llvm-for-llvmta/lib/CodeGen/PHIElimination.cpp

735 lines
29 KiB
C++

//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions. This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//
#include "PHIEliminationUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "phi-node-elimination"
static cl::opt<bool>
DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
cl::Hidden, cl::desc("Disable critical edge splitting "
"during PHI elimination"));
static cl::opt<bool>
SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
cl::Hidden, cl::desc("Split all critical edges during "
"PHI elimination"));
static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
"no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
namespace {
class PHIElimination : public MachineFunctionPass {
MachineRegisterInfo *MRI; // Machine register information
LiveVariables *LV;
LiveIntervals *LIS;
public:
static char ID; // Pass identification, replacement for typeid
PHIElimination() : MachineFunctionPass(ID) {
initializePHIEliminationPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
void LowerPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator LastPHIIt);
/// analyzePHINodes - Gather information about the PHI nodes in
/// here. In particular, we want to map the number of uses of a virtual
/// register which is used in a PHI node. We map that to the BB the
/// vreg is coming from. This is used later to determine when the vreg
/// is killed in the BB.
void analyzePHINodes(const MachineFunction& MF);
/// Split critical edges where necessary for good coalescer performance.
bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
MachineLoopInfo *MLI,
std::vector<SparseBitVector<>> *LiveInSets);
// These functions are temporary abstractions around LiveVariables and
// LiveIntervals, so they can go away when LiveVariables does.
bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
using BBVRegPair = std::pair<unsigned, Register>;
using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
VRegPHIUse VRegPHIUseCount;
// Defs of PHI sources which are implicit_def.
SmallPtrSet<MachineInstr*, 4> ImpDefs;
// Map reusable lowered PHI node -> incoming join register.
using LoweredPHIMap =
DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
LoweredPHIMap LoweredPHIs;
};
} // end anonymous namespace
STATISTIC(NumLowered, "Number of phis lowered");
STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
STATISTIC(NumReused, "Number of reused lowered phis");
char PHIElimination::ID = 0;
char& llvm::PHIEliminationID = PHIElimination::ID;
INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
"Eliminate PHI nodes for register allocation",
false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
"Eliminate PHI nodes for register allocation", false, false)
void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addUsedIfAvailable<LiveVariables>();
AU.addPreserved<LiveVariables>();
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
MRI = &MF.getRegInfo();
LV = getAnalysisIfAvailable<LiveVariables>();
LIS = getAnalysisIfAvailable<LiveIntervals>();
bool Changed = false;
// Split critical edges to help the coalescer.
if (!DisableEdgeSplitting && (LV || LIS)) {
// A set of live-in regs for each MBB which is used to update LV
// efficiently also with large functions.
std::vector<SparseBitVector<>> LiveInSets;
if (LV) {
LiveInSets.resize(MF.size());
for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
// Set the bit for this register for each MBB where it is
// live-through or live-in (killed).
unsigned VirtReg = Register::index2VirtReg(Index);
MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
if (!DefMI)
continue;
LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
while (AliveBlockItr != EndItr) {
unsigned BlockNum = *(AliveBlockItr++);
LiveInSets[BlockNum].set(Index);
}
// The register is live into an MBB in which it is killed but not
// defined. See comment for VarInfo in LiveVariables.h.
MachineBasicBlock *DefMBB = DefMI->getParent();
if (VI.Kills.size() > 1 ||
(!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
for (auto *MI : VI.Kills)
LiveInSets[MI->getParent()->getNumber()].set(Index);
}
}
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
for (auto &MBB : MF)
Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
}
// This pass takes the function out of SSA form.
MRI->leaveSSA();
// Populate VRegPHIUseCount
analyzePHINodes(MF);
// Eliminate PHI instructions by inserting copies into predecessor blocks.
for (auto &MBB : MF)
Changed |= EliminatePHINodes(MF, MBB);
// Remove dead IMPLICIT_DEF instructions.
for (MachineInstr *DefMI : ImpDefs) {
Register DefReg = DefMI->getOperand(0).getReg();
if (MRI->use_nodbg_empty(DefReg)) {
if (LIS)
LIS->RemoveMachineInstrFromMaps(*DefMI);
DefMI->eraseFromParent();
}
}
// Clean up the lowered PHI instructions.
for (auto &I : LoweredPHIs) {
if (LIS)
LIS->RemoveMachineInstrFromMaps(*I.first);
MF.DeleteMachineInstr(I.first);
}
// TODO: we should use the incremental DomTree updater here.
if (Changed)
if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
MDT->getBase().recalculate(MF);
LoweredPHIs.clear();
ImpDefs.clear();
VRegPHIUseCount.clear();
MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
return Changed;
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
MachineBasicBlock &MBB) {
if (MBB.empty() || !MBB.front().isPHI())
return false; // Quick exit for basic blocks without PHIs.
// Get an iterator to the last PHI node.
MachineBasicBlock::iterator LastPHIIt =
std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
while (MBB.front().isPHI())
LowerPHINode(MBB, LastPHIIt);
return true;
}
/// Return true if all defs of VirtReg are implicit-defs.
/// This includes registers with no defs.
static bool isImplicitlyDefined(unsigned VirtReg,
const MachineRegisterInfo &MRI) {
for (MachineInstr &DI : MRI.def_instructions(VirtReg))
if (!DI.isImplicitDef())
return false;
return true;
}
/// Return true if all sources of the phi node are implicit_def's, or undef's.
static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
const MachineRegisterInfo &MRI) {
for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
const MachineOperand &MO = MPhi.getOperand(I);
if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
return false;
}
return true;
}
/// LowerPHINode - Lower the PHI node at the top of the specified block.
void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator LastPHIIt) {
++NumLowered;
MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(&*MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
Register DestReg = MPhi->getOperand(0).getReg();
assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
bool isDead = MPhi->getOperand(0).isDead();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
unsigned IncomingReg = 0;
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
MachineInstr *PHICopy = nullptr;
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
if (allPhiOperandsUndefined(*MPhi, *MRI))
// If all sources of a PHI node are implicit_def or undef uses, just emit an
// implicit_def instead of a copy.
PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
else {
// Can we reuse an earlier PHI node? This only happens for critical edges,
// typically those created by tail duplication.
unsigned &entry = LoweredPHIs[MPhi];
if (entry) {
// An identical PHI node was already lowered. Reuse the incoming register.
IncomingReg = entry;
reusedIncoming = true;
++NumReused;
LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
<< *MPhi);
} else {
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
}
// Give the target possiblity to handle special cases fallthrough otherwise
PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
IncomingReg, DestReg);
}
// Update live variable information if there is any.
if (LV) {
if (IncomingReg) {
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
// Increment use count of the newly created virtual register.
LV->setPHIJoin(IncomingReg);
MachineInstr *OldKill = nullptr;
bool IsPHICopyAfterOldKill = false;
if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
// Calculate whether the PHICopy is after the OldKill.
// In general, the PHICopy is inserted as the first non-phi instruction
// by default, so it's before the OldKill. But some Target hooks for
// createPHIDestinationCopy() may modify the default insert position of
// PHICopy.
for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
I != E; ++I) {
if (I == PHICopy)
break;
if (I == OldKill) {
IsPHICopyAfterOldKill = true;
break;
}
}
}
// When we are reusing the incoming register and it has been marked killed
// by OldKill, if the PHICopy is after the OldKill, we should remove the
// killed flag from OldKill.
if (IsPHICopyAfterOldKill) {
LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
LLVM_DEBUG(MBB.dump());
}
// Add information to LiveVariables to know that the first used incoming
// value or the resued incoming value whose PHICopy is after the OldKIll
// is killed. Note that because the value is defined in several places
// (once each for each incoming block), the "def" block and instruction
// fields for the VarInfo is not filled in.
if (!OldKill || IsPHICopyAfterOldKill)
LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
}
// Since we are going to be deleting the PHI node, if it is the last use of
// any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
LV->removeVirtualRegistersKilled(*MPhi);
// If the result is dead, update LV.
if (isDead) {
LV->addVirtualRegisterDead(DestReg, *PHICopy);
LV->removeVirtualRegisterDead(DestReg, *MPhi);
}
}
// Update LiveIntervals for the new copy or implicit def.
if (LIS) {
SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
if (IncomingReg) {
// Add the region from the beginning of MBB to the copy instruction to
// IncomingReg's live interval.
LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
if (!IncomingVNI)
IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
LIS->getVNInfoAllocator());
IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
DestCopyIndex.getRegSlot(),
IncomingVNI));
}
LiveInterval &DestLI = LIS->getInterval(DestReg);
assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
if (DestLI.endIndex().isDead()) {
// A dead PHI's live range begins and ends at the start of the MBB, but
// the lowered copy, which will still be dead, needs to begin and end at
// the copy instruction.
VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
assert(OrigDestVNI && "PHI destination should be live at block entry.");
DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
LIS->getVNInfoAllocator());
DestLI.removeValNo(OrigDestVNI);
} else {
// Otherwise, remove the region from the beginning of MBB to the copy
// instruction from DestReg's live interval.
DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
assert(DestVNI && "PHI destination should be live at its definition.");
DestVNI->def = DestCopyIndex.getRegSlot();
}
}
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
MPhi->getOperand(i).getReg())];
// Now loop over all of the incoming arguments, changing them to copy into the
// IncomingReg register in the corresponding predecessor basic block.
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
for (int i = NumSrcs - 1; i >= 0; --i) {
Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
isImplicitlyDefined(SrcReg, *MRI);
assert(Register::isVirtualRegister(SrcReg) &&
"Machine PHI Operands must all be virtual registers!");
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
// path the PHI.
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the same
// basic block.
if (!MBBsInsertedInto.insert(&opBlock).second)
continue; // If the copy has already been emitted, we're done.
MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
assert(SrcRegDef->getOperand(0).isReg() &&
SrcRegDef->getOperand(0).isDef() &&
"Expected operand 0 to be a reg def!");
// Now that the PHI's use has been removed (as the instruction was
// removed) there should be no other uses of the SrcReg.
assert(MRI->use_empty(SrcReg) &&
"Expected a single use from UnspillableTerminator");
SrcRegDef->getOperand(0).setReg(IncomingReg);
continue;
}
// Find a safe location to insert the copy, this may be the first terminator
// in the block (or end()).
MachineBasicBlock::iterator InsertPos =
findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
// Insert the copy.
MachineInstr *NewSrcInstr = nullptr;
if (!reusedIncoming && IncomingReg) {
if (SrcUndef) {
// The source register is undefined, so there is no need for a real
// COPY, but we still need to ensure joint dominance by defs.
// Insert an IMPLICIT_DEF instruction.
NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF),
IncomingReg);
// Clean up the old implicit-def, if there even was one.
if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
if (DefMI->isImplicitDef())
ImpDefs.insert(DefMI);
} else {
NewSrcInstr =
TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
SrcReg, SrcSubReg, IncomingReg);
}
}
// We only need to update the LiveVariables kill of SrcReg if this was the
// last PHI use of SrcReg to be lowered on this CFG edge and it is not live
// out of the predecessor. We can also ignore undef sources.
if (LV && !SrcUndef &&
!VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
!LV->isLiveOut(SrcReg, opBlock)) {
// We want to be able to insert a kill of the register if this PHI (aka,
// the copy we just inserted) is the last use of the source value. Live
// variable analysis conservatively handles this by saying that the value
// is live until the end of the block the PHI entry lives in. If the value
// really is dead at the PHI copy, there will be no successor blocks which
// have the value live-in.
// Okay, if we now know that the value is not live out of the block, we
// can add a kill marker in this block saying that it kills the incoming
// value!
// In our final twist, we have to decide which instruction kills the
// register. In most cases this is the copy, however, terminator
// instructions at the end of the block may also use the value. In this
// case, we should mark the last such terminator as being the killing
// block, not the copy.
MachineBasicBlock::iterator KillInst = opBlock.end();
MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
for (MachineBasicBlock::iterator Term = FirstTerm;
Term != opBlock.end(); ++Term) {
if (Term->readsRegister(SrcReg))
KillInst = Term;
}
if (KillInst == opBlock.end()) {
// No terminator uses the register.
if (reusedIncoming || !IncomingReg) {
// We may have to rewind a bit if we didn't insert a copy this time.
KillInst = FirstTerm;
while (KillInst != opBlock.begin()) {
--KillInst;
if (KillInst->isDebugInstr())
continue;
if (KillInst->readsRegister(SrcReg))
break;
}
} else {
// We just inserted this copy.
KillInst = NewSrcInstr;
}
}
assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
// Finally, mark it killed.
LV->addVirtualRegisterKilled(SrcReg, *KillInst);
// This vreg no longer lives all of the way through opBlock.
unsigned opBlockNum = opBlock.getNumber();
LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
}
if (LIS) {
if (NewSrcInstr) {
LIS->InsertMachineInstrInMaps(*NewSrcInstr);
LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
}
if (!SrcUndef &&
!VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
LiveInterval &SrcLI = LIS->getInterval(SrcReg);
bool isLiveOut = false;
for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
SE = opBlock.succ_end(); SI != SE; ++SI) {
SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
// Definitions by other PHIs are not truly live-in for our purposes.
if (VNI && VNI->def != startIdx) {
isLiveOut = true;
break;
}
}
if (!isLiveOut) {
MachineBasicBlock::iterator KillInst = opBlock.end();
MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
for (MachineBasicBlock::iterator Term = FirstTerm;
Term != opBlock.end(); ++Term) {
if (Term->readsRegister(SrcReg))
KillInst = Term;
}
if (KillInst == opBlock.end()) {
// No terminator uses the register.
if (reusedIncoming || !IncomingReg) {
// We may have to rewind a bit if we didn't just insert a copy.
KillInst = FirstTerm;
while (KillInst != opBlock.begin()) {
--KillInst;
if (KillInst->isDebugInstr())
continue;
if (KillInst->readsRegister(SrcReg))
break;
}
} else {
// We just inserted this copy.
KillInst = std::prev(InsertPos);
}
}
assert(KillInst->readsRegister(SrcReg) &&
"Cannot find kill instruction");
SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
SrcLI.removeSegment(LastUseIndex.getRegSlot(),
LIS->getMBBEndIdx(&opBlock));
}
}
}
}
// Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
if (reusedIncoming || !IncomingReg) {
if (LIS)
LIS->RemoveMachineInstrFromMaps(*MPhi);
MF.DeleteMachineInstr(MPhi);
}
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
for (const auto &MBB : MF)
for (const auto &BBI : MBB) {
if (!BBI.isPHI())
break;
for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
BBI.getOperand(i).getReg())];
}
}
bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineLoopInfo *MLI,
std::vector<SparseBitVector<>> *LiveInSets) {
if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
return false; // Quick exit for basic blocks without PHIs.
const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
bool Changed = false;
for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
BBI != BBE && BBI->isPHI(); ++BBI) {
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
Register Reg = BBI->getOperand(i).getReg();
MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
// Is there a critical edge from PreMBB to MBB?
if (PreMBB->succ_size() == 1)
continue;
// Avoid splitting backedges of loops. It would introduce small
// out-of-line blocks into the loop which is very bad for code placement.
if (PreMBB == &MBB && !SplitAllCriticalEdges)
continue;
const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
continue;
// LV doesn't consider a phi use live-out, so isLiveOut only returns true
// when the source register is live-out for some other reason than a phi
// use. That means the copy we will insert in PreMBB won't be a kill, and
// there is a risk it may not be coalesced away.
//
// If the copy would be a kill, there is no need to split the edge.
bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
continue;
if (ShouldSplit) {
LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
<< printMBBReference(*PreMBB) << " -> "
<< printMBBReference(MBB) << ": " << *BBI);
}
// If Reg is not live-in to MBB, it means it must be live-in to some
// other PreMBB successor, and we can avoid the interference by splitting
// the edge.
//
// If Reg *is* live-in to MBB, the interference is inevitable and a copy
// is likely to be left after coalescing. If we are looking at a loop
// exiting edge, split it so we won't insert code in the loop, otherwise
// don't bother.
ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
// Check for a loop exiting edge.
if (!ShouldSplit && CurLoop != PreLoop) {
LLVM_DEBUG({
dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
if (PreLoop)
dbgs() << "PreLoop: " << *PreLoop;
if (CurLoop)
dbgs() << "CurLoop: " << *CurLoop;
});
// This edge could be entering a loop, exiting a loop, or it could be
// both: Jumping directly form one loop to the header of a sibling
// loop.
// Split unless this edge is entering CurLoop from an outer loop.
ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
}
if (!ShouldSplit && !SplitAllCriticalEdges)
continue;
if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
continue;
}
Changed = true;
++NumCriticalEdgesSplit;
}
}
return Changed;
}
bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
assert((LV || LIS) &&
"isLiveIn() requires either LiveVariables or LiveIntervals");
if (LIS)
return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
else
return LV->isLiveIn(Reg, *MBB);
}
bool PHIElimination::isLiveOutPastPHIs(Register Reg,
const MachineBasicBlock *MBB) {
assert((LV || LIS) &&
"isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
// LiveVariables considers uses in PHIs to be in the predecessor basic block,
// so that a register used only in a PHI is not live out of the block. In
// contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
// in the predecessor basic block, so that a register used only in a PHI is live
// out of the block.
if (LIS) {
const LiveInterval &LI = LIS->getInterval(Reg);
for (const MachineBasicBlock *SI : MBB->successors())
if (LI.liveAt(LIS->getMBBStartIdx(SI)))
return true;
return false;
} else {
return LV->isLiveOut(Reg, *MBB);
}
}