llvm-for-llvmta/lib/CodeGen/RegUsageInfoCollector.cpp

217 lines
7.4 KiB
C++

//===-- RegUsageInfoCollector.cpp - Register Usage Information Collector --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This pass is required to take advantage of the interprocedural register
/// allocation infrastructure.
///
/// This pass is simple MachineFunction pass which collects register usage
/// details by iterating through each physical registers and checking
/// MRI::isPhysRegUsed() then creates a RegMask based on this details.
/// The pass then stores this RegMask in PhysicalRegisterUsageInfo.cpp
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterUsageInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
using namespace llvm;
#define DEBUG_TYPE "ip-regalloc"
STATISTIC(NumCSROpt,
"Number of functions optimized for callee saved registers");
namespace {
class RegUsageInfoCollector : public MachineFunctionPass {
public:
RegUsageInfoCollector() : MachineFunctionPass(ID) {
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeRegUsageInfoCollectorPass(Registry);
}
StringRef getPassName() const override {
return "Register Usage Information Collector Pass";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<PhysicalRegisterUsageInfo>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
// Call getCalleeSaves and then also set the bits for subregs and
// fully saved superregs.
static void computeCalleeSavedRegs(BitVector &SavedRegs, MachineFunction &MF);
static char ID;
};
} // end of anonymous namespace
char RegUsageInfoCollector::ID = 0;
INITIALIZE_PASS_BEGIN(RegUsageInfoCollector, "RegUsageInfoCollector",
"Register Usage Information Collector", false, false)
INITIALIZE_PASS_DEPENDENCY(PhysicalRegisterUsageInfo)
INITIALIZE_PASS_END(RegUsageInfoCollector, "RegUsageInfoCollector",
"Register Usage Information Collector", false, false)
FunctionPass *llvm::createRegUsageInfoCollector() {
return new RegUsageInfoCollector();
}
// TODO: Move to hook somwehere?
// Return true if it is useful to track the used registers for IPRA / no CSR
// optimizations. This is not useful for entry points, and computing the
// register usage information is expensive.
static bool isCallableFunction(const MachineFunction &MF) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_KERNEL:
return false;
default:
return true;
}
}
bool RegUsageInfoCollector::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo *MRI = &MF.getRegInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const LLVMTargetMachine &TM = MF.getTarget();
LLVM_DEBUG(dbgs() << " -------------------- " << getPassName()
<< " -------------------- \nFunction Name : "
<< MF.getName() << '\n');
// Analyzing the register usage may be expensive on some targets.
if (!isCallableFunction(MF)) {
LLVM_DEBUG(dbgs() << "Not analyzing non-callable function\n");
return false;
}
// If there are no callers, there's no point in computing more precise
// register usage here.
if (MF.getFunction().use_empty()) {
LLVM_DEBUG(dbgs() << "Not analyzing function with no callers\n");
return false;
}
std::vector<uint32_t> RegMask;
// Compute the size of the bit vector to represent all the registers.
// The bit vector is broken into 32-bit chunks, thus takes the ceil of
// the number of registers divided by 32 for the size.
unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs());
RegMask.resize(RegMaskSize, ~((uint32_t)0));
const Function &F = MF.getFunction();
PhysicalRegisterUsageInfo &PRUI = getAnalysis<PhysicalRegisterUsageInfo>();
PRUI.setTargetMachine(TM);
LLVM_DEBUG(dbgs() << "Clobbered Registers: ");
BitVector SavedRegs;
computeCalleeSavedRegs(SavedRegs, MF);
const BitVector &UsedPhysRegsMask = MRI->getUsedPhysRegsMask();
auto SetRegAsDefined = [&RegMask] (unsigned Reg) {
RegMask[Reg / 32] &= ~(1u << Reg % 32);
};
// Some targets can clobber registers "inside" a call, typically in
// linker-generated code.
for (const MCPhysReg Reg : TRI->getIntraCallClobberedRegs(&MF))
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
SetRegAsDefined(*AI);
// Scan all the physical registers. When a register is defined in the current
// function set it and all the aliasing registers as defined in the regmask.
// FIXME: Rewrite to use regunits.
for (unsigned PReg = 1, PRegE = TRI->getNumRegs(); PReg < PRegE; ++PReg) {
// Don't count registers that are saved and restored.
if (SavedRegs.test(PReg))
continue;
// If a register is defined by an instruction mark it as defined together
// with all it's unsaved aliases.
if (!MRI->def_empty(PReg)) {
for (MCRegAliasIterator AI(PReg, TRI, true); AI.isValid(); ++AI)
if (!SavedRegs.test(*AI))
SetRegAsDefined(*AI);
continue;
}
// If a register is in the UsedPhysRegsMask set then mark it as defined.
// All clobbered aliases will also be in the set, so we can skip setting
// as defined all the aliases here.
if (UsedPhysRegsMask.test(PReg))
SetRegAsDefined(PReg);
}
if (TargetFrameLowering::isSafeForNoCSROpt(F) &&
MF.getSubtarget().getFrameLowering()->isProfitableForNoCSROpt(F)) {
++NumCSROpt;
LLVM_DEBUG(dbgs() << MF.getName()
<< " function optimized for not having CSR.\n");
}
LLVM_DEBUG(
for (unsigned PReg = 1, PRegE = TRI->getNumRegs(); PReg < PRegE; ++PReg) {
if (MachineOperand::clobbersPhysReg(&(RegMask[0]), PReg))
dbgs() << printReg(PReg, TRI) << " ";
}
dbgs() << " \n----------------------------------------\n";
);
PRUI.storeUpdateRegUsageInfo(F, RegMask);
return false;
}
void RegUsageInfoCollector::
computeCalleeSavedRegs(BitVector &SavedRegs, MachineFunction &MF) {
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
// Target will return the set of registers that it saves/restores as needed.
SavedRegs.clear();
TFI.getCalleeSaves(MF, SavedRegs);
if (SavedRegs.none())
return;
// Insert subregs.
const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(&MF);
for (unsigned i = 0; CSRegs[i]; ++i) {
MCPhysReg Reg = CSRegs[i];
if (SavedRegs.test(Reg)) {
// Save subregisters
for (MCSubRegIterator SR(Reg, &TRI); SR.isValid(); ++SR)
SavedRegs.set(*SR);
}
}
}