llvm-for-llvmta/lib/ProfileData/ProfileSummaryBuilder.cpp

176 lines
6.2 KiB
C++

//=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for computing profile summary data.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
cl::opt<bool> UseContextLessSummary(
"profile-summary-contextless", cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::desc("Merge context profiles before calculating thresholds."));
// A set of cutoff values. Each value, when divided by ProfileSummary::Scale
// (which is 1000000) is a desired percentile of total counts.
static const uint32_t DefaultCutoffsData[] = {
10000, /* 1% */
100000, /* 10% */
200000, 300000, 400000, 500000, 600000, 700000, 800000,
900000, 950000, 990000, 999000, 999900, 999990, 999999};
const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
DefaultCutoffsData;
const ProfileSummaryEntry &
ProfileSummaryBuilder::getEntryForPercentile(SummaryEntryVector &DS,
uint64_t Percentile) {
auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
return Entry.Cutoff < Percentile;
});
// The required percentile has to be <= one of the percentiles in the
// detailed summary.
if (It == DS.end())
report_fatal_error("Desired percentile exceeds the maximum cutoff");
return *It;
}
void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
// The first counter is not necessarily an entry count for IR
// instrumentation profiles.
// Eventually MaxFunctionCount will become obsolete and this can be
// removed.
addEntryCount(R.Counts[0]);
for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
addInternalCount(R.Counts[I]);
}
// To compute the detailed summary, we consider each line containing samples as
// equivalent to a block with a count in the instrumented profile.
void SampleProfileSummaryBuilder::addRecord(
const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
if (!isCallsiteSample) {
NumFunctions++;
if (FS.getHeadSamples() > MaxFunctionCount)
MaxFunctionCount = FS.getHeadSamples();
}
for (const auto &I : FS.getBodySamples())
addCount(I.second.getSamples());
for (const auto &I : FS.getCallsiteSamples())
for (const auto &CS : I.second)
addRecord(CS.second, true);
}
// The argument to this method is a vector of cutoff percentages and the return
// value is a vector of (Cutoff, MinCount, NumCounts) triplets.
void ProfileSummaryBuilder::computeDetailedSummary() {
if (DetailedSummaryCutoffs.empty())
return;
llvm::sort(DetailedSummaryCutoffs);
auto Iter = CountFrequencies.begin();
const auto End = CountFrequencies.end();
uint32_t CountsSeen = 0;
uint64_t CurrSum = 0, Count = 0;
for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
assert(Cutoff <= 999999);
APInt Temp(128, TotalCount);
APInt N(128, Cutoff);
APInt D(128, ProfileSummary::Scale);
Temp *= N;
Temp = Temp.sdiv(D);
uint64_t DesiredCount = Temp.getZExtValue();
assert(DesiredCount <= TotalCount);
while (CurrSum < DesiredCount && Iter != End) {
Count = Iter->first;
uint32_t Freq = Iter->second;
CurrSum += (Count * Freq);
CountsSeen += Freq;
Iter++;
}
assert(CurrSum >= DesiredCount);
ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
DetailedSummary.push_back(PSE);
}
}
std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
computeDetailedSummary();
return std::make_unique<ProfileSummary>(
ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
MaxFunctionCount, NumCounts, NumFunctions);
}
std::unique_ptr<ProfileSummary>
SampleProfileSummaryBuilder::computeSummaryForProfiles(
const StringMap<sampleprof::FunctionSamples> &Profiles) {
assert(NumFunctions == 0 &&
"This can only be called on an empty summary builder");
StringMap<sampleprof::FunctionSamples> ContextLessProfiles;
const StringMap<sampleprof::FunctionSamples> *ProfilesToUse = &Profiles;
// For CSSPGO, context-sensitive profile effectively split a function profile
// into many copies each representing the CFG profile of a particular calling
// context. That makes the count distribution looks more flat as we now have
// more function profiles each with lower counts, which in turn leads to lower
// hot thresholds. To compensate for that, by defauly we merge context
// profiles before coumputing profile summary.
if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS &&
!UseContextLessSummary.getNumOccurrences())) {
for (const auto &I : Profiles) {
ContextLessProfiles[I.second.getName()].merge(I.second);
}
ProfilesToUse = &ContextLessProfiles;
}
for (const auto &I : *ProfilesToUse) {
const sampleprof::FunctionSamples &Profile = I.second;
addRecord(Profile);
}
return getSummary();
}
std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
computeDetailedSummary();
return std::make_unique<ProfileSummary>(
ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
}
void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
NumFunctions++;
// Skip invalid count.
if (Count == (uint64_t)-1)
return;
addCount(Count);
if (Count > MaxFunctionCount)
MaxFunctionCount = Count;
}
void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
// Skip invalid count.
if (Count == (uint64_t)-1)
return;
addCount(Count);
if (Count > MaxInternalBlockCount)
MaxInternalBlockCount = Count;
}