|
|
if (C.Flags & UnsafeRegsDead)
|
|
return false;
|
|
C.initLRU(TRI);
|
|
LiveRegUnits LRU = C.LRU;
|
|
return (!LRU.available(AArch64::W16) || !LRU.available(AArch64::W17) ||
|
|
!LRU.available(AArch64::NZCV));
|
|
};
|
|
|
|
// Are there any candidates where those registers are live?
|
|
if (!(FlagsSetInAll & UnsafeRegsDead)) {
|
|
// Erase every candidate that violates the restrictions above. (It could be
|
|
// true that we have viable candidates, so it's not worth bailing out in
|
|
// the case that, say, 1 out of 20 candidates violate the restructions.)
|
|
llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
|
|
|
|
// If the sequence doesn't have enough candidates left, then we're done.
|
|
if (RepeatedSequenceLocs.size() < 2)
|
|
return outliner::OutlinedFunction();
|
|
}
|
|
|
|
// At this point, we have only "safe" candidates to outline. Figure out
|
|
// frame + call instruction information.
|
|
|
|
unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
|
|
|
|
// Helper lambda which sets call information for every candidate.
|
|
auto SetCandidateCallInfo =
|
|
[&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
|
|
for (outliner::Candidate &C : RepeatedSequenceLocs)
|
|
C.setCallInfo(CallID, NumBytesForCall);
|
|
};
|
|
|
|
unsigned FrameID = MachineOutlinerDefault;
|
|
NumBytesToCreateFrame += 4;
|
|
|
|
bool HasBTI = any_of(RepeatedSequenceLocs, [](outliner::Candidate &C) {
|
|
return C.getMF()->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement();
|
|
});
|
|
|
|
// We check to see if CFI Instructions are present, and if they are
|
|
// we find the number of CFI Instructions in the candidates.
|
|
unsigned CFICount = 0;
|
|
MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
|
|
for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
|
|
Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
|
|
const std::vector<MCCFIInstruction> &CFIInstructions =
|
|
RepeatedSequenceLocs[0].getMF()->getFrameInstructions();
|
|
if (MBBI->isCFIInstruction()) {
|
|
unsigned CFIIndex = MBBI->getOperand(0).getCFIIndex();
|
|
MCCFIInstruction CFI = CFIInstructions[CFIIndex];
|
|
CFICount++;
|
|
}
|
|
MBBI++;
|
|
}
|
|
|
|
// We compare the number of found CFI Instructions to the number of CFI
|
|
// instructions in the parent function for each candidate. We must check this
|
|
// since if we outline one of the CFI instructions in a function, we have to
|
|
// outline them all for correctness. If we do not, the address offsets will be
|
|
// incorrect between the two sections of the program.
|
|
for (outliner::Candidate &C : RepeatedSequenceLocs) {
|
|
std::vector<MCCFIInstruction> CFIInstructions =
|
|
C.getMF()->getFrameInstructions();
|
|
|
|
if (CFICount > 0 && CFICount != CFIInstructions.size())
|
|
return outliner::OutlinedFunction();
|
|
}
|
|
|
|
// Returns true if an instructions is safe to fix up, false otherwise.
|
|
auto IsSafeToFixup = [this, &TRI](MachineInstr &MI) {
|
|
if (MI.isCall())
|
|
return true;
|
|
|
|
if (!MI.modifiesRegister(AArch64::SP, &TRI) &&
|
|
!MI.readsRegister(AArch64::SP, &TRI))
|
|
return true;
|
|
|
|
// Any modification of SP will break our code to save/restore LR.
|
|
// FIXME: We could handle some instructions which add a constant
|
|
// offset to SP, with a bit more work.
|
|
if (MI.modifiesRegister(AArch64::SP, &TRI))
|
|
return false;
|
|
|
|
// At this point, we have a stack instruction that we might need to
|
|
// fix up. We'll handle it if it's a load or store.
|
|
if (MI.mayLoadOrStore()) {
|
|
const MachineOperand *Base; // Filled with the base operand of MI.
|
|
int64_t Offset; // Filled with the offset of MI.
|
|
bool OffsetIsScalable;
|
|
|
|
// Does it allow us to offset the base operand and is the base the
|
|
// register SP?
|
|
if (!getMemOperandWithOffset(MI, Base, Offset, OffsetIsScalable, &TRI) ||
|
|
!Base->isReg() || Base->getReg() != AArch64::SP)
|
|
return false;
|
|
|
|
// Fixe-up code below assumes bytes.
|
|
if (OffsetIsScalable)
|
|
return false;
|
|
|
|
// Find the minimum/maximum offset for this instruction and check
|
|
// if fixing it up would be in range.
|
|
int64_t MinOffset,
|
|
MaxOffset; // Unscaled offsets for the instruction.
|
|
TypeSize Scale(0U, false); // The scale to multiply the offsets by.
|
|
unsigned DummyWidth;
|
|
getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset);
|
|
|
|
Offset += 16; // Update the offset to what it would be if we outlined.
|
|
if (Offset < MinOffset * (int64_t)Scale.getFixedSize() ||
|
|
Offset > MaxOffset * (int64_t)Scale.getFixedSize())
|
|
return false;
|
|
|
|
// It's in range, so we can outline it.
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Add handling for instructions like "add x0, sp, #8".
|
|
|
|
// We can't fix it up, so don't outline it.
|
|
return false;
|
|
};
|
|
|
|
// True if it's possible to fix up each stack instruction in this sequence.
|
|
// Important for frames/call variants that modify the stack.
|
|
bool AllStackInstrsSafe = std::all_of(
|
|
FirstCand.front(), std::next(FirstCand.back()), IsSafeToFixup);
|
|
|
|
// If the last instruction in any candidate is a terminator, then we should
|
|
// tail call all of the candidates.
|
|
if (RepeatedSequenceLocs[0].back()->isTerminator()) {
|
|
FrameID = MachineOutlinerTailCall;
|
|
NumBytesToCreateFrame = 0;
|
|
SetCandidateCallInfo(MachineOutlinerTailCall, 4);
|
|
}
|
|
|
|
else if (LastInstrOpcode == AArch64::BL ||
|
|
((LastInstrOpcode == AArch64::BLR ||
|
|
LastInstrOpcode == AArch64::BLRNoIP) &&
|
|
!HasBTI)) {
|
|
// FIXME: Do we need to check if the code after this uses the value of LR?
|
|
FrameID = MachineOutlinerThunk;
|
|
NumBytesToCreateFrame = 0;
|
|
SetCandidateCallInfo(MachineOutlinerThunk, 4);
|
|
}
|
|
|
|
else {
|
|
// We need to decide how to emit calls + frames. We can always emit the same
|
|
// frame if we don't need to save to the stack. If we have to save to the
|
|
// stack, then we need a different frame.
|
|
unsigned NumBytesNoStackCalls = 0;
|
|
std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
|
|
|
|
// Check if we have to save LR.
|
|
for (outliner::Candidate &C : RepeatedSequenceLocs) {
|
|
C.initLRU(TRI);
|
|
|
|
// If we have a noreturn caller, then we're going to be conservative and
|
|
// say that we have to save LR. If we don't have a ret at the end of the
|
|
// block, then we can't reason about liveness accurately.
|
|
//
|
|
// FIXME: We can probably do better than always disabling this in
|
|
// noreturn functions by fixing up the liveness info.
|
|
bool IsNoReturn =
|
|
C.getMF()->getFunction().hasFnAttribute(Attribute::NoReturn);
|
|
|
|
// Is LR available? If so, we don't need a save.
|
|
if (C.LRU.available(AArch64::LR) && !IsNoReturn) {
|
|
NumBytesNoStackCalls += 4;
|
|
C.setCallInfo(MachineOutlinerNoLRSave, 4);
|
|
CandidatesWithoutStackFixups.push_back(C);
|
|
}
|
|
|
|
// Is an unused register available? If so, we won't modify the stack, so
|
|
// we can outline with the same frame type as those that don't save LR.
|
|
else if (findRegisterToSaveLRTo(C)) {
|
|
NumBytesNoStackCalls += 12;
|
|
C.setCallInfo(MachineOutlinerRegSave, 12);
|
|
CandidatesWithoutStackFixups.push_back(C);
|
|
}
|
|
|
|
// Is SP used in the sequence at all? If not, we don't have to modify
|
|
// the stack, so we are guaranteed to get the same frame.
|
|
else if (C.UsedInSequence.available(AArch64::SP)) {
|
|
NumBytesNoStackCalls += 12;
|
|
C.setCallInfo(MachineOutlinerDefault, 12);
|
|
CandidatesWithoutStackFixups.push_back(C);
|
|
}
|
|
|
|
// If we outline this, we need to modify the stack. Pretend we don't
|
|
// outline this by saving all of its bytes.
|
|
else {
|
|
NumBytesNoStackCalls += SequenceSize;
|
|
}
|
|
}
|
|
|
|
// If there are no places where we have to save LR, then note that we
|
|
// don't have to update the stack. Otherwise, give every candidate the
|
|
// default call type, as long as it's safe to do so.
|
|
if (!AllStackInstrsSafe ||
|
|
NumBytesNoStackCalls <= RepeatedSequenceLocs.size() * 12) {
|
|
RepeatedSequenceLocs = CandidatesWithoutStackFixups;
|
|
FrameID = MachineOutlinerNoLRSave;
|
|
} else {
|
|
SetCandidateCallInfo(MachineOutlinerDefault, 12);
|
|
|
|
// Bugzilla ID: 46767
|
|
// TODO: Check if fixing up the stack more than once is safe so we can
|
|
// outline these.
|
|
//
|
|
// An outline resulting in a caller that requires stack fixups at the
|
|
// callsite to a callee that also requires stack fixups can happen when
|
|
// there are no available registers at the candidate callsite for a
|
|
// candidate that itself also has calls.
|
|
//
|
|
// In other words if function_containing_sequence in the following pseudo
|
|
// assembly requires that we save LR at the point of the call, but there
|
|
// are no available registers: in this case we save using SP and as a
|
|
// result the SP offsets requires stack fixups by multiples of 16.
|
|
//
|
|
// function_containing_sequence:
|
|
// ...
|
|
// save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
|
|
// call OUTLINED_FUNCTION_N
|
|
// restore LR from SP
|
|
// ...
|
|
//
|
|
// OUTLINED_FUNCTION_N:
|
|
// save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
|
|
// ...
|
|
// bl foo
|
|
// restore LR from SP
|
|
// ret
|
|
//
|
|
// Because the code to handle more than one stack fixup does not
|
|
// currently have the proper checks for legality, these cases will assert
|
|
// in the AArch64 MachineOutliner. This is because the code to do this
|
|
// needs more hardening, testing, better checks that generated code is
|
|
// legal, etc and because it is only verified to handle a single pass of
|
|
// stack fixup.
|
|
//
|
|
// The assert happens in AArch64InstrInfo::buildOutlinedFrame to catch
|
|
// these cases until they are known to be handled. Bugzilla 46767 is
|
|
// referenced in comments at the assert site.
|
|
//
|
|
// To avoid asserting (or generating non-legal code on noassert builds)
|
|
// we remove all candidates which would need more than one stack fixup by
|
|
// pruning the cases where the candidate has calls while also having no
|
|
// available LR and having no available general purpose registers to copy
|
|
// LR to (ie one extra stack save/restore).
|
|
//
|
|
if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
|
|
erase_if(RepeatedSequenceLocs, [this](outliner::Candidate &C) {
|
|
return (std::any_of(
|
|
C.front(), std::next(C.back()),
|
|
[](const MachineInstr &MI) { return MI.isCall(); })) &&
|
|
(!C.LRU.available(AArch64::LR) || !findRegisterToSaveLRTo(C));
|
|
});
|
|
}
|
|
}
|
|
|
|
// If we dropped all of the candidates, bail out here.
|
|
if (RepeatedSequenceLocs.size() < 2) {
|
|
RepeatedSequenceLocs.clear();
|
|
return outliner::OutlinedFunction();
|
|
}
|
|
}
|
|
|
|
// Does every candidate's MBB contain a call? If so, then we might have a call
|
|
// in the range.
|
|
if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
|
|
// Check if the range contains a call. These require a save + restore of the
|
|
// link register.
|
|
bool ModStackToSaveLR = false;
|
|
if (std::any_of(FirstCand.front(), FirstCand.back(),
|
|
[](const MachineInstr &MI) { return MI.isCall(); }))
|
|
ModStackToSaveLR = true;
|
|
|
|
// Handle the last instruction separately. If this is a tail call, then the
|
|
// last instruction is a call. We don't want to save + restore in this case.
|
|
// However, it could be possible that the last instruction is a call without
|
|
// it being valid to tail call this sequence. We should consider this as
|
|
// well.
|
|
else if (FrameID != MachineOutlinerThunk &&
|
|
FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
|
|
ModStackToSaveLR = true;
|
|
|
|
if (ModStackToSaveLR) {
|
|
// We can't fix up the stack. Bail out.
|
|
if (!AllStackInstrsSafe) {
|
|
RepeatedSequenceLocs.clear();
|
|
return outliner::OutlinedFunction();
|
|
}
|
|
|
|
// Save + restore LR.
|
|
NumBytesToCreateFrame += 8;
|
|
}
|
|
}
|
|
|
|
// If we have CFI instructions, we can only outline if the outlined section
|
|
// can be a tail call
|
|
if (FrameID != MachineOutlinerTailCall && CFICount > 0)
|
|
return outliner::OutlinedFunction();
|
|
|
|
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
|
|
NumBytesToCreateFrame, FrameID);
|
|
}
|
|
|
|
bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
|
|
MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
|
|
const Function &F = MF.getFunction();
|
|
|
|
// Can F be deduplicated by the linker? If it can, don't outline from it.
|
|
if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
|
|
return false;
|
|
|
|
// Don't outline from functions with section markings; the program could
|
|
// expect that all the code is in the named section.
|
|
// FIXME: Allow outlining from multiple functions with the same section
|
|
// marking.
|
|
if (F.hasSection())
|
|
return false;
|
|
|
|
// Outlining from functions with redzones is unsafe since the outliner may
|
|
// modify the stack. Check if hasRedZone is true or unknown; if yes, don't
|
|
// outline from it.
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
if (!AFI || AFI->hasRedZone().getValueOr(true))
|
|
return false;
|
|
|
|
// FIXME: Teach the outliner to generate/handle Windows unwind info.
|
|
if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
|
|
return false;
|
|
|
|
// It's safe to outline from MF.
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
|
|
unsigned &Flags) const {
|
|
// Check if LR is available through all of the MBB. If it's not, then set
|
|
// a flag.
|
|
assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
|
|
"Suitable Machine Function for outlining must track liveness");
|
|
LiveRegUnits LRU(getRegisterInfo());
|
|
|
|
std::for_each(MBB.rbegin(), MBB.rend(),
|
|
[&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
|
|
|
|
// Check if each of the unsafe registers are available...
|
|
bool W16AvailableInBlock = LRU.available(AArch64::W16);
|
|
bool W17AvailableInBlock = LRU.available(AArch64::W17);
|
|
bool NZCVAvailableInBlock = LRU.available(AArch64::NZCV);
|
|
|
|
// If all of these are dead (and not live out), we know we don't have to check
|
|
// them later.
|
|
if (W16AvailableInBlock && W17AvailableInBlock && NZCVAvailableInBlock)
|
|
Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
|
|
|
|
// Now, add the live outs to the set.
|
|
LRU.addLiveOuts(MBB);
|
|
|
|
// If any of these registers is available in the MBB, but also a live out of
|
|
// the block, then we know outlining is unsafe.
|
|
if (W16AvailableInBlock && !LRU.available(AArch64::W16))
|
|
return false;
|
|
if (W17AvailableInBlock && !LRU.available(AArch64::W17))
|
|
return false;
|
|
if (NZCVAvailableInBlock && !LRU.available(AArch64::NZCV))
|
|
return false;
|
|
|
|
// Check if there's a call inside this MachineBasicBlock. If there is, then
|
|
// set a flag.
|
|
if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
|
|
Flags |= MachineOutlinerMBBFlags::HasCalls;
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
|
|
// In the event that we outline, we may have to save LR. If there is an
|
|
// available register in the MBB, then we'll always save LR there. Check if
|
|
// this is true.
|
|
bool CanSaveLR = false;
|
|
const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
|
|
MF->getSubtarget().getRegisterInfo());
|
|
|
|
// Check if there is an available register across the sequence that we can
|
|
// use.
|
|
for (unsigned Reg : AArch64::GPR64RegClass) {
|
|
if (!ARI->isReservedReg(*MF, Reg) && Reg != AArch64::LR &&
|
|
Reg != AArch64::X16 && Reg != AArch64::X17 && LRU.available(Reg)) {
|
|
CanSaveLR = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if we have a register we can save LR to, and if LR was used
|
|
// somewhere. If both of those things are true, then we need to evaluate the
|
|
// safety of outlining stack instructions later.
|
|
if (!CanSaveLR && !LRU.available(AArch64::LR))
|
|
Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
|
|
|
|
return true;
|
|
}
|
|
|
|
outliner::InstrType
|
|
AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
|
|
unsigned Flags) const {
|
|
MachineInstr &MI = *MIT;
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineFunction *MF = MBB->getParent();
|
|
AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
|
|
|
|
// Don't outline anything used for return address signing. The outlined
|
|
// function will get signed later if needed
|
|
switch (MI.getOpcode()) {
|
|
case AArch64::PACIASP:
|
|
case AArch64::PACIBSP:
|
|
case AArch64::AUTIASP:
|
|
case AArch64::AUTIBSP:
|
|
case AArch64::RETAA:
|
|
case AArch64::RETAB:
|
|
case AArch64::EMITBKEY:
|
|
return outliner::InstrType::Illegal;
|
|
}
|
|
|
|
// Don't outline LOHs.
|
|
if (FuncInfo->getLOHRelated().count(&MI))
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// We can only outline these if we will tail call the outlined function, or
|
|
// fix up the CFI offsets. Currently, CFI instructions are outlined only if
|
|
// in a tail call.
|
|
//
|
|
// FIXME: If the proper fixups for the offset are implemented, this should be
|
|
// possible.
|
|
if (MI.isCFIInstruction())
|
|
return outliner::InstrType::Legal;
|
|
|
|
// Don't allow debug values to impact outlining type.
|
|
if (MI.isDebugInstr() || MI.isIndirectDebugValue())
|
|
return outliner::InstrType::Invisible;
|
|
|
|
// At this point, KILL instructions don't really tell us much so we can go
|
|
// ahead and skip over them.
|
|
if (MI.isKill())
|
|
return outliner::InstrType::Invisible;
|
|
|
|
// Is this a terminator for a basic block?
|
|
if (MI.isTerminator()) {
|
|
|
|
// Is this the end of a function?
|
|
if (MI.getParent()->succ_empty())
|
|
return outliner::InstrType::Legal;
|
|
|
|
// It's not, so don't outline it.
|
|
return outliner::InstrType::Illegal;
|
|
}
|
|
|
|
// Make sure none of the operands are un-outlinable.
|
|
for (const MachineOperand &MOP : MI.operands()) {
|
|
if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
|
|
MOP.isTargetIndex())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// If it uses LR or W30 explicitly, then don't touch it.
|
|
if (MOP.isReg() && !MOP.isImplicit() &&
|
|
(MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30))
|
|
return outliner::InstrType::Illegal;
|
|
}
|
|
|
|
// Special cases for instructions that can always be outlined, but will fail
|
|
// the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
|
|
// be outlined because they don't require a *specific* value to be in LR.
|
|
if (MI.getOpcode() == AArch64::ADRP)
|
|
return outliner::InstrType::Legal;
|
|
|
|
// If MI is a call we might be able to outline it. We don't want to outline
|
|
// any calls that rely on the position of items on the stack. When we outline
|
|
// something containing a call, we have to emit a save and restore of LR in
|
|
// the outlined function. Currently, this always happens by saving LR to the
|
|
// stack. Thus, if we outline, say, half the parameters for a function call
|
|
// plus the call, then we'll break the callee's expectations for the layout
|
|
// of the stack.
|
|
//
|
|
// FIXME: Allow calls to functions which construct a stack frame, as long
|
|
// as they don't access arguments on the stack.
|
|
// FIXME: Figure out some way to analyze functions defined in other modules.
|
|
// We should be able to compute the memory usage based on the IR calling
|
|
// convention, even if we can't see the definition.
|
|
if (MI.isCall()) {
|
|
// Get the function associated with the call. Look at each operand and find
|
|
// the one that represents the callee and get its name.
|
|
const Function *Callee = nullptr;
|
|
for (const MachineOperand &MOP : MI.operands()) {
|
|
if (MOP.isGlobal()) {
|
|
Callee = dyn_cast<Function>(MOP.getGlobal());
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Never outline calls to mcount. There isn't any rule that would require
|
|
// this, but the Linux kernel's "ftrace" feature depends on it.
|
|
if (Callee && Callee->getName() == "\01_mcount")
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// If we don't know anything about the callee, assume it depends on the
|
|
// stack layout of the caller. In that case, it's only legal to outline
|
|
// as a tail-call. Explicitly list the call instructions we know about so we
|
|
// don't get unexpected results with call pseudo-instructions.
|
|
auto UnknownCallOutlineType = outliner::InstrType::Illegal;
|
|
if (MI.getOpcode() == AArch64::BLR ||
|
|
MI.getOpcode() == AArch64::BLRNoIP || MI.getOpcode() == AArch64::BL)
|
|
UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
|
|
|
|
if (!Callee)
|
|
return UnknownCallOutlineType;
|
|
|
|
// We have a function we have information about. Check it if it's something
|
|
// can safely outline.
|
|
MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
|
|
|
|
// We don't know what's going on with the callee at all. Don't touch it.
|
|
if (!CalleeMF)
|
|
return UnknownCallOutlineType;
|
|
|
|
// Check if we know anything about the callee saves on the function. If we
|
|
// don't, then don't touch it, since that implies that we haven't
|
|
// computed anything about its stack frame yet.
|
|
MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
|
|
if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
|
|
MFI.getNumObjects() > 0)
|
|
return UnknownCallOutlineType;
|
|
|
|
// At this point, we can say that CalleeMF ought to not pass anything on the
|
|
// stack. Therefore, we can outline it.
|
|
return outliner::InstrType::Legal;
|
|
}
|
|
|
|
// Don't outline positions.
|
|
if (MI.isPosition())
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Don't touch the link register or W30.
|
|
if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) ||
|
|
MI.modifiesRegister(AArch64::W30, &getRegisterInfo()))
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Don't outline BTI instructions, because that will prevent the outlining
|
|
// site from being indirectly callable.
|
|
if (MI.getOpcode() == AArch64::HINT) {
|
|
int64_t Imm = MI.getOperand(0).getImm();
|
|
if (Imm == 32 || Imm == 34 || Imm == 36 || Imm == 38)
|
|
return outliner::InstrType::Illegal;
|
|
}
|
|
|
|
return outliner::InstrType::Legal;
|
|
}
|
|
|
|
void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
|
|
for (MachineInstr &MI : MBB) {
|
|
const MachineOperand *Base;
|
|
unsigned Width;
|
|
int64_t Offset;
|
|
bool OffsetIsScalable;
|
|
|
|
// Is this a load or store with an immediate offset with SP as the base?
|
|
if (!MI.mayLoadOrStore() ||
|
|
!getMemOperandWithOffsetWidth(MI, Base, Offset, OffsetIsScalable, Width,
|
|
&RI) ||
|
|
(Base->isReg() && Base->getReg() != AArch64::SP))
|
|
continue;
|
|
|
|
// It is, so we have to fix it up.
|
|
TypeSize Scale(0U, false);
|
|
int64_t Dummy1, Dummy2;
|
|
|
|
MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI);
|
|
assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!");
|
|
getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2);
|
|
assert(Scale != 0 && "Unexpected opcode!");
|
|
assert(!OffsetIsScalable && "Expected offset to be a byte offset");
|
|
|
|
// We've pushed the return address to the stack, so add 16 to the offset.
|
|
// This is safe, since we already checked if it would overflow when we
|
|
// checked if this instruction was legal to outline.
|
|
int64_t NewImm = (Offset + 16) / (int64_t)Scale.getFixedSize();
|
|
StackOffsetOperand.setImm(NewImm);
|
|
}
|
|
}
|
|
|
|
static void signOutlinedFunction(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
bool ShouldSignReturnAddr,
|
|
bool ShouldSignReturnAddrWithAKey) {
|
|
if (ShouldSignReturnAddr) {
|
|
MachineBasicBlock::iterator MBBPAC = MBB.begin();
|
|
MachineBasicBlock::iterator MBBAUT = MBB.getFirstTerminator();
|
|
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL;
|
|
|
|
if (MBBAUT != MBB.end())
|
|
DL = MBBAUT->getDebugLoc();
|
|
|
|
// At the very beginning of the basic block we insert the following
|
|
// depending on the key type
|
|
//
|
|
// a_key: b_key:
|
|
// PACIASP EMITBKEY
|
|
// CFI_INSTRUCTION PACIBSP
|
|
// CFI_INSTRUCTION
|
|
if (ShouldSignReturnAddrWithAKey) {
|
|
BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::PACIASP))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
} else {
|
|
BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::EMITBKEY))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::PACIBSP))
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
unsigned CFIIndex =
|
|
MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
|
|
BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
|
|
// If v8.3a features are available we can replace a RET instruction by
|
|
// RETAA or RETAB and omit the AUT instructions
|
|
if (Subtarget.hasPAuth() && MBBAUT != MBB.end() &&
|
|
MBBAUT->getOpcode() == AArch64::RET) {
|
|
BuildMI(MBB, MBBAUT, DL,
|
|
TII->get(ShouldSignReturnAddrWithAKey ? AArch64::RETAA
|
|
: AArch64::RETAB))
|
|
.copyImplicitOps(*MBBAUT);
|
|
MBB.erase(MBBAUT);
|
|
} else {
|
|
BuildMI(MBB, MBBAUT, DL,
|
|
TII->get(ShouldSignReturnAddrWithAKey ? AArch64::AUTIASP
|
|
: AArch64::AUTIBSP))
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AArch64InstrInfo::buildOutlinedFrame(
|
|
MachineBasicBlock &MBB, MachineFunction &MF,
|
|
const outliner::OutlinedFunction &OF) const {
|
|
|
|
AArch64FunctionInfo *FI = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
if (OF.FrameConstructionID == MachineOutlinerTailCall)
|
|
FI->setOutliningStyle("Tail Call");
|
|
else if (OF.FrameConstructionID == MachineOutlinerThunk) {
|
|
// For thunk outlining, rewrite the last instruction from a call to a
|
|
// tail-call.
|
|
MachineInstr *Call = &*--MBB.instr_end();
|
|
unsigned TailOpcode;
|
|
if (Call->getOpcode() == AArch64::BL) {
|
|
TailOpcode = AArch64::TCRETURNdi;
|
|
} else {
|
|
assert(Call->getOpcode() == AArch64::BLR ||
|
|
Call->getOpcode() == AArch64::BLRNoIP);
|
|
TailOpcode = AArch64::TCRETURNriALL;
|
|
}
|
|
MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode))
|
|
.add(Call->getOperand(0))
|
|
.addImm(0);
|
|
MBB.insert(MBB.end(), TC);
|
|
Call->eraseFromParent();
|
|
|
|
FI->setOutliningStyle("Thunk");
|
|
}
|
|
|
|
bool IsLeafFunction = true;
|
|
|
|
// Is there a call in the outlined range?
|
|
auto IsNonTailCall = [](const MachineInstr &MI) {
|
|
return MI.isCall() && !MI.isReturn();
|
|
};
|
|
|
|
if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
|
|
// Fix up the instructions in the range, since we're going to modify the
|
|
// stack.
|
|
|
|
// Bugzilla ID: 46767
|
|
// TODO: Check if fixing up twice is safe so we can outline these.
|
|
assert(OF.FrameConstructionID != MachineOutlinerDefault &&
|
|
"Can only fix up stack references once");
|
|
fixupPostOutline(MBB);
|
|
|
|
IsLeafFunction = false;
|
|
|
|
// LR has to be a live in so that we can save it.
|
|
if (!MBB.isLiveIn(AArch64::LR))
|
|
MBB.addLiveIn(AArch64::LR);
|
|
|
|
MachineBasicBlock::iterator It = MBB.begin();
|
|
MachineBasicBlock::iterator Et = MBB.end();
|
|
|
|
if (OF.FrameConstructionID == MachineOutlinerTailCall ||
|
|
OF.FrameConstructionID == MachineOutlinerThunk)
|
|
Et = std::prev(MBB.end());
|
|
|
|
// Insert a save before the outlined region
|
|
MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(AArch64::LR)
|
|
.addReg(AArch64::SP)
|
|
.addImm(-16);
|
|
It = MBB.insert(It, STRXpre);
|
|
|
|
const TargetSubtargetInfo &STI = MF.getSubtarget();
|
|
const MCRegisterInfo *MRI = STI.getRegisterInfo();
|
|
unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true);
|
|
|
|
// Add a CFI saying the stack was moved 16 B down.
|
|
int64_t StackPosEntry =
|
|
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 16));
|
|
BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
|
|
.addCFIIndex(StackPosEntry)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
|
|
// Add a CFI saying that the LR that we want to find is now 16 B higher than
|
|
// before.
|
|
int64_t LRPosEntry =
|
|
MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, -16));
|
|
BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
|
|
.addCFIIndex(LRPosEntry)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
|
|
// Insert a restore before the terminator for the function.
|
|
MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(AArch64::LR, RegState::Define)
|
|
.addReg(AArch64::SP)
|
|
.addImm(16);
|
|
Et = MBB.insert(Et, LDRXpost);
|
|
}
|
|
|
|
// If a bunch of candidates reach this point they must agree on their return
|
|
// address signing. It is therefore enough to just consider the signing
|
|
// behaviour of one of them
|
|
const auto &MFI = *OF.Candidates.front().getMF()->getInfo<AArch64FunctionInfo>();
|
|
bool ShouldSignReturnAddr = MFI.shouldSignReturnAddress(!IsLeafFunction);
|
|
|
|
// a_key is the default
|
|
bool ShouldSignReturnAddrWithAKey = !MFI.shouldSignWithBKey();
|
|
|
|
// If this is a tail call outlined function, then there's already a return.
|
|
if (OF.FrameConstructionID == MachineOutlinerTailCall ||
|
|
OF.FrameConstructionID == MachineOutlinerThunk) {
|
|
signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
|
|
ShouldSignReturnAddrWithAKey);
|
|
return;
|
|
}
|
|
|
|
// It's not a tail call, so we have to insert the return ourselves.
|
|
|
|
// LR has to be a live in so that we can return to it.
|
|
if (!MBB.isLiveIn(AArch64::LR))
|
|
MBB.addLiveIn(AArch64::LR);
|
|
|
|
MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET))
|
|
.addReg(AArch64::LR);
|
|
MBB.insert(MBB.end(), ret);
|
|
|
|
signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
|
|
ShouldSignReturnAddrWithAKey);
|
|
|
|
FI->setOutliningStyle("Function");
|
|
|
|
// Did we have to modify the stack by saving the link register?
|
|
if (OF.FrameConstructionID != MachineOutlinerDefault)
|
|
return;
|
|
|
|
// We modified the stack.
|
|
// Walk over the basic block and fix up all the stack accesses.
|
|
fixupPostOutline(MBB);
|
|
}
|
|
|
|
MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall(
|
|
Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
|
|
MachineFunction &MF, const outliner::Candidate &C) const {
|
|
|
|
// Are we tail calling?
|
|
if (C.CallConstructionID == MachineOutlinerTailCall) {
|
|
// If yes, then we can just branch to the label.
|
|
It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi))
|
|
.addGlobalAddress(M.getNamedValue(MF.getName()))
|
|
.addImm(0));
|
|
return It;
|
|
}
|
|
|
|
// Are we saving the link register?
|
|
if (C.CallConstructionID == MachineOutlinerNoLRSave ||
|
|
C.CallConstructionID == MachineOutlinerThunk) {
|
|
// No, so just insert the call.
|
|
It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
|
|
.addGlobalAddress(M.getNamedValue(MF.getName())));
|
|
return It;
|
|
}
|
|
|
|
// We want to return the spot where we inserted the call.
|
|
MachineBasicBlock::iterator CallPt;
|
|
|
|
// Instructions for saving and restoring LR around the call instruction we're
|
|
// going to insert.
|
|
MachineInstr *Save;
|
|
MachineInstr *Restore;
|
|
// Can we save to a register?
|
|
if (C.CallConstructionID == MachineOutlinerRegSave) {
|
|
// FIXME: This logic should be sunk into a target-specific interface so that
|
|
// we don't have to recompute the register.
|
|
unsigned Reg = findRegisterToSaveLRTo(C);
|
|
assert(Reg != 0 && "No callee-saved register available?");
|
|
|
|
// Save and restore LR from that register.
|
|
Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg)
|
|
.addReg(AArch64::XZR)
|
|
.addReg(AArch64::LR)
|
|
.addImm(0);
|
|
Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR)
|
|
.addReg(AArch64::XZR)
|
|
.addReg(Reg)
|
|
.addImm(0);
|
|
} else {
|
|
// We have the default case. Save and restore from SP.
|
|
Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(AArch64::LR)
|
|
.addReg(AArch64::SP)
|
|
.addImm(-16);
|
|
Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(AArch64::LR, RegState::Define)
|
|
.addReg(AArch64::SP)
|
|
.addImm(16);
|
|
}
|
|
|
|
It = MBB.insert(It, Save);
|
|
It++;
|
|
|
|
// Insert the call.
|
|
It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
|
|
.addGlobalAddress(M.getNamedValue(MF.getName())));
|
|
CallPt = It;
|
|
It++;
|
|
|
|
It = MBB.insert(It, Restore);
|
|
return CallPt;
|
|
}
|
|
|
|
bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
|
|
MachineFunction &MF) const {
|
|
return MF.getFunction().hasMinSize();
|
|
}
|
|
|
|
Optional<DestSourcePair>
|
|
AArch64InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
|
|
|
|
// AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg
|
|
// and zero immediate operands used as an alias for mov instruction.
|
|
if (MI.getOpcode() == AArch64::ORRWrs &&
|
|
MI.getOperand(1).getReg() == AArch64::WZR &&
|
|
MI.getOperand(3).getImm() == 0x0) {
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
|
|
}
|
|
|
|
if (MI.getOpcode() == AArch64::ORRXrs &&
|
|
MI.getOperand(1).getReg() == AArch64::XZR &&
|
|
MI.getOperand(3).getImm() == 0x0) {
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
Optional<RegImmPair> AArch64InstrInfo::isAddImmediate(const MachineInstr &MI,
|
|
Register Reg) const {
|
|
int Sign = 1;
|
|
int64_t Offset = 0;
|
|
|
|
// TODO: Handle cases where Reg is a super- or sub-register of the
|
|
// destination register.
|
|
const MachineOperand &Op0 = MI.getOperand(0);
|
|
if (!Op0.isReg() || Reg != Op0.getReg())
|
|
return None;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return None;
|
|
case AArch64::SUBWri:
|
|
case AArch64::SUBXri:
|
|
case AArch64::SUBSWri:
|
|
case AArch64::SUBSXri:
|
|
Sign *= -1;
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64::ADDSWri:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::ADDWri:
|
|
case AArch64::ADDXri: {
|
|
// TODO: Third operand can be global address (usually some string).
|
|
if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() ||
|
|
!MI.getOperand(2).isImm())
|
|
return None;
|
|
int Shift = MI.getOperand(3).getImm();
|
|
assert((Shift == 0 || Shift == 12) && "Shift can be either 0 or 12");
|
|
Offset = Sign * (MI.getOperand(2).getImm() << Shift);
|
|
}
|
|
}
|
|
return RegImmPair{MI.getOperand(1).getReg(), Offset};
|
|
}
|
|
|
|
/// If the given ORR instruction is a copy, and \p DescribedReg overlaps with
|
|
/// the destination register then, if possible, describe the value in terms of
|
|
/// the source register.
|
|
static Optional<ParamLoadedValue>
|
|
describeORRLoadedValue(const MachineInstr &MI, Register DescribedReg,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) {
|
|
auto DestSrc = TII->isCopyInstr(MI);
|
|
if (!DestSrc)
|
|
return None;
|
|
|
|
Register DestReg = DestSrc->Destination->getReg();
|
|
Register SrcReg = DestSrc->Source->getReg();
|
|
|
|
auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
|
|
|
|
// If the described register is the destination, just return the source.
|
|
if (DestReg == DescribedReg)
|
|
return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
|
|
|
|
// ORRWrs zero-extends to 64-bits, so we need to consider such cases.
|
|
if (MI.getOpcode() == AArch64::ORRWrs &&
|
|
TRI->isSuperRegister(DestReg, DescribedReg))
|
|
return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
|
|
|
|
// We may need to describe the lower part of a ORRXrs move.
|
|
if (MI.getOpcode() == AArch64::ORRXrs &&
|
|
TRI->isSubRegister(DestReg, DescribedReg)) {
|
|
Register SrcSubReg = TRI->getSubReg(SrcReg, AArch64::sub_32);
|
|
return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
|
|
}
|
|
|
|
assert(!TRI->isSuperOrSubRegisterEq(DestReg, DescribedReg) &&
|
|
"Unhandled ORR[XW]rs copy case");
|
|
|
|
return None;
|
|
}
|
|
|
|
Optional<ParamLoadedValue>
|
|
AArch64InstrInfo::describeLoadedValue(const MachineInstr &MI,
|
|
Register Reg) const {
|
|
const MachineFunction *MF = MI.getMF();
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
switch (MI.getOpcode()) {
|
|
case AArch64::MOVZWi:
|
|
case AArch64::MOVZXi: {
|
|
// MOVZWi may be used for producing zero-extended 32-bit immediates in
|
|
// 64-bit parameters, so we need to consider super-registers.
|
|
if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
|
|
return None;
|
|
|
|
if (!MI.getOperand(1).isImm())
|
|
return None;
|
|
int64_t Immediate = MI.getOperand(1).getImm();
|
|
int Shift = MI.getOperand(2).getImm();
|
|
return ParamLoadedValue(MachineOperand::CreateImm(Immediate << Shift),
|
|
nullptr);
|
|
}
|
|
case AArch64::ORRWrs:
|
|
case AArch64::ORRXrs:
|
|
return describeORRLoadedValue(MI, Reg, this, TRI);
|
|
}
|
|
|
|
return TargetInstrInfo::describeLoadedValue(MI, Reg);
|
|
}
|
|
|
|
uint64_t AArch64InstrInfo::getElementSizeForOpcode(unsigned Opc) const {
|
|
return get(Opc).TSFlags & AArch64::ElementSizeMask;
|
|
}
|
|
|
|
bool AArch64InstrInfo::isPTestLikeOpcode(unsigned Opc) const {
|
|
return get(Opc).TSFlags & AArch64::InstrFlagIsPTestLike;
|
|
}
|
|
|
|
bool AArch64InstrInfo::isWhileOpcode(unsigned Opc) const {
|
|
return get(Opc).TSFlags & AArch64::InstrFlagIsWhile;
|
|
}
|
|
|
|
unsigned llvm::getBLRCallOpcode(const MachineFunction &MF) {
|
|
if (MF.getSubtarget<AArch64Subtarget>().hardenSlsBlr())
|
|
return AArch64::BLRNoIP;
|
|
else
|
|
return AArch64::BLR;
|
|
}
|
|
|
|
#define GET_INSTRINFO_HELPERS
|
|
#define GET_INSTRMAP_INFO
|
|
#include "AArch64GenInstrInfo.inc"
|