llvm-for-llvmta/lib/ProfileData/Coverage/CoverageMappingReader.cpp

1094 lines
42 KiB
C++

//===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading coverage mapping data for
// instrumentation based coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/COFF.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
using namespace coverage;
using namespace object;
#define DEBUG_TYPE "coverage-mapping"
STATISTIC(CovMapNumRecords, "The # of coverage function records");
STATISTIC(CovMapNumUsedRecords, "The # of used coverage function records");
void CoverageMappingIterator::increment() {
if (ReadErr != coveragemap_error::success)
return;
// Check if all the records were read or if an error occurred while reading
// the next record.
if (auto E = Reader->readNextRecord(Record))
handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
if (CME.get() == coveragemap_error::eof)
*this = CoverageMappingIterator();
else
ReadErr = CME.get();
});
}
Error RawCoverageReader::readULEB128(uint64_t &Result) {
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
unsigned N = 0;
Result = decodeULEB128(Data.bytes_begin(), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Data = Data.substr(N);
return Error::success();
}
Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
if (auto Err = readULEB128(Result))
return Err;
if (Result >= MaxPlus1)
return make_error<CoverageMapError>(coveragemap_error::malformed);
return Error::success();
}
Error RawCoverageReader::readSize(uint64_t &Result) {
if (auto Err = readULEB128(Result))
return Err;
// Sanity check the number.
if (Result > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
return Error::success();
}
Error RawCoverageReader::readString(StringRef &Result) {
uint64_t Length;
if (auto Err = readSize(Length))
return Err;
Result = Data.substr(0, Length);
Data = Data.substr(Length);
return Error::success();
}
Error RawCoverageFilenamesReader::read(
CovMapVersion Version,
BinaryCoverageReader::DecompressedData &Decompressed) {
uint64_t NumFilenames;
if (auto Err = readSize(NumFilenames))
return Err;
if (!NumFilenames)
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (Version < CovMapVersion::Version4)
return readUncompressed(NumFilenames);
// The uncompressed length may exceed the size of the encoded filenames.
// Skip size validation.
uint64_t UncompressedLen;
if (auto Err = readULEB128(UncompressedLen))
return Err;
uint64_t CompressedLen;
if (auto Err = readSize(CompressedLen))
return Err;
if (CompressedLen > 0) {
if (!zlib::isAvailable())
return make_error<CoverageMapError>(
coveragemap_error::decompression_failed);
// Allocate memory for the decompressed filenames. Transfer ownership of
// the memory to BinaryCoverageReader.
auto DecompressedStorage = std::make_unique<SmallVector<char, 0>>();
SmallVectorImpl<char> &StorageBuf = *DecompressedStorage.get();
Decompressed.push_back(std::move(DecompressedStorage));
// Read compressed filenames.
StringRef CompressedFilenames = Data.substr(0, CompressedLen);
Data = Data.substr(CompressedLen);
auto Err =
zlib::uncompress(CompressedFilenames, StorageBuf, UncompressedLen);
if (Err) {
consumeError(std::move(Err));
return make_error<CoverageMapError>(
coveragemap_error::decompression_failed);
}
StringRef UncompressedFilenames(StorageBuf.data(), StorageBuf.size());
RawCoverageFilenamesReader Delegate(UncompressedFilenames, Filenames);
return Delegate.readUncompressed(NumFilenames);
}
return readUncompressed(NumFilenames);
}
Error RawCoverageFilenamesReader::readUncompressed(uint64_t NumFilenames) {
// Read uncompressed filenames.
for (size_t I = 0; I < NumFilenames; ++I) {
StringRef Filename;
if (auto Err = readString(Filename))
return Err;
Filenames.push_back(Filename);
}
return Error::success();
}
Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
auto Tag = Value & Counter::EncodingTagMask;
switch (Tag) {
case Counter::Zero:
C = Counter::getZero();
return Error::success();
case Counter::CounterValueReference:
C = Counter::getCounter(Value >> Counter::EncodingTagBits);
return Error::success();
default:
break;
}
Tag -= Counter::Expression;
switch (Tag) {
case CounterExpression::Subtract:
case CounterExpression::Add: {
auto ID = Value >> Counter::EncodingTagBits;
if (ID >= Expressions.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
C = Counter::getExpression(ID);
break;
}
default:
return make_error<CoverageMapError>(coveragemap_error::malformed);
}
return Error::success();
}
Error RawCoverageMappingReader::readCounter(Counter &C) {
uint64_t EncodedCounter;
if (auto Err =
readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = decodeCounter(EncodedCounter, C))
return Err;
return Error::success();
}
static const unsigned EncodingExpansionRegionBit = 1
<< Counter::EncodingTagBits;
/// Read the sub-array of regions for the given inferred file id.
/// \param NumFileIDs the number of file ids that are defined for this
/// function.
Error RawCoverageMappingReader::readMappingRegionsSubArray(
std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
size_t NumFileIDs) {
uint64_t NumRegions;
if (auto Err = readSize(NumRegions))
return Err;
unsigned LineStart = 0;
for (size_t I = 0; I < NumRegions; ++I) {
Counter C, C2;
CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
// Read the combined counter + region kind.
uint64_t EncodedCounterAndRegion;
if (auto Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return Err;
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
uint64_t ExpandedFileID = 0;
// If Tag does not represent a ZeroCounter, then it is understood to refer
// to a counter or counter expression with region kind assumed to be
// "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the
// referenced counter or counter expression (and nothing else).
//
// If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set,
// then EncodedCounterAndRegion is interpreted to represent an
// ExpansionRegion. In all other cases, EncodedCounterAndRegion is
// interpreted to refer to a specific region kind, after which additional
// fields may be read (e.g. BranchRegions have two encoded counters that
// follow an encoded region kind value).
if (Tag != Counter::Zero) {
if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
return Err;
} else {
// Is it an expansion region?
if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
Kind = CounterMappingRegion::ExpansionRegion;
ExpandedFileID = EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits;
if (ExpandedFileID >= NumFileIDs)
return make_error<CoverageMapError>(coveragemap_error::malformed);
} else {
switch (EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits) {
case CounterMappingRegion::CodeRegion:
// Don't do anything when we have a code region with a zero counter.
break;
case CounterMappingRegion::SkippedRegion:
Kind = CounterMappingRegion::SkippedRegion;
break;
case CounterMappingRegion::BranchRegion:
// For a Branch Region, read two successive counters.
Kind = CounterMappingRegion::BranchRegion;
if (auto Err = readCounter(C))
return Err;
if (auto Err = readCounter(C2))
return Err;
break;
default:
return make_error<CoverageMapError>(coveragemap_error::malformed);
}
}
}
// Read the source range.
uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
if (auto Err =
readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readULEB128(ColumnStart))
return Err;
if (ColumnStart > std::numeric_limits<unsigned>::max())
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
return Err;
LineStart += LineStartDelta;
// If the high bit of ColumnEnd is set, this is a gap region.
if (ColumnEnd & (1U << 31)) {
Kind = CounterMappingRegion::GapRegion;
ColumnEnd &= ~(1U << 31);
}
// Adjust the column locations for the empty regions that are supposed to
// cover whole lines. Those regions should be encoded with the
// column range (1 -> std::numeric_limits<unsigned>::max()), but because
// the encoded std::numeric_limits<unsigned>::max() is several bytes long,
// we set the column range to (0 -> 0) to ensure that the column start and
// column end take up one byte each.
// The std::numeric_limits<unsigned>::max() is used to represent a column
// position at the end of the line without knowing the length of that line.
if (ColumnStart == 0 && ColumnEnd == 0) {
ColumnStart = 1;
ColumnEnd = std::numeric_limits<unsigned>::max();
}
LLVM_DEBUG({
dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
<< ColumnStart << " -> " << (LineStart + NumLines) << ":"
<< ColumnEnd << ", ";
if (Kind == CounterMappingRegion::ExpansionRegion)
dbgs() << "Expands to file " << ExpandedFileID;
else
CounterMappingContext(Expressions).dump(C, dbgs());
dbgs() << "\n";
});
auto CMR = CounterMappingRegion(C, C2, InferredFileID, ExpandedFileID,
LineStart, ColumnStart,
LineStart + NumLines, ColumnEnd, Kind);
if (CMR.startLoc() > CMR.endLoc())
return make_error<CoverageMapError>(coveragemap_error::malformed);
MappingRegions.push_back(CMR);
}
return Error::success();
}
Error RawCoverageMappingReader::read() {
// Read the virtual file mapping.
SmallVector<unsigned, 8> VirtualFileMapping;
uint64_t NumFileMappings;
if (auto Err = readSize(NumFileMappings))
return Err;
for (size_t I = 0; I < NumFileMappings; ++I) {
uint64_t FilenameIndex;
if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
return Err;
VirtualFileMapping.push_back(FilenameIndex);
}
// Construct the files using unique filenames and virtual file mapping.
for (auto I : VirtualFileMapping) {
Filenames.push_back(TranslationUnitFilenames[I]);
}
// Read the expressions.
uint64_t NumExpressions;
if (auto Err = readSize(NumExpressions))
return Err;
// Create an array of dummy expressions that get the proper counters
// when the expressions are read, and the proper kinds when the counters
// are decoded.
Expressions.resize(
NumExpressions,
CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
for (size_t I = 0; I < NumExpressions; ++I) {
if (auto Err = readCounter(Expressions[I].LHS))
return Err;
if (auto Err = readCounter(Expressions[I].RHS))
return Err;
}
// Read the mapping regions sub-arrays.
for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
InferredFileID < S; ++InferredFileID) {
if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
VirtualFileMapping.size()))
return Err;
}
// Set the counters for the expansion regions.
// i.e. Counter of expansion region = counter of the first region
// from the expanded file.
// Perform multiple passes to correctly propagate the counters through
// all the nested expansion regions.
SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
for (auto &R : MappingRegions) {
if (R.Kind != CounterMappingRegion::ExpansionRegion)
continue;
assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
}
for (auto &R : MappingRegions) {
if (FileIDExpansionRegionMapping[R.FileID]) {
FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
FileIDExpansionRegionMapping[R.FileID] = nullptr;
}
}
}
return Error::success();
}
Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
// A dummy coverage mapping data consists of just one region with zero count.
uint64_t NumFileMappings;
if (Error Err = readSize(NumFileMappings))
return std::move(Err);
if (NumFileMappings != 1)
return false;
// We don't expect any specific value for the filename index, just skip it.
uint64_t FilenameIndex;
if (Error Err =
readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
return std::move(Err);
uint64_t NumExpressions;
if (Error Err = readSize(NumExpressions))
return std::move(Err);
if (NumExpressions != 0)
return false;
uint64_t NumRegions;
if (Error Err = readSize(NumRegions))
return std::move(Err);
if (NumRegions != 1)
return false;
uint64_t EncodedCounterAndRegion;
if (Error Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return std::move(Err);
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
return Tag == Counter::Zero;
}
Error InstrProfSymtab::create(SectionRef &Section) {
Expected<StringRef> DataOrErr = Section.getContents();
if (!DataOrErr)
return DataOrErr.takeError();
Data = *DataOrErr;
Address = Section.getAddress();
// If this is a linked PE/COFF file, then we have to skip over the null byte
// that is allocated in the .lprfn$A section in the LLVM profiling runtime.
const ObjectFile *Obj = Section.getObject();
if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject())
Data = Data.drop_front(1);
return Error::success();
}
StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
if (Pointer < Address)
return StringRef();
auto Offset = Pointer - Address;
if (Offset + Size > Data.size())
return StringRef();
return Data.substr(Pointer - Address, Size);
}
// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
// The hash value of dummy mapping records is always zero.
if (Hash)
return false;
return RawCoverageMappingDummyChecker(Mapping).isDummy();
}
/// A range of filename indices. Used to specify the location of a batch of
/// filenames in a vector-like container.
struct FilenameRange {
unsigned StartingIndex;
unsigned Length;
FilenameRange(unsigned StartingIndex, unsigned Length)
: StartingIndex(StartingIndex), Length(Length) {}
void markInvalid() { Length = 0; }
bool isInvalid() const { return Length == 0; }
};
namespace {
/// The interface to read coverage mapping function records for a module.
struct CovMapFuncRecordReader {
virtual ~CovMapFuncRecordReader() = default;
// Read a coverage header.
//
// \p CovBuf points to the buffer containing the \c CovHeader of the coverage
// mapping data associated with the module.
//
// Returns a pointer to the next \c CovHeader if it exists, or to an address
// greater than \p CovEnd if not.
virtual Expected<const char *>
readCoverageHeader(const char *CovBuf, const char *CovBufEnd,
BinaryCoverageReader::DecompressedData &Decompressed) = 0;
// Read function records.
//
// \p FuncRecBuf points to the buffer containing a batch of function records.
// \p FuncRecBufEnd points past the end of the batch of records.
//
// Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames
// associated with the function records. It is unused in Version4.
//
// Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage
// mappings associated with the function records. It is unused in Version4.
virtual Error readFunctionRecords(const char *FuncRecBuf,
const char *FuncRecBufEnd,
Optional<FilenameRange> OutOfLineFileRange,
const char *OutOfLineMappingBuf,
const char *OutOfLineMappingBufEnd) = 0;
template <class IntPtrT, support::endianness Endian>
static Expected<std::unique_ptr<CovMapFuncRecordReader>>
get(CovMapVersion Version, InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
std::vector<StringRef> &F);
};
// A class for reading coverage mapping function records for a module.
template <CovMapVersion Version, class IntPtrT, support::endianness Endian>
class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
using FuncRecordType =
typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;
// Maps function's name references to the indexes of their records
// in \c Records.
DenseMap<NameRefType, size_t> FunctionRecords;
InstrProfSymtab &ProfileNames;
std::vector<StringRef> &Filenames;
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;
// Maps a hash of the filenames in a TU to a \c FileRange. The range
// specifies the location of the hashed filenames in \c Filenames.
DenseMap<uint64_t, FilenameRange> FileRangeMap;
// Add the record to the collection if we don't already have a record that
// points to the same function name. This is useful to ignore the redundant
// records for the functions with ODR linkage.
// In addition, prefer records with real coverage mapping data to dummy
// records, which were emitted for inline functions which were seen but
// not used in the corresponding translation unit.
Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
StringRef Mapping,
FilenameRange FileRange) {
++CovMapNumRecords;
uint64_t FuncHash = CFR->template getFuncHash<Endian>();
NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
auto InsertResult =
FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
if (InsertResult.second) {
StringRef FuncName;
if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
return Err;
if (FuncName.empty())
return make_error<InstrProfError>(instrprof_error::malformed);
++CovMapNumUsedRecords;
Records.emplace_back(Version, FuncName, FuncHash, Mapping,
FileRange.StartingIndex, FileRange.Length);
return Error::success();
}
// Update the existing record if it's a dummy and the new record is real.
size_t OldRecordIndex = InsertResult.first->second;
BinaryCoverageReader::ProfileMappingRecord &OldRecord =
Records[OldRecordIndex];
Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
OldRecord.FunctionHash, OldRecord.CoverageMapping);
if (Error Err = OldIsDummyExpected.takeError())
return Err;
if (!*OldIsDummyExpected)
return Error::success();
Expected<bool> NewIsDummyExpected =
isCoverageMappingDummy(FuncHash, Mapping);
if (Error Err = NewIsDummyExpected.takeError())
return Err;
if (*NewIsDummyExpected)
return Error::success();
++CovMapNumUsedRecords;
OldRecord.FunctionHash = FuncHash;
OldRecord.CoverageMapping = Mapping;
OldRecord.FilenamesBegin = FileRange.StartingIndex;
OldRecord.FilenamesSize = FileRange.Length;
return Error::success();
}
public:
VersionedCovMapFuncRecordReader(
InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
std::vector<StringRef> &F)
: ProfileNames(P), Filenames(F), Records(R) {}
~VersionedCovMapFuncRecordReader() override = default;
Expected<const char *> readCoverageHeader(
const char *CovBuf, const char *CovBufEnd,
BinaryCoverageReader::DecompressedData &Decompressed) override {
using namespace support;
if (CovBuf + sizeof(CovMapHeader) > CovBufEnd)
return make_error<CoverageMapError>(coveragemap_error::malformed);
auto CovHeader = reinterpret_cast<const CovMapHeader *>(CovBuf);
uint32_t NRecords = CovHeader->getNRecords<Endian>();
uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
CovBuf = reinterpret_cast<const char *>(CovHeader + 1);
// Skip past the function records, saving the start and end for later.
// This is a no-op in Version4 (function records are read after all headers
// are read).
const char *FuncRecBuf = nullptr;
const char *FuncRecBufEnd = nullptr;
if (Version < CovMapVersion::Version4)
FuncRecBuf = CovBuf;
CovBuf += NRecords * sizeof(FuncRecordType);
if (Version < CovMapVersion::Version4)
FuncRecBufEnd = CovBuf;
// Get the filenames.
if (CovBuf + FilenamesSize > CovBufEnd)
return make_error<CoverageMapError>(coveragemap_error::malformed);
size_t FilenamesBegin = Filenames.size();
StringRef FilenameRegion(CovBuf, FilenamesSize);
RawCoverageFilenamesReader Reader(FilenameRegion, Filenames);
if (auto Err = Reader.read(Version, Decompressed))
return std::move(Err);
CovBuf += FilenamesSize;
FilenameRange FileRange(FilenamesBegin, Filenames.size() - FilenamesBegin);
if (Version >= CovMapVersion::Version4) {
// Map a hash of the filenames region to the filename range associated
// with this coverage header.
int64_t FilenamesRef =
llvm::IndexedInstrProf::ComputeHash(FilenameRegion);
auto Insert =
FileRangeMap.insert(std::make_pair(FilenamesRef, FileRange));
if (!Insert.second) {
// The same filenames ref was encountered twice. It's possible that
// the associated filenames are the same.
auto It = Filenames.begin();
FilenameRange &OrigRange = Insert.first->getSecond();
if (std::equal(It + OrigRange.StartingIndex,
It + OrigRange.StartingIndex + OrigRange.Length,
It + FileRange.StartingIndex,
It + FileRange.StartingIndex + FileRange.Length))
// Map the new range to the original one.
FileRange = OrigRange;
else
// This is a hash collision. Mark the filenames ref invalid.
OrigRange.markInvalid();
}
}
// We'll read the coverage mapping records in the loop below.
// This is a no-op in Version4 (coverage mappings are not affixed to the
// coverage header).
const char *MappingBuf = CovBuf;
if (Version >= CovMapVersion::Version4 && CoverageSize != 0)
return make_error<CoverageMapError>(coveragemap_error::malformed);
CovBuf += CoverageSize;
const char *MappingEnd = CovBuf;
if (CovBuf > CovBufEnd)
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (Version < CovMapVersion::Version4) {
// Read each function record.
if (Error E = readFunctionRecords(FuncRecBuf, FuncRecBufEnd, FileRange,
MappingBuf, MappingEnd))
return std::move(E);
}
// Each coverage map has an alignment of 8, so we need to adjust alignment
// before reading the next map.
CovBuf += offsetToAlignedAddr(CovBuf, Align(8));
return CovBuf;
}
Error readFunctionRecords(const char *FuncRecBuf, const char *FuncRecBufEnd,
Optional<FilenameRange> OutOfLineFileRange,
const char *OutOfLineMappingBuf,
const char *OutOfLineMappingBufEnd) override {
auto CFR = reinterpret_cast<const FuncRecordType *>(FuncRecBuf);
while ((const char *)CFR < FuncRecBufEnd) {
// Validate the length of the coverage mapping for this function.
const char *NextMappingBuf;
const FuncRecordType *NextCFR;
std::tie(NextMappingBuf, NextCFR) =
CFR->template advanceByOne<Endian>(OutOfLineMappingBuf);
if (Version < CovMapVersion::Version4)
if (NextMappingBuf > OutOfLineMappingBufEnd)
return make_error<CoverageMapError>(coveragemap_error::malformed);
// Look up the set of filenames associated with this function record.
Optional<FilenameRange> FileRange;
if (Version < CovMapVersion::Version4) {
FileRange = OutOfLineFileRange;
} else {
uint64_t FilenamesRef = CFR->template getFilenamesRef<Endian>();
auto It = FileRangeMap.find(FilenamesRef);
if (It == FileRangeMap.end())
return make_error<CoverageMapError>(coveragemap_error::malformed);
else
FileRange = It->getSecond();
}
// Now, read the coverage data.
if (FileRange && !FileRange->isInvalid()) {
StringRef Mapping =
CFR->template getCoverageMapping<Endian>(OutOfLineMappingBuf);
if (Version >= CovMapVersion::Version4 &&
Mapping.data() + Mapping.size() > FuncRecBufEnd)
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, *FileRange))
return Err;
}
std::tie(OutOfLineMappingBuf, CFR) = std::tie(NextMappingBuf, NextCFR);
}
return Error::success();
}
};
} // end anonymous namespace
template <class IntPtrT, support::endianness Endian>
Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
CovMapVersion Version, InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
std::vector<StringRef> &F) {
using namespace coverage;
switch (Version) {
case CovMapVersion::Version1:
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F);
case CovMapVersion::Version2:
case CovMapVersion::Version3:
case CovMapVersion::Version4:
case CovMapVersion::Version5:
// Decompress the name data.
if (Error E = P.create(P.getNameData()))
return std::move(E);
if (Version == CovMapVersion::Version2)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F);
else if (Version == CovMapVersion::Version3)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version3, IntPtrT, Endian>>(P, R, F);
else if (Version == CovMapVersion::Version4)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version4, IntPtrT, Endian>>(P, R, F);
else if (Version == CovMapVersion::Version5)
return std::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version5, IntPtrT, Endian>>(P, R, F);
}
llvm_unreachable("Unsupported version");
}
template <typename T, support::endianness Endian>
static Error readCoverageMappingData(
InstrProfSymtab &ProfileNames, StringRef CovMap, StringRef FuncRecords,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
std::vector<StringRef> &Filenames,
BinaryCoverageReader::DecompressedData &Decompressed) {
using namespace coverage;
// Read the records in the coverage data section.
auto CovHeader =
reinterpret_cast<const CovMapHeader *>(CovMap.data());
CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
if (Version > CovMapVersion::CurrentVersion)
return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
Filenames);
if (Error E = ReaderExpected.takeError())
return E;
auto Reader = std::move(ReaderExpected.get());
const char *CovBuf = CovMap.data();
const char *CovBufEnd = CovBuf + CovMap.size();
const char *FuncRecBuf = FuncRecords.data();
const char *FuncRecBufEnd = FuncRecords.data() + FuncRecords.size();
while (CovBuf < CovBufEnd) {
// Read the current coverage header & filename data.
//
// Prior to Version4, this also reads all function records affixed to the
// header.
//
// Return a pointer to the next coverage header.
auto NextOrErr =
Reader->readCoverageHeader(CovBuf, CovBufEnd, Decompressed);
if (auto E = NextOrErr.takeError())
return E;
CovBuf = NextOrErr.get();
}
// In Version4, function records are not affixed to coverage headers. Read
// the records from their dedicated section.
if (Version >= CovMapVersion::Version4)
return Reader->readFunctionRecords(FuncRecBuf, FuncRecBufEnd, None, nullptr,
nullptr);
return Error::success();
}
static const char *TestingFormatMagic = "llvmcovmtestdata";
Expected<std::unique_ptr<BinaryCoverageReader>>
BinaryCoverageReader::createCoverageReaderFromBuffer(
StringRef Coverage, std::string &&FuncRecords, InstrProfSymtab &&ProfileNames,
uint8_t BytesInAddress, support::endianness Endian) {
std::unique_ptr<BinaryCoverageReader> Reader(
new BinaryCoverageReader(std::move(FuncRecords)));
Reader->ProfileNames = std::move(ProfileNames);
StringRef FuncRecordsRef = Reader->FuncRecords;
if (BytesInAddress == 4 && Endian == support::endianness::little) {
if (Error E =
readCoverageMappingData<uint32_t, support::endianness::little>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, Reader->Filenames,
Reader->Decompressed))
return std::move(E);
} else if (BytesInAddress == 4 && Endian == support::endianness::big) {
if (Error E = readCoverageMappingData<uint32_t, support::endianness::big>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, Reader->Filenames, Reader->Decompressed))
return std::move(E);
} else if (BytesInAddress == 8 && Endian == support::endianness::little) {
if (Error E =
readCoverageMappingData<uint64_t, support::endianness::little>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, Reader->Filenames,
Reader->Decompressed))
return std::move(E);
} else if (BytesInAddress == 8 && Endian == support::endianness::big) {
if (Error E = readCoverageMappingData<uint64_t, support::endianness::big>(
Reader->ProfileNames, Coverage, FuncRecordsRef,
Reader->MappingRecords, Reader->Filenames, Reader->Decompressed))
return std::move(E);
} else
return make_error<CoverageMapError>(coveragemap_error::malformed);
return std::move(Reader);
}
static Expected<std::unique_ptr<BinaryCoverageReader>>
loadTestingFormat(StringRef Data) {
uint8_t BytesInAddress = 8;
support::endianness Endian = support::endianness::little;
Data = Data.substr(StringRef(TestingFormatMagic).size());
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
unsigned N = 0;
uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Data = Data.substr(N);
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
N = 0;
uint64_t Address = decodeULEB128(Data.bytes_begin(), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Data = Data.substr(N);
if (Data.size() < ProfileNamesSize)
return make_error<CoverageMapError>(coveragemap_error::malformed);
InstrProfSymtab ProfileNames;
if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
return std::move(E);
StringRef CoverageMapping = Data.substr(ProfileNamesSize);
// Skip the padding bytes because coverage map data has an alignment of 8.
if (CoverageMapping.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
size_t Pad = offsetToAlignedAddr(CoverageMapping.data(), Align(8));
if (CoverageMapping.size() < Pad)
return make_error<CoverageMapError>(coveragemap_error::malformed);
CoverageMapping = CoverageMapping.substr(Pad);
return BinaryCoverageReader::createCoverageReaderFromBuffer(
CoverageMapping, "", std::move(ProfileNames), BytesInAddress, Endian);
}
/// Find all sections that match \p Name. There may be more than one if comdats
/// are in use, e.g. for the __llvm_covfun section on ELF.
static Expected<std::vector<SectionRef>> lookupSections(ObjectFile &OF,
StringRef Name) {
// On COFF, the object file section name may end in "$M". This tells the
// linker to sort these sections between "$A" and "$Z". The linker removes the
// dollar and everything after it in the final binary. Do the same to match.
bool IsCOFF = isa<COFFObjectFile>(OF);
auto stripSuffix = [IsCOFF](StringRef N) {
return IsCOFF ? N.split('$').first : N;
};
Name = stripSuffix(Name);
std::vector<SectionRef> Sections;
for (const auto &Section : OF.sections()) {
Expected<StringRef> NameOrErr = Section.getName();
if (!NameOrErr)
return NameOrErr.takeError();
if (stripSuffix(*NameOrErr) == Name)
Sections.push_back(Section);
}
if (Sections.empty())
return make_error<CoverageMapError>(coveragemap_error::no_data_found);
return Sections;
}
static Expected<std::unique_ptr<BinaryCoverageReader>>
loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch) {
std::unique_ptr<ObjectFile> OF;
if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
// If we have a universal binary, try to look up the object for the
// appropriate architecture.
auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch);
if (!ObjectFileOrErr)
return ObjectFileOrErr.takeError();
OF = std::move(ObjectFileOrErr.get());
} else if (isa<ObjectFile>(Bin.get())) {
// For any other object file, upcast and take ownership.
OF.reset(cast<ObjectFile>(Bin.release()));
// If we've asked for a particular arch, make sure they match.
if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
return errorCodeToError(object_error::arch_not_found);
} else
// We can only handle object files.
return make_error<CoverageMapError>(coveragemap_error::malformed);
// The coverage uses native pointer sizes for the object it's written in.
uint8_t BytesInAddress = OF->getBytesInAddress();
support::endianness Endian = OF->isLittleEndian()
? support::endianness::little
: support::endianness::big;
// Look for the sections that we are interested in.
auto ObjFormat = OF->getTripleObjectFormat();
auto NamesSection =
lookupSections(*OF, getInstrProfSectionName(IPSK_name, ObjFormat,
/*AddSegmentInfo=*/false));
if (auto E = NamesSection.takeError())
return std::move(E);
auto CoverageSection =
lookupSections(*OF, getInstrProfSectionName(IPSK_covmap, ObjFormat,
/*AddSegmentInfo=*/false));
if (auto E = CoverageSection.takeError())
return std::move(E);
std::vector<SectionRef> CoverageSectionRefs = *CoverageSection;
if (CoverageSectionRefs.size() != 1)
return make_error<CoverageMapError>(coveragemap_error::malformed);
auto CoverageMappingOrErr = CoverageSectionRefs.back().getContents();
if (!CoverageMappingOrErr)
return CoverageMappingOrErr.takeError();
StringRef CoverageMapping = CoverageMappingOrErr.get();
InstrProfSymtab ProfileNames;
std::vector<SectionRef> NamesSectionRefs = *NamesSection;
if (NamesSectionRefs.size() != 1)
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (Error E = ProfileNames.create(NamesSectionRefs.back()))
return std::move(E);
// Look for the coverage records section (Version4 only).
std::string FuncRecords;
auto CoverageRecordsSections =
lookupSections(*OF, getInstrProfSectionName(IPSK_covfun, ObjFormat,
/*AddSegmentInfo=*/false));
if (auto E = CoverageRecordsSections.takeError())
consumeError(std::move(E));
else {
for (SectionRef Section : *CoverageRecordsSections) {
auto CoverageRecordsOrErr = Section.getContents();
if (!CoverageRecordsOrErr)
return CoverageRecordsOrErr.takeError();
FuncRecords += CoverageRecordsOrErr.get();
while (FuncRecords.size() % 8 != 0)
FuncRecords += '\0';
}
}
return BinaryCoverageReader::createCoverageReaderFromBuffer(
CoverageMapping, std::move(FuncRecords), std::move(ProfileNames),
BytesInAddress, Endian);
}
/// Determine whether \p Arch is invalid or empty, given \p Bin.
static bool isArchSpecifierInvalidOrMissing(Binary *Bin, StringRef Arch) {
// If we have a universal binary and Arch doesn't identify any of its slices,
// it's user error.
if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin)) {
for (auto &ObjForArch : Universal->objects())
if (Arch == ObjForArch.getArchFlagName())
return false;
return true;
}
return false;
}
Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>>
BinaryCoverageReader::create(
MemoryBufferRef ObjectBuffer, StringRef Arch,
SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers) {
std::vector<std::unique_ptr<BinaryCoverageReader>> Readers;
if (ObjectBuffer.getBuffer().startswith(TestingFormatMagic)) {
// This is a special format used for testing.
auto ReaderOrErr = loadTestingFormat(ObjectBuffer.getBuffer());
if (!ReaderOrErr)
return ReaderOrErr.takeError();
Readers.push_back(std::move(ReaderOrErr.get()));
return std::move(Readers);
}
auto BinOrErr = createBinary(ObjectBuffer);
if (!BinOrErr)
return BinOrErr.takeError();
std::unique_ptr<Binary> Bin = std::move(BinOrErr.get());
if (isArchSpecifierInvalidOrMissing(Bin.get(), Arch))
return make_error<CoverageMapError>(
coveragemap_error::invalid_or_missing_arch_specifier);
// MachO universal binaries which contain archives need to be treated as
// archives, not as regular binaries.
if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
for (auto &ObjForArch : Universal->objects()) {
// Skip slices within the universal binary which target the wrong arch.
std::string ObjArch = ObjForArch.getArchFlagName();
if (Arch != ObjArch)
continue;
auto ArchiveOrErr = ObjForArch.getAsArchive();
if (!ArchiveOrErr) {
// If this is not an archive, try treating it as a regular object.
consumeError(ArchiveOrErr.takeError());
break;
}
return BinaryCoverageReader::create(
ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers);
}
}
// Load coverage out of archive members.
if (auto *Ar = dyn_cast<Archive>(Bin.get())) {
Error Err = Error::success();
for (auto &Child : Ar->children(Err)) {
Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef();
if (!ChildBufOrErr)
return ChildBufOrErr.takeError();
auto ChildReadersOrErr = BinaryCoverageReader::create(
ChildBufOrErr.get(), Arch, ObjectFileBuffers);
if (!ChildReadersOrErr)
return ChildReadersOrErr.takeError();
for (auto &Reader : ChildReadersOrErr.get())
Readers.push_back(std::move(Reader));
}
if (Err)
return std::move(Err);
// Thin archives reference object files outside of the archive file, i.e.
// files which reside in memory not owned by the caller. Transfer ownership
// to the caller.
if (Ar->isThin())
for (auto &Buffer : Ar->takeThinBuffers())
ObjectFileBuffers.push_back(std::move(Buffer));
return std::move(Readers);
}
auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch);
if (!ReaderOrErr)
return ReaderOrErr.takeError();
Readers.push_back(std::move(ReaderOrErr.get()));
return std::move(Readers);
}
Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
if (CurrentRecord >= MappingRecords.size())
return make_error<CoverageMapError>(coveragemap_error::eof);
FunctionsFilenames.clear();
Expressions.clear();
MappingRegions.clear();
auto &R = MappingRecords[CurrentRecord];
RawCoverageMappingReader Reader(
R.CoverageMapping,
makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
FunctionsFilenames, Expressions, MappingRegions);
if (auto Err = Reader.read())
return Err;
Record.FunctionName = R.FunctionName;
Record.FunctionHash = R.FunctionHash;
Record.Filenames = FunctionsFilenames;
Record.Expressions = Expressions;
Record.MappingRegions = MappingRegions;
++CurrentRecord;
return Error::success();
}