735 lines
29 KiB
C++
735 lines
29 KiB
C++
//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates machine instruction PHI nodes by inserting copy
|
|
// instructions. This destroys SSA information, but is the desired input for
|
|
// some register allocators.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PHIEliminationUtils.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "phi-node-elimination"
|
|
|
|
static cl::opt<bool>
|
|
DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
|
|
cl::Hidden, cl::desc("Disable critical edge splitting "
|
|
"during PHI elimination"));
|
|
|
|
static cl::opt<bool>
|
|
SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
|
|
cl::Hidden, cl::desc("Split all critical edges during "
|
|
"PHI elimination"));
|
|
|
|
static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
|
|
"no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
|
|
cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
|
|
|
|
namespace {
|
|
|
|
class PHIElimination : public MachineFunctionPass {
|
|
MachineRegisterInfo *MRI; // Machine register information
|
|
LiveVariables *LV;
|
|
LiveIntervals *LIS;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
PHIElimination() : MachineFunctionPass(ID) {
|
|
initializePHIEliminationPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
private:
|
|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
|
|
/// in predecessor basic blocks.
|
|
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
|
|
|
|
void LowerPHINode(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator LastPHIIt);
|
|
|
|
/// analyzePHINodes - Gather information about the PHI nodes in
|
|
/// here. In particular, we want to map the number of uses of a virtual
|
|
/// register which is used in a PHI node. We map that to the BB the
|
|
/// vreg is coming from. This is used later to determine when the vreg
|
|
/// is killed in the BB.
|
|
void analyzePHINodes(const MachineFunction& MF);
|
|
|
|
/// Split critical edges where necessary for good coalescer performance.
|
|
bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineLoopInfo *MLI,
|
|
std::vector<SparseBitVector<>> *LiveInSets);
|
|
|
|
// These functions are temporary abstractions around LiveVariables and
|
|
// LiveIntervals, so they can go away when LiveVariables does.
|
|
bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
|
|
bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
|
|
|
|
using BBVRegPair = std::pair<unsigned, Register>;
|
|
using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
|
|
|
|
VRegPHIUse VRegPHIUseCount;
|
|
|
|
// Defs of PHI sources which are implicit_def.
|
|
SmallPtrSet<MachineInstr*, 4> ImpDefs;
|
|
|
|
// Map reusable lowered PHI node -> incoming join register.
|
|
using LoweredPHIMap =
|
|
DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
|
|
LoweredPHIMap LoweredPHIs;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
STATISTIC(NumLowered, "Number of phis lowered");
|
|
STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
|
|
STATISTIC(NumReused, "Number of reused lowered phis");
|
|
|
|
char PHIElimination::ID = 0;
|
|
|
|
char& llvm::PHIEliminationID = PHIElimination::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
|
|
"Eliminate PHI nodes for register allocation",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
|
|
INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
|
|
"Eliminate PHI nodes for register allocation", false, false)
|
|
|
|
void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addUsedIfAvailable<LiveVariables>();
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
|
|
MRI = &MF.getRegInfo();
|
|
LV = getAnalysisIfAvailable<LiveVariables>();
|
|
LIS = getAnalysisIfAvailable<LiveIntervals>();
|
|
|
|
bool Changed = false;
|
|
|
|
// Split critical edges to help the coalescer.
|
|
if (!DisableEdgeSplitting && (LV || LIS)) {
|
|
// A set of live-in regs for each MBB which is used to update LV
|
|
// efficiently also with large functions.
|
|
std::vector<SparseBitVector<>> LiveInSets;
|
|
if (LV) {
|
|
LiveInSets.resize(MF.size());
|
|
for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
|
|
// Set the bit for this register for each MBB where it is
|
|
// live-through or live-in (killed).
|
|
unsigned VirtReg = Register::index2VirtReg(Index);
|
|
MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
|
|
if (!DefMI)
|
|
continue;
|
|
LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
|
|
SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
|
|
SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
|
|
while (AliveBlockItr != EndItr) {
|
|
unsigned BlockNum = *(AliveBlockItr++);
|
|
LiveInSets[BlockNum].set(Index);
|
|
}
|
|
// The register is live into an MBB in which it is killed but not
|
|
// defined. See comment for VarInfo in LiveVariables.h.
|
|
MachineBasicBlock *DefMBB = DefMI->getParent();
|
|
if (VI.Kills.size() > 1 ||
|
|
(!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
|
|
for (auto *MI : VI.Kills)
|
|
LiveInSets[MI->getParent()->getNumber()].set(Index);
|
|
}
|
|
}
|
|
|
|
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
|
|
for (auto &MBB : MF)
|
|
Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
|
|
}
|
|
|
|
// This pass takes the function out of SSA form.
|
|
MRI->leaveSSA();
|
|
|
|
// Populate VRegPHIUseCount
|
|
analyzePHINodes(MF);
|
|
|
|
// Eliminate PHI instructions by inserting copies into predecessor blocks.
|
|
for (auto &MBB : MF)
|
|
Changed |= EliminatePHINodes(MF, MBB);
|
|
|
|
// Remove dead IMPLICIT_DEF instructions.
|
|
for (MachineInstr *DefMI : ImpDefs) {
|
|
Register DefReg = DefMI->getOperand(0).getReg();
|
|
if (MRI->use_nodbg_empty(DefReg)) {
|
|
if (LIS)
|
|
LIS->RemoveMachineInstrFromMaps(*DefMI);
|
|
DefMI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Clean up the lowered PHI instructions.
|
|
for (auto &I : LoweredPHIs) {
|
|
if (LIS)
|
|
LIS->RemoveMachineInstrFromMaps(*I.first);
|
|
MF.DeleteMachineInstr(I.first);
|
|
}
|
|
|
|
// TODO: we should use the incremental DomTree updater here.
|
|
if (Changed)
|
|
if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
|
|
MDT->getBase().recalculate(MF);
|
|
|
|
LoweredPHIs.clear();
|
|
ImpDefs.clear();
|
|
VRegPHIUseCount.clear();
|
|
|
|
MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
|
|
/// predecessor basic blocks.
|
|
bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) {
|
|
if (MBB.empty() || !MBB.front().isPHI())
|
|
return false; // Quick exit for basic blocks without PHIs.
|
|
|
|
// Get an iterator to the last PHI node.
|
|
MachineBasicBlock::iterator LastPHIIt =
|
|
std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
|
|
|
|
while (MBB.front().isPHI())
|
|
LowerPHINode(MBB, LastPHIIt);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if all defs of VirtReg are implicit-defs.
|
|
/// This includes registers with no defs.
|
|
static bool isImplicitlyDefined(unsigned VirtReg,
|
|
const MachineRegisterInfo &MRI) {
|
|
for (MachineInstr &DI : MRI.def_instructions(VirtReg))
|
|
if (!DI.isImplicitDef())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return true if all sources of the phi node are implicit_def's, or undef's.
|
|
static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
|
|
const MachineRegisterInfo &MRI) {
|
|
for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
|
|
const MachineOperand &MO = MPhi.getOperand(I);
|
|
if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
/// LowerPHINode - Lower the PHI node at the top of the specified block.
|
|
void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator LastPHIIt) {
|
|
++NumLowered;
|
|
|
|
MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
|
|
|
|
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
|
|
MachineInstr *MPhi = MBB.remove(&*MBB.begin());
|
|
|
|
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
|
|
Register DestReg = MPhi->getOperand(0).getReg();
|
|
assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
|
|
bool isDead = MPhi->getOperand(0).isDead();
|
|
|
|
// Create a new register for the incoming PHI arguments.
|
|
MachineFunction &MF = *MBB.getParent();
|
|
unsigned IncomingReg = 0;
|
|
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
|
|
|
|
// Insert a register to register copy at the top of the current block (but
|
|
// after any remaining phi nodes) which copies the new incoming register
|
|
// into the phi node destination.
|
|
MachineInstr *PHICopy = nullptr;
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
if (allPhiOperandsUndefined(*MPhi, *MRI))
|
|
// If all sources of a PHI node are implicit_def or undef uses, just emit an
|
|
// implicit_def instead of a copy.
|
|
PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
|
|
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
|
|
else {
|
|
// Can we reuse an earlier PHI node? This only happens for critical edges,
|
|
// typically those created by tail duplication.
|
|
unsigned &entry = LoweredPHIs[MPhi];
|
|
if (entry) {
|
|
// An identical PHI node was already lowered. Reuse the incoming register.
|
|
IncomingReg = entry;
|
|
reusedIncoming = true;
|
|
++NumReused;
|
|
LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
|
|
<< *MPhi);
|
|
} else {
|
|
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
|
|
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
}
|
|
// Give the target possiblity to handle special cases fallthrough otherwise
|
|
PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
|
|
IncomingReg, DestReg);
|
|
}
|
|
|
|
// Update live variable information if there is any.
|
|
if (LV) {
|
|
if (IncomingReg) {
|
|
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
|
|
|
|
// Increment use count of the newly created virtual register.
|
|
LV->setPHIJoin(IncomingReg);
|
|
|
|
MachineInstr *OldKill = nullptr;
|
|
bool IsPHICopyAfterOldKill = false;
|
|
|
|
if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
|
|
// Calculate whether the PHICopy is after the OldKill.
|
|
// In general, the PHICopy is inserted as the first non-phi instruction
|
|
// by default, so it's before the OldKill. But some Target hooks for
|
|
// createPHIDestinationCopy() may modify the default insert position of
|
|
// PHICopy.
|
|
for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
|
|
I != E; ++I) {
|
|
if (I == PHICopy)
|
|
break;
|
|
|
|
if (I == OldKill) {
|
|
IsPHICopyAfterOldKill = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// When we are reusing the incoming register and it has been marked killed
|
|
// by OldKill, if the PHICopy is after the OldKill, we should remove the
|
|
// killed flag from OldKill.
|
|
if (IsPHICopyAfterOldKill) {
|
|
LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
|
|
LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
|
|
LLVM_DEBUG(MBB.dump());
|
|
}
|
|
|
|
// Add information to LiveVariables to know that the first used incoming
|
|
// value or the resued incoming value whose PHICopy is after the OldKIll
|
|
// is killed. Note that because the value is defined in several places
|
|
// (once each for each incoming block), the "def" block and instruction
|
|
// fields for the VarInfo is not filled in.
|
|
if (!OldKill || IsPHICopyAfterOldKill)
|
|
LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
|
|
}
|
|
|
|
// Since we are going to be deleting the PHI node, if it is the last use of
|
|
// any registers, or if the value itself is dead, we need to move this
|
|
// information over to the new copy we just inserted.
|
|
LV->removeVirtualRegistersKilled(*MPhi);
|
|
|
|
// If the result is dead, update LV.
|
|
if (isDead) {
|
|
LV->addVirtualRegisterDead(DestReg, *PHICopy);
|
|
LV->removeVirtualRegisterDead(DestReg, *MPhi);
|
|
}
|
|
}
|
|
|
|
// Update LiveIntervals for the new copy or implicit def.
|
|
if (LIS) {
|
|
SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
|
|
|
|
SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
|
|
if (IncomingReg) {
|
|
// Add the region from the beginning of MBB to the copy instruction to
|
|
// IncomingReg's live interval.
|
|
LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
|
|
VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
|
|
if (!IncomingVNI)
|
|
IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
|
|
LIS->getVNInfoAllocator());
|
|
IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
|
|
DestCopyIndex.getRegSlot(),
|
|
IncomingVNI));
|
|
}
|
|
|
|
LiveInterval &DestLI = LIS->getInterval(DestReg);
|
|
assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
|
|
if (DestLI.endIndex().isDead()) {
|
|
// A dead PHI's live range begins and ends at the start of the MBB, but
|
|
// the lowered copy, which will still be dead, needs to begin and end at
|
|
// the copy instruction.
|
|
VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
|
|
assert(OrigDestVNI && "PHI destination should be live at block entry.");
|
|
DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
|
|
DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
|
|
LIS->getVNInfoAllocator());
|
|
DestLI.removeValNo(OrigDestVNI);
|
|
} else {
|
|
// Otherwise, remove the region from the beginning of MBB to the copy
|
|
// instruction from DestReg's live interval.
|
|
DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
|
|
VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
|
|
assert(DestVNI && "PHI destination should be live at its definition.");
|
|
DestVNI->def = DestCopyIndex.getRegSlot();
|
|
}
|
|
}
|
|
|
|
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
|
|
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
|
|
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
|
|
MPhi->getOperand(i).getReg())];
|
|
|
|
// Now loop over all of the incoming arguments, changing them to copy into the
|
|
// IncomingReg register in the corresponding predecessor basic block.
|
|
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
|
|
for (int i = NumSrcs - 1; i >= 0; --i) {
|
|
Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
|
|
unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
|
|
bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
|
|
isImplicitlyDefined(SrcReg, *MRI);
|
|
assert(Register::isVirtualRegister(SrcReg) &&
|
|
"Machine PHI Operands must all be virtual registers!");
|
|
|
|
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
|
|
// path the PHI.
|
|
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
|
|
|
|
// Check to make sure we haven't already emitted the copy for this block.
|
|
// This can happen because PHI nodes may have multiple entries for the same
|
|
// basic block.
|
|
if (!MBBsInsertedInto.insert(&opBlock).second)
|
|
continue; // If the copy has already been emitted, we're done.
|
|
|
|
MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
|
|
if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
|
|
assert(SrcRegDef->getOperand(0).isReg() &&
|
|
SrcRegDef->getOperand(0).isDef() &&
|
|
"Expected operand 0 to be a reg def!");
|
|
// Now that the PHI's use has been removed (as the instruction was
|
|
// removed) there should be no other uses of the SrcReg.
|
|
assert(MRI->use_empty(SrcReg) &&
|
|
"Expected a single use from UnspillableTerminator");
|
|
SrcRegDef->getOperand(0).setReg(IncomingReg);
|
|
continue;
|
|
}
|
|
|
|
// Find a safe location to insert the copy, this may be the first terminator
|
|
// in the block (or end()).
|
|
MachineBasicBlock::iterator InsertPos =
|
|
findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
|
|
|
|
// Insert the copy.
|
|
MachineInstr *NewSrcInstr = nullptr;
|
|
if (!reusedIncoming && IncomingReg) {
|
|
if (SrcUndef) {
|
|
// The source register is undefined, so there is no need for a real
|
|
// COPY, but we still need to ensure joint dominance by defs.
|
|
// Insert an IMPLICIT_DEF instruction.
|
|
NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
|
|
TII->get(TargetOpcode::IMPLICIT_DEF),
|
|
IncomingReg);
|
|
|
|
// Clean up the old implicit-def, if there even was one.
|
|
if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
|
|
if (DefMI->isImplicitDef())
|
|
ImpDefs.insert(DefMI);
|
|
} else {
|
|
NewSrcInstr =
|
|
TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
|
|
SrcReg, SrcSubReg, IncomingReg);
|
|
}
|
|
}
|
|
|
|
// We only need to update the LiveVariables kill of SrcReg if this was the
|
|
// last PHI use of SrcReg to be lowered on this CFG edge and it is not live
|
|
// out of the predecessor. We can also ignore undef sources.
|
|
if (LV && !SrcUndef &&
|
|
!VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
|
|
!LV->isLiveOut(SrcReg, opBlock)) {
|
|
// We want to be able to insert a kill of the register if this PHI (aka,
|
|
// the copy we just inserted) is the last use of the source value. Live
|
|
// variable analysis conservatively handles this by saying that the value
|
|
// is live until the end of the block the PHI entry lives in. If the value
|
|
// really is dead at the PHI copy, there will be no successor blocks which
|
|
// have the value live-in.
|
|
|
|
// Okay, if we now know that the value is not live out of the block, we
|
|
// can add a kill marker in this block saying that it kills the incoming
|
|
// value!
|
|
|
|
// In our final twist, we have to decide which instruction kills the
|
|
// register. In most cases this is the copy, however, terminator
|
|
// instructions at the end of the block may also use the value. In this
|
|
// case, we should mark the last such terminator as being the killing
|
|
// block, not the copy.
|
|
MachineBasicBlock::iterator KillInst = opBlock.end();
|
|
MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
|
|
for (MachineBasicBlock::iterator Term = FirstTerm;
|
|
Term != opBlock.end(); ++Term) {
|
|
if (Term->readsRegister(SrcReg))
|
|
KillInst = Term;
|
|
}
|
|
|
|
if (KillInst == opBlock.end()) {
|
|
// No terminator uses the register.
|
|
|
|
if (reusedIncoming || !IncomingReg) {
|
|
// We may have to rewind a bit if we didn't insert a copy this time.
|
|
KillInst = FirstTerm;
|
|
while (KillInst != opBlock.begin()) {
|
|
--KillInst;
|
|
if (KillInst->isDebugInstr())
|
|
continue;
|
|
if (KillInst->readsRegister(SrcReg))
|
|
break;
|
|
}
|
|
} else {
|
|
// We just inserted this copy.
|
|
KillInst = NewSrcInstr;
|
|
}
|
|
}
|
|
assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
|
|
|
|
// Finally, mark it killed.
|
|
LV->addVirtualRegisterKilled(SrcReg, *KillInst);
|
|
|
|
// This vreg no longer lives all of the way through opBlock.
|
|
unsigned opBlockNum = opBlock.getNumber();
|
|
LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
|
|
}
|
|
|
|
if (LIS) {
|
|
if (NewSrcInstr) {
|
|
LIS->InsertMachineInstrInMaps(*NewSrcInstr);
|
|
LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
|
|
}
|
|
|
|
if (!SrcUndef &&
|
|
!VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
|
|
LiveInterval &SrcLI = LIS->getInterval(SrcReg);
|
|
|
|
bool isLiveOut = false;
|
|
for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
|
|
SE = opBlock.succ_end(); SI != SE; ++SI) {
|
|
SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
|
|
VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
|
|
|
|
// Definitions by other PHIs are not truly live-in for our purposes.
|
|
if (VNI && VNI->def != startIdx) {
|
|
isLiveOut = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!isLiveOut) {
|
|
MachineBasicBlock::iterator KillInst = opBlock.end();
|
|
MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
|
|
for (MachineBasicBlock::iterator Term = FirstTerm;
|
|
Term != opBlock.end(); ++Term) {
|
|
if (Term->readsRegister(SrcReg))
|
|
KillInst = Term;
|
|
}
|
|
|
|
if (KillInst == opBlock.end()) {
|
|
// No terminator uses the register.
|
|
|
|
if (reusedIncoming || !IncomingReg) {
|
|
// We may have to rewind a bit if we didn't just insert a copy.
|
|
KillInst = FirstTerm;
|
|
while (KillInst != opBlock.begin()) {
|
|
--KillInst;
|
|
if (KillInst->isDebugInstr())
|
|
continue;
|
|
if (KillInst->readsRegister(SrcReg))
|
|
break;
|
|
}
|
|
} else {
|
|
// We just inserted this copy.
|
|
KillInst = std::prev(InsertPos);
|
|
}
|
|
}
|
|
assert(KillInst->readsRegister(SrcReg) &&
|
|
"Cannot find kill instruction");
|
|
|
|
SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
|
|
SrcLI.removeSegment(LastUseIndex.getRegSlot(),
|
|
LIS->getMBBEndIdx(&opBlock));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
|
|
if (reusedIncoming || !IncomingReg) {
|
|
if (LIS)
|
|
LIS->RemoveMachineInstrFromMaps(*MPhi);
|
|
MF.DeleteMachineInstr(MPhi);
|
|
}
|
|
}
|
|
|
|
/// analyzePHINodes - Gather information about the PHI nodes in here. In
|
|
/// particular, we want to map the number of uses of a virtual register which is
|
|
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
|
|
/// used later to determine when the vreg is killed in the BB.
|
|
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
|
|
for (const auto &MBB : MF)
|
|
for (const auto &BBI : MBB) {
|
|
if (!BBI.isPHI())
|
|
break;
|
|
for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
|
|
++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
|
|
BBI.getOperand(i).getReg())];
|
|
}
|
|
}
|
|
|
|
bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
|
|
MachineBasicBlock &MBB,
|
|
MachineLoopInfo *MLI,
|
|
std::vector<SparseBitVector<>> *LiveInSets) {
|
|
if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
|
|
return false; // Quick exit for basic blocks without PHIs.
|
|
|
|
const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
|
|
bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
|
|
|
|
bool Changed = false;
|
|
for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
|
|
BBI != BBE && BBI->isPHI(); ++BBI) {
|
|
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
|
|
Register Reg = BBI->getOperand(i).getReg();
|
|
MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
|
|
// Is there a critical edge from PreMBB to MBB?
|
|
if (PreMBB->succ_size() == 1)
|
|
continue;
|
|
|
|
// Avoid splitting backedges of loops. It would introduce small
|
|
// out-of-line blocks into the loop which is very bad for code placement.
|
|
if (PreMBB == &MBB && !SplitAllCriticalEdges)
|
|
continue;
|
|
const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
|
|
if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
|
|
continue;
|
|
|
|
// LV doesn't consider a phi use live-out, so isLiveOut only returns true
|
|
// when the source register is live-out for some other reason than a phi
|
|
// use. That means the copy we will insert in PreMBB won't be a kill, and
|
|
// there is a risk it may not be coalesced away.
|
|
//
|
|
// If the copy would be a kill, there is no need to split the edge.
|
|
bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
|
|
if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
|
|
continue;
|
|
if (ShouldSplit) {
|
|
LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
|
|
<< printMBBReference(*PreMBB) << " -> "
|
|
<< printMBBReference(MBB) << ": " << *BBI);
|
|
}
|
|
|
|
// If Reg is not live-in to MBB, it means it must be live-in to some
|
|
// other PreMBB successor, and we can avoid the interference by splitting
|
|
// the edge.
|
|
//
|
|
// If Reg *is* live-in to MBB, the interference is inevitable and a copy
|
|
// is likely to be left after coalescing. If we are looking at a loop
|
|
// exiting edge, split it so we won't insert code in the loop, otherwise
|
|
// don't bother.
|
|
ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
|
|
|
|
// Check for a loop exiting edge.
|
|
if (!ShouldSplit && CurLoop != PreLoop) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
|
|
if (PreLoop)
|
|
dbgs() << "PreLoop: " << *PreLoop;
|
|
if (CurLoop)
|
|
dbgs() << "CurLoop: " << *CurLoop;
|
|
});
|
|
// This edge could be entering a loop, exiting a loop, or it could be
|
|
// both: Jumping directly form one loop to the header of a sibling
|
|
// loop.
|
|
// Split unless this edge is entering CurLoop from an outer loop.
|
|
ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
|
|
}
|
|
if (!ShouldSplit && !SplitAllCriticalEdges)
|
|
continue;
|
|
if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
|
|
LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
|
|
continue;
|
|
}
|
|
Changed = true;
|
|
++NumCriticalEdgesSplit;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
|
|
assert((LV || LIS) &&
|
|
"isLiveIn() requires either LiveVariables or LiveIntervals");
|
|
if (LIS)
|
|
return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
|
|
else
|
|
return LV->isLiveIn(Reg, *MBB);
|
|
}
|
|
|
|
bool PHIElimination::isLiveOutPastPHIs(Register Reg,
|
|
const MachineBasicBlock *MBB) {
|
|
assert((LV || LIS) &&
|
|
"isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
|
|
// LiveVariables considers uses in PHIs to be in the predecessor basic block,
|
|
// so that a register used only in a PHI is not live out of the block. In
|
|
// contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
|
|
// in the predecessor basic block, so that a register used only in a PHI is live
|
|
// out of the block.
|
|
if (LIS) {
|
|
const LiveInterval &LI = LIS->getInterval(Reg);
|
|
for (const MachineBasicBlock *SI : MBB->successors())
|
|
if (LI.liveAt(LIS->getMBBStartIdx(SI)))
|
|
return true;
|
|
return false;
|
|
} else {
|
|
return LV->isLiveOut(Reg, *MBB);
|
|
}
|
|
}
|