llvm-for-llvmta/lib/CodeGen/InterferenceCache.cpp

258 lines
8.7 KiB
C++

//===- InterferenceCache.cpp - Caching per-block interference -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// InterferenceCache remembers per-block interference in LiveIntervalUnions.
//
//===----------------------------------------------------------------------===//
#include "InterferenceCache.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
// Static member used for null interference cursors.
const InterferenceCache::BlockInterference
InterferenceCache::Cursor::NoInterference;
// Initializes PhysRegEntries (instead of a SmallVector, PhysRegEntries is a
// buffer of size NumPhysRegs to speed up alloc/clear for targets with large
// reg files). Calloced memory is used for good form, and quites tools like
// Valgrind too, but zero initialized memory is not required by the algorithm:
// this is because PhysRegEntries works like a SparseSet and its entries are
// only valid when there is a corresponding CacheEntries assignment. There is
// also support for when pass managers are reused for targets with different
// numbers of PhysRegs: in this case PhysRegEntries is freed and reinitialized.
void InterferenceCache::reinitPhysRegEntries() {
if (PhysRegEntriesCount == TRI->getNumRegs()) return;
free(PhysRegEntries);
PhysRegEntriesCount = TRI->getNumRegs();
PhysRegEntries = static_cast<unsigned char*>(
safe_calloc(PhysRegEntriesCount, sizeof(unsigned char)));
}
void InterferenceCache::init(MachineFunction *mf,
LiveIntervalUnion *liuarray,
SlotIndexes *indexes,
LiveIntervals *lis,
const TargetRegisterInfo *tri) {
MF = mf;
LIUArray = liuarray;
TRI = tri;
reinitPhysRegEntries();
for (unsigned i = 0; i != CacheEntries; ++i)
Entries[i].clear(mf, indexes, lis);
}
InterferenceCache::Entry *InterferenceCache::get(MCRegister PhysReg) {
unsigned char E = PhysRegEntries[PhysReg.id()];
if (E < CacheEntries && Entries[E].getPhysReg() == PhysReg) {
if (!Entries[E].valid(LIUArray, TRI))
Entries[E].revalidate(LIUArray, TRI);
return &Entries[E];
}
// No valid entry exists, pick the next round-robin entry.
E = RoundRobin;
if (++RoundRobin == CacheEntries)
RoundRobin = 0;
for (unsigned i = 0; i != CacheEntries; ++i) {
// Skip entries that are in use.
if (Entries[E].hasRefs()) {
if (++E == CacheEntries)
E = 0;
continue;
}
Entries[E].reset(PhysReg, LIUArray, TRI, MF);
PhysRegEntries[PhysReg] = E;
return &Entries[E];
}
llvm_unreachable("Ran out of interference cache entries.");
}
/// revalidate - LIU contents have changed, update tags.
void InterferenceCache::Entry::revalidate(LiveIntervalUnion *LIUArray,
const TargetRegisterInfo *TRI) {
// Invalidate all block entries.
++Tag;
// Invalidate all iterators.
PrevPos = SlotIndex();
unsigned i = 0;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units, ++i)
RegUnits[i].VirtTag = LIUArray[*Units].getTag();
}
void InterferenceCache::Entry::reset(MCRegister physReg,
LiveIntervalUnion *LIUArray,
const TargetRegisterInfo *TRI,
const MachineFunction *MF) {
assert(!hasRefs() && "Cannot reset cache entry with references");
// LIU's changed, invalidate cache.
++Tag;
PhysReg = physReg;
Blocks.resize(MF->getNumBlockIDs());
// Reset iterators.
PrevPos = SlotIndex();
RegUnits.clear();
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
RegUnits.push_back(LIUArray[*Units]);
RegUnits.back().Fixed = &LIS->getRegUnit(*Units);
}
}
bool InterferenceCache::Entry::valid(LiveIntervalUnion *LIUArray,
const TargetRegisterInfo *TRI) {
unsigned i = 0, e = RegUnits.size();
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units, ++i) {
if (i == e)
return false;
if (LIUArray[*Units].changedSince(RegUnits[i].VirtTag))
return false;
}
return i == e;
}
void InterferenceCache::Entry::update(unsigned MBBNum) {
SlotIndex Start, Stop;
std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
// Use advanceTo only when possible.
if (PrevPos != Start) {
if (!PrevPos.isValid() || Start < PrevPos) {
for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
RegUnitInfo &RUI = RegUnits[i];
RUI.VirtI.find(Start);
RUI.FixedI = RUI.Fixed->find(Start);
}
} else {
for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
RegUnitInfo &RUI = RegUnits[i];
RUI.VirtI.advanceTo(Start);
if (RUI.FixedI != RUI.Fixed->end())
RUI.FixedI = RUI.Fixed->advanceTo(RUI.FixedI, Start);
}
}
PrevPos = Start;
}
MachineFunction::const_iterator MFI =
MF->getBlockNumbered(MBBNum)->getIterator();
BlockInterference *BI = &Blocks[MBBNum];
ArrayRef<SlotIndex> RegMaskSlots;
ArrayRef<const uint32_t*> RegMaskBits;
while (true) {
BI->Tag = Tag;
BI->First = BI->Last = SlotIndex();
// Check for first interference from virtregs.
for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
LiveIntervalUnion::SegmentIter &I = RegUnits[i].VirtI;
if (!I.valid())
continue;
SlotIndex StartI = I.start();
if (StartI >= Stop)
continue;
if (!BI->First.isValid() || StartI < BI->First)
BI->First = StartI;
}
// Same thing for fixed interference.
for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
LiveInterval::const_iterator I = RegUnits[i].FixedI;
LiveInterval::const_iterator E = RegUnits[i].Fixed->end();
if (I == E)
continue;
SlotIndex StartI = I->start;
if (StartI >= Stop)
continue;
if (!BI->First.isValid() || StartI < BI->First)
BI->First = StartI;
}
// Also check for register mask interference.
RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum);
RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum);
SlotIndex Limit = BI->First.isValid() ? BI->First : Stop;
for (unsigned i = 0, e = RegMaskSlots.size();
i != e && RegMaskSlots[i] < Limit; ++i)
if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) {
// Register mask i clobbers PhysReg before the LIU interference.
BI->First = RegMaskSlots[i];
break;
}
PrevPos = Stop;
if (BI->First.isValid())
break;
// No interference in this block? Go ahead and precompute the next block.
if (++MFI == MF->end())
return;
MBBNum = MFI->getNumber();
BI = &Blocks[MBBNum];
if (BI->Tag == Tag)
return;
std::tie(Start, Stop) = Indexes->getMBBRange(MBBNum);
}
// Check for last interference in block.
for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
LiveIntervalUnion::SegmentIter &I = RegUnits[i].VirtI;
if (!I.valid() || I.start() >= Stop)
continue;
I.advanceTo(Stop);
bool Backup = !I.valid() || I.start() >= Stop;
if (Backup)
--I;
SlotIndex StopI = I.stop();
if (!BI->Last.isValid() || StopI > BI->Last)
BI->Last = StopI;
if (Backup)
++I;
}
// Fixed interference.
for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) {
LiveInterval::iterator &I = RegUnits[i].FixedI;
LiveRange *LR = RegUnits[i].Fixed;
if (I == LR->end() || I->start >= Stop)
continue;
I = LR->advanceTo(I, Stop);
bool Backup = I == LR->end() || I->start >= Stop;
if (Backup)
--I;
SlotIndex StopI = I->end;
if (!BI->Last.isValid() || StopI > BI->Last)
BI->Last = StopI;
if (Backup)
++I;
}
// Also check for register mask interference.
SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start;
for (unsigned i = RegMaskSlots.size();
i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i)
if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) {
// Register mask i-1 clobbers PhysReg after the LIU interference.
// Model the regmask clobber as a dead def.
BI->Last = RegMaskSlots[i-1].getDeadSlot();
break;
}
}