3246 lines
120 KiB
C++
3246 lines
120 KiB
C++
//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
/// \file
|
||
/// This file implements the IRTranslator class.
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
||
#include "llvm/ADT/PostOrderIterator.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include "llvm/ADT/ScopeExit.h"
|
||
#include "llvm/ADT/SmallSet.h"
|
||
#include "llvm/ADT/SmallVector.h"
|
||
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
||
#include "llvm/Analysis/Loads.h"
|
||
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
#include "llvm/Analysis/ValueTracking.h"
|
||
#include "llvm/CodeGen/Analysis.h"
|
||
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
||
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
|
||
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
|
||
#include "llvm/CodeGen/LowLevelType.h"
|
||
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||
#include "llvm/CodeGen/MachineFrameInfo.h"
|
||
#include "llvm/CodeGen/MachineFunction.h"
|
||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
#include "llvm/CodeGen/MachineMemOperand.h"
|
||
#include "llvm/CodeGen/MachineModuleInfo.h"
|
||
#include "llvm/CodeGen/MachineOperand.h"
|
||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||
#include "llvm/CodeGen/StackProtector.h"
|
||
#include "llvm/CodeGen/SwitchLoweringUtils.h"
|
||
#include "llvm/CodeGen/TargetFrameLowering.h"
|
||
#include "llvm/CodeGen/TargetInstrInfo.h"
|
||
#include "llvm/CodeGen/TargetLowering.h"
|
||
#include "llvm/CodeGen/TargetPassConfig.h"
|
||
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
||
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
||
#include "llvm/IR/BasicBlock.h"
|
||
#include "llvm/IR/CFG.h"
|
||
#include "llvm/IR/Constant.h"
|
||
#include "llvm/IR/Constants.h"
|
||
#include "llvm/IR/DataLayout.h"
|
||
#include "llvm/IR/DebugInfo.h"
|
||
#include "llvm/IR/DerivedTypes.h"
|
||
#include "llvm/IR/Function.h"
|
||
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
||
#include "llvm/IR/InlineAsm.h"
|
||
#include "llvm/IR/InstrTypes.h"
|
||
#include "llvm/IR/Instructions.h"
|
||
#include "llvm/IR/IntrinsicInst.h"
|
||
#include "llvm/IR/Intrinsics.h"
|
||
#include "llvm/IR/LLVMContext.h"
|
||
#include "llvm/IR/Metadata.h"
|
||
#include "llvm/IR/PatternMatch.h"
|
||
#include "llvm/IR/Type.h"
|
||
#include "llvm/IR/User.h"
|
||
#include "llvm/IR/Value.h"
|
||
#include "llvm/InitializePasses.h"
|
||
#include "llvm/MC/MCContext.h"
|
||
#include "llvm/Pass.h"
|
||
#include "llvm/Support/Casting.h"
|
||
#include "llvm/Support/CodeGen.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Support/ErrorHandling.h"
|
||
#include "llvm/Support/LowLevelTypeImpl.h"
|
||
#include "llvm/Support/MathExtras.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include "llvm/Target/TargetIntrinsicInfo.h"
|
||
#include "llvm/Target/TargetMachine.h"
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <cstddef>
|
||
#include <cstdint>
|
||
#include <iterator>
|
||
#include <string>
|
||
#include <utility>
|
||
#include <vector>
|
||
|
||
#define DEBUG_TYPE "irtranslator"
|
||
|
||
using namespace llvm;
|
||
|
||
static cl::opt<bool>
|
||
EnableCSEInIRTranslator("enable-cse-in-irtranslator",
|
||
cl::desc("Should enable CSE in irtranslator"),
|
||
cl::Optional, cl::init(false));
|
||
char IRTranslator::ID = 0;
|
||
|
||
INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
|
||
false, false)
|
||
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
||
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
|
||
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
||
INITIALIZE_PASS_DEPENDENCY(StackProtector)
|
||
INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
|
||
false, false)
|
||
|
||
static void reportTranslationError(MachineFunction &MF,
|
||
const TargetPassConfig &TPC,
|
||
OptimizationRemarkEmitter &ORE,
|
||
OptimizationRemarkMissed &R) {
|
||
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
|
||
|
||
// Print the function name explicitly if we don't have a debug location (which
|
||
// makes the diagnostic less useful) or if we're going to emit a raw error.
|
||
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
|
||
R << (" (in function: " + MF.getName() + ")").str();
|
||
|
||
if (TPC.isGlobalISelAbortEnabled())
|
||
report_fatal_error(R.getMsg());
|
||
else
|
||
ORE.emit(R);
|
||
}
|
||
|
||
IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
|
||
: MachineFunctionPass(ID), OptLevel(optlevel) {}
|
||
|
||
#ifndef NDEBUG
|
||
namespace {
|
||
/// Verify that every instruction created has the same DILocation as the
|
||
/// instruction being translated.
|
||
class DILocationVerifier : public GISelChangeObserver {
|
||
const Instruction *CurrInst = nullptr;
|
||
|
||
public:
|
||
DILocationVerifier() = default;
|
||
~DILocationVerifier() = default;
|
||
|
||
const Instruction *getCurrentInst() const { return CurrInst; }
|
||
void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
|
||
|
||
void erasingInstr(MachineInstr &MI) override {}
|
||
void changingInstr(MachineInstr &MI) override {}
|
||
void changedInstr(MachineInstr &MI) override {}
|
||
|
||
void createdInstr(MachineInstr &MI) override {
|
||
assert(getCurrentInst() && "Inserted instruction without a current MI");
|
||
|
||
// Only print the check message if we're actually checking it.
|
||
#ifndef NDEBUG
|
||
LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
|
||
<< " was copied to " << MI);
|
||
#endif
|
||
// We allow insts in the entry block to have a debug loc line of 0 because
|
||
// they could have originated from constants, and we don't want a jumpy
|
||
// debug experience.
|
||
assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
|
||
MI.getDebugLoc().getLine() == 0) &&
|
||
"Line info was not transferred to all instructions");
|
||
}
|
||
};
|
||
} // namespace
|
||
#endif // ifndef NDEBUG
|
||
|
||
|
||
void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
AU.addRequired<StackProtector>();
|
||
AU.addRequired<TargetPassConfig>();
|
||
AU.addRequired<GISelCSEAnalysisWrapperPass>();
|
||
if (OptLevel != CodeGenOpt::None)
|
||
AU.addRequired<BranchProbabilityInfoWrapperPass>();
|
||
getSelectionDAGFallbackAnalysisUsage(AU);
|
||
MachineFunctionPass::getAnalysisUsage(AU);
|
||
}
|
||
|
||
IRTranslator::ValueToVRegInfo::VRegListT &
|
||
IRTranslator::allocateVRegs(const Value &Val) {
|
||
auto VRegsIt = VMap.findVRegs(Val);
|
||
if (VRegsIt != VMap.vregs_end())
|
||
return *VRegsIt->second;
|
||
auto *Regs = VMap.getVRegs(Val);
|
||
auto *Offsets = VMap.getOffsets(Val);
|
||
SmallVector<LLT, 4> SplitTys;
|
||
computeValueLLTs(*DL, *Val.getType(), SplitTys,
|
||
Offsets->empty() ? Offsets : nullptr);
|
||
for (unsigned i = 0; i < SplitTys.size(); ++i)
|
||
Regs->push_back(0);
|
||
return *Regs;
|
||
}
|
||
|
||
ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
|
||
auto VRegsIt = VMap.findVRegs(Val);
|
||
if (VRegsIt != VMap.vregs_end())
|
||
return *VRegsIt->second;
|
||
|
||
if (Val.getType()->isVoidTy())
|
||
return *VMap.getVRegs(Val);
|
||
|
||
// Create entry for this type.
|
||
auto *VRegs = VMap.getVRegs(Val);
|
||
auto *Offsets = VMap.getOffsets(Val);
|
||
|
||
assert(Val.getType()->isSized() &&
|
||
"Don't know how to create an empty vreg");
|
||
|
||
SmallVector<LLT, 4> SplitTys;
|
||
computeValueLLTs(*DL, *Val.getType(), SplitTys,
|
||
Offsets->empty() ? Offsets : nullptr);
|
||
|
||
if (!isa<Constant>(Val)) {
|
||
for (auto Ty : SplitTys)
|
||
VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
|
||
return *VRegs;
|
||
}
|
||
|
||
if (Val.getType()->isAggregateType()) {
|
||
// UndefValue, ConstantAggregateZero
|
||
auto &C = cast<Constant>(Val);
|
||
unsigned Idx = 0;
|
||
while (auto Elt = C.getAggregateElement(Idx++)) {
|
||
auto EltRegs = getOrCreateVRegs(*Elt);
|
||
llvm::copy(EltRegs, std::back_inserter(*VRegs));
|
||
}
|
||
} else {
|
||
assert(SplitTys.size() == 1 && "unexpectedly split LLT");
|
||
VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
|
||
bool Success = translate(cast<Constant>(Val), VRegs->front());
|
||
if (!Success) {
|
||
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
||
MF->getFunction().getSubprogram(),
|
||
&MF->getFunction().getEntryBlock());
|
||
R << "unable to translate constant: " << ore::NV("Type", Val.getType());
|
||
reportTranslationError(*MF, *TPC, *ORE, R);
|
||
return *VRegs;
|
||
}
|
||
}
|
||
|
||
return *VRegs;
|
||
}
|
||
|
||
int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
|
||
auto MapEntry = FrameIndices.find(&AI);
|
||
if (MapEntry != FrameIndices.end())
|
||
return MapEntry->second;
|
||
|
||
uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
|
||
uint64_t Size =
|
||
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
|
||
|
||
// Always allocate at least one byte.
|
||
Size = std::max<uint64_t>(Size, 1u);
|
||
|
||
int &FI = FrameIndices[&AI];
|
||
FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
|
||
return FI;
|
||
}
|
||
|
||
Align IRTranslator::getMemOpAlign(const Instruction &I) {
|
||
if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
|
||
return SI->getAlign();
|
||
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
||
return LI->getAlign();
|
||
}
|
||
if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
|
||
// TODO(PR27168): This instruction has no alignment attribute, but unlike
|
||
// the default alignment for load/store, the default here is to assume
|
||
// it has NATURAL alignment, not DataLayout-specified alignment.
|
||
const DataLayout &DL = AI->getModule()->getDataLayout();
|
||
return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
|
||
}
|
||
if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
|
||
// TODO(PR27168): This instruction has no alignment attribute, but unlike
|
||
// the default alignment for load/store, the default here is to assume
|
||
// it has NATURAL alignment, not DataLayout-specified alignment.
|
||
const DataLayout &DL = AI->getModule()->getDataLayout();
|
||
return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
|
||
}
|
||
OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
|
||
R << "unable to translate memop: " << ore::NV("Opcode", &I);
|
||
reportTranslationError(*MF, *TPC, *ORE, R);
|
||
return Align(1);
|
||
}
|
||
|
||
MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
|
||
MachineBasicBlock *&MBB = BBToMBB[&BB];
|
||
assert(MBB && "BasicBlock was not encountered before");
|
||
return *MBB;
|
||
}
|
||
|
||
void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
|
||
assert(NewPred && "new predecessor must be a real MachineBasicBlock");
|
||
MachinePreds[Edge].push_back(NewPred);
|
||
}
|
||
|
||
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
// Get or create a virtual register for each value.
|
||
// Unless the value is a Constant => loadimm cst?
|
||
// or inline constant each time?
|
||
// Creation of a virtual register needs to have a size.
|
||
Register Op0 = getOrCreateVReg(*U.getOperand(0));
|
||
Register Op1 = getOrCreateVReg(*U.getOperand(1));
|
||
Register Res = getOrCreateVReg(U);
|
||
uint16_t Flags = 0;
|
||
if (isa<Instruction>(U)) {
|
||
const Instruction &I = cast<Instruction>(U);
|
||
Flags = MachineInstr::copyFlagsFromInstruction(I);
|
||
}
|
||
|
||
MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
Register Op0 = getOrCreateVReg(*U.getOperand(0));
|
||
Register Res = getOrCreateVReg(U);
|
||
uint16_t Flags = 0;
|
||
if (isa<Instruction>(U)) {
|
||
const Instruction &I = cast<Instruction>(U);
|
||
Flags = MachineInstr::copyFlagsFromInstruction(I);
|
||
}
|
||
MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
|
||
}
|
||
|
||
bool IRTranslator::translateCompare(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
auto *CI = dyn_cast<CmpInst>(&U);
|
||
Register Op0 = getOrCreateVReg(*U.getOperand(0));
|
||
Register Op1 = getOrCreateVReg(*U.getOperand(1));
|
||
Register Res = getOrCreateVReg(U);
|
||
CmpInst::Predicate Pred =
|
||
CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
|
||
cast<ConstantExpr>(U).getPredicate());
|
||
if (CmpInst::isIntPredicate(Pred))
|
||
MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
|
||
else if (Pred == CmpInst::FCMP_FALSE)
|
||
MIRBuilder.buildCopy(
|
||
Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
|
||
else if (Pred == CmpInst::FCMP_TRUE)
|
||
MIRBuilder.buildCopy(
|
||
Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
|
||
else {
|
||
assert(CI && "Instruction should be CmpInst");
|
||
MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
|
||
MachineInstr::copyFlagsFromInstruction(*CI));
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
const ReturnInst &RI = cast<ReturnInst>(U);
|
||
const Value *Ret = RI.getReturnValue();
|
||
if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
|
||
Ret = nullptr;
|
||
|
||
ArrayRef<Register> VRegs;
|
||
if (Ret)
|
||
VRegs = getOrCreateVRegs(*Ret);
|
||
|
||
Register SwiftErrorVReg = 0;
|
||
if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
|
||
SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
|
||
&RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
|
||
}
|
||
|
||
// The target may mess up with the insertion point, but
|
||
// this is not important as a return is the last instruction
|
||
// of the block anyway.
|
||
return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
|
||
}
|
||
|
||
void IRTranslator::emitBranchForMergedCondition(
|
||
const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
|
||
MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
|
||
BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
|
||
// If the leaf of the tree is a comparison, merge the condition into
|
||
// the caseblock.
|
||
if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
|
||
CmpInst::Predicate Condition;
|
||
if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
|
||
Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
|
||
} else {
|
||
const FCmpInst *FC = cast<FCmpInst>(Cond);
|
||
Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
|
||
}
|
||
|
||
SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
|
||
BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
|
||
CurBuilder->getDebugLoc(), TProb, FProb);
|
||
SL->SwitchCases.push_back(CB);
|
||
return;
|
||
}
|
||
|
||
// Create a CaseBlock record representing this branch.
|
||
CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
|
||
SwitchCG::CaseBlock CB(
|
||
Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
|
||
nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
|
||
SL->SwitchCases.push_back(CB);
|
||
}
|
||
|
||
static bool isValInBlock(const Value *V, const BasicBlock *BB) {
|
||
if (const Instruction *I = dyn_cast<Instruction>(V))
|
||
return I->getParent() == BB;
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::findMergedConditions(
|
||
const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
|
||
MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
|
||
Instruction::BinaryOps Opc, BranchProbability TProb,
|
||
BranchProbability FProb, bool InvertCond) {
|
||
using namespace PatternMatch;
|
||
assert((Opc == Instruction::And || Opc == Instruction::Or) &&
|
||
"Expected Opc to be AND/OR");
|
||
// Skip over not part of the tree and remember to invert op and operands at
|
||
// next level.
|
||
Value *NotCond;
|
||
if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
|
||
isValInBlock(NotCond, CurBB->getBasicBlock())) {
|
||
findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
|
||
!InvertCond);
|
||
return;
|
||
}
|
||
|
||
const Instruction *BOp = dyn_cast<Instruction>(Cond);
|
||
const Value *BOpOp0, *BOpOp1;
|
||
// Compute the effective opcode for Cond, taking into account whether it needs
|
||
// to be inverted, e.g.
|
||
// and (not (or A, B)), C
|
||
// gets lowered as
|
||
// and (and (not A, not B), C)
|
||
Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
|
||
if (BOp) {
|
||
BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
|
||
? Instruction::And
|
||
: (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
|
||
? Instruction::Or
|
||
: (Instruction::BinaryOps)0);
|
||
if (InvertCond) {
|
||
if (BOpc == Instruction::And)
|
||
BOpc = Instruction::Or;
|
||
else if (BOpc == Instruction::Or)
|
||
BOpc = Instruction::And;
|
||
}
|
||
}
|
||
|
||
// If this node is not part of the or/and tree, emit it as a branch.
|
||
// Note that all nodes in the tree should have same opcode.
|
||
bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
|
||
if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
|
||
!isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
|
||
!isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
|
||
emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
|
||
InvertCond);
|
||
return;
|
||
}
|
||
|
||
// Create TmpBB after CurBB.
|
||
MachineFunction::iterator BBI(CurBB);
|
||
MachineBasicBlock *TmpBB =
|
||
MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
|
||
CurBB->getParent()->insert(++BBI, TmpBB);
|
||
|
||
if (Opc == Instruction::Or) {
|
||
// Codegen X | Y as:
|
||
// BB1:
|
||
// jmp_if_X TBB
|
||
// jmp TmpBB
|
||
// TmpBB:
|
||
// jmp_if_Y TBB
|
||
// jmp FBB
|
||
//
|
||
|
||
// We have flexibility in setting Prob for BB1 and Prob for TmpBB.
|
||
// The requirement is that
|
||
// TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
|
||
// = TrueProb for original BB.
|
||
// Assuming the original probabilities are A and B, one choice is to set
|
||
// BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
|
||
// A/(1+B) and 2B/(1+B). This choice assumes that
|
||
// TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
|
||
// Another choice is to assume TrueProb for BB1 equals to TrueProb for
|
||
// TmpBB, but the math is more complicated.
|
||
|
||
auto NewTrueProb = TProb / 2;
|
||
auto NewFalseProb = TProb / 2 + FProb;
|
||
// Emit the LHS condition.
|
||
findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
|
||
NewFalseProb, InvertCond);
|
||
|
||
// Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
|
||
SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
|
||
BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
|
||
// Emit the RHS condition into TmpBB.
|
||
findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
|
||
Probs[1], InvertCond);
|
||
} else {
|
||
assert(Opc == Instruction::And && "Unknown merge op!");
|
||
// Codegen X & Y as:
|
||
// BB1:
|
||
// jmp_if_X TmpBB
|
||
// jmp FBB
|
||
// TmpBB:
|
||
// jmp_if_Y TBB
|
||
// jmp FBB
|
||
//
|
||
// This requires creation of TmpBB after CurBB.
|
||
|
||
// We have flexibility in setting Prob for BB1 and Prob for TmpBB.
|
||
// The requirement is that
|
||
// FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
|
||
// = FalseProb for original BB.
|
||
// Assuming the original probabilities are A and B, one choice is to set
|
||
// BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
|
||
// 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
|
||
// TrueProb for BB1 * FalseProb for TmpBB.
|
||
|
||
auto NewTrueProb = TProb + FProb / 2;
|
||
auto NewFalseProb = FProb / 2;
|
||
// Emit the LHS condition.
|
||
findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
|
||
NewFalseProb, InvertCond);
|
||
|
||
// Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
|
||
SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
|
||
BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
|
||
// Emit the RHS condition into TmpBB.
|
||
findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
|
||
Probs[1], InvertCond);
|
||
}
|
||
}
|
||
|
||
bool IRTranslator::shouldEmitAsBranches(
|
||
const std::vector<SwitchCG::CaseBlock> &Cases) {
|
||
// For multiple cases, it's better to emit as branches.
|
||
if (Cases.size() != 2)
|
||
return true;
|
||
|
||
// If this is two comparisons of the same values or'd or and'd together, they
|
||
// will get folded into a single comparison, so don't emit two blocks.
|
||
if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
|
||
Cases[0].CmpRHS == Cases[1].CmpRHS) ||
|
||
(Cases[0].CmpRHS == Cases[1].CmpLHS &&
|
||
Cases[0].CmpLHS == Cases[1].CmpRHS)) {
|
||
return false;
|
||
}
|
||
|
||
// Handle: (X != null) | (Y != null) --> (X|Y) != 0
|
||
// Handle: (X == null) & (Y == null) --> (X|Y) == 0
|
||
if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
|
||
Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
|
||
isa<Constant>(Cases[0].CmpRHS) &&
|
||
cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
|
||
if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
|
||
Cases[0].TrueBB == Cases[1].ThisBB)
|
||
return false;
|
||
if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
|
||
Cases[0].FalseBB == Cases[1].ThisBB)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
const BranchInst &BrInst = cast<BranchInst>(U);
|
||
auto &CurMBB = MIRBuilder.getMBB();
|
||
auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
|
||
|
||
if (BrInst.isUnconditional()) {
|
||
// If the unconditional target is the layout successor, fallthrough.
|
||
if (!CurMBB.isLayoutSuccessor(Succ0MBB))
|
||
MIRBuilder.buildBr(*Succ0MBB);
|
||
|
||
// Link successors.
|
||
for (const BasicBlock *Succ : successors(&BrInst))
|
||
CurMBB.addSuccessor(&getMBB(*Succ));
|
||
return true;
|
||
}
|
||
|
||
// If this condition is one of the special cases we handle, do special stuff
|
||
// now.
|
||
const Value *CondVal = BrInst.getCondition();
|
||
MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
|
||
|
||
const auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
|
||
// If this is a series of conditions that are or'd or and'd together, emit
|
||
// this as a sequence of branches instead of setcc's with and/or operations.
|
||
// As long as jumps are not expensive (exceptions for multi-use logic ops,
|
||
// unpredictable branches, and vector extracts because those jumps are likely
|
||
// expensive for any target), this should improve performance.
|
||
// For example, instead of something like:
|
||
// cmp A, B
|
||
// C = seteq
|
||
// cmp D, E
|
||
// F = setle
|
||
// or C, F
|
||
// jnz foo
|
||
// Emit:
|
||
// cmp A, B
|
||
// je foo
|
||
// cmp D, E
|
||
// jle foo
|
||
using namespace PatternMatch;
|
||
const Instruction *CondI = dyn_cast<Instruction>(CondVal);
|
||
if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
|
||
!BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
|
||
Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
|
||
Value *Vec;
|
||
const Value *BOp0, *BOp1;
|
||
if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
|
||
Opcode = Instruction::And;
|
||
else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
|
||
Opcode = Instruction::Or;
|
||
|
||
if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
|
||
match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
|
||
findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
|
||
getEdgeProbability(&CurMBB, Succ0MBB),
|
||
getEdgeProbability(&CurMBB, Succ1MBB),
|
||
/*InvertCond=*/false);
|
||
assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
|
||
|
||
// Allow some cases to be rejected.
|
||
if (shouldEmitAsBranches(SL->SwitchCases)) {
|
||
// Emit the branch for this block.
|
||
emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
|
||
SL->SwitchCases.erase(SL->SwitchCases.begin());
|
||
return true;
|
||
}
|
||
|
||
// Okay, we decided not to do this, remove any inserted MBB's and clear
|
||
// SwitchCases.
|
||
for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
|
||
MF->erase(SL->SwitchCases[I].ThisBB);
|
||
|
||
SL->SwitchCases.clear();
|
||
}
|
||
}
|
||
|
||
// Create a CaseBlock record representing this branch.
|
||
SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
|
||
ConstantInt::getTrue(MF->getFunction().getContext()),
|
||
nullptr, Succ0MBB, Succ1MBB, &CurMBB,
|
||
CurBuilder->getDebugLoc());
|
||
|
||
// Use emitSwitchCase to actually insert the fast branch sequence for this
|
||
// cond branch.
|
||
emitSwitchCase(CB, &CurMBB, *CurBuilder);
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
|
||
MachineBasicBlock *Dst,
|
||
BranchProbability Prob) {
|
||
if (!FuncInfo.BPI) {
|
||
Src->addSuccessorWithoutProb(Dst);
|
||
return;
|
||
}
|
||
if (Prob.isUnknown())
|
||
Prob = getEdgeProbability(Src, Dst);
|
||
Src->addSuccessor(Dst, Prob);
|
||
}
|
||
|
||
BranchProbability
|
||
IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
|
||
const MachineBasicBlock *Dst) const {
|
||
const BasicBlock *SrcBB = Src->getBasicBlock();
|
||
const BasicBlock *DstBB = Dst->getBasicBlock();
|
||
if (!FuncInfo.BPI) {
|
||
// If BPI is not available, set the default probability as 1 / N, where N is
|
||
// the number of successors.
|
||
auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
|
||
return BranchProbability(1, SuccSize);
|
||
}
|
||
return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
|
||
}
|
||
|
||
bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
|
||
using namespace SwitchCG;
|
||
// Extract cases from the switch.
|
||
const SwitchInst &SI = cast<SwitchInst>(U);
|
||
BranchProbabilityInfo *BPI = FuncInfo.BPI;
|
||
CaseClusterVector Clusters;
|
||
Clusters.reserve(SI.getNumCases());
|
||
for (auto &I : SI.cases()) {
|
||
MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
|
||
assert(Succ && "Could not find successor mbb in mapping");
|
||
const ConstantInt *CaseVal = I.getCaseValue();
|
||
BranchProbability Prob =
|
||
BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
|
||
: BranchProbability(1, SI.getNumCases() + 1);
|
||
Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
|
||
}
|
||
|
||
MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
|
||
|
||
// Cluster adjacent cases with the same destination. We do this at all
|
||
// optimization levels because it's cheap to do and will make codegen faster
|
||
// if there are many clusters.
|
||
sortAndRangeify(Clusters);
|
||
|
||
MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
|
||
|
||
// If there is only the default destination, jump there directly.
|
||
if (Clusters.empty()) {
|
||
SwitchMBB->addSuccessor(DefaultMBB);
|
||
if (DefaultMBB != SwitchMBB->getNextNode())
|
||
MIB.buildBr(*DefaultMBB);
|
||
return true;
|
||
}
|
||
|
||
SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
|
||
SL->findBitTestClusters(Clusters, &SI);
|
||
|
||
LLVM_DEBUG({
|
||
dbgs() << "Case clusters: ";
|
||
for (const CaseCluster &C : Clusters) {
|
||
if (C.Kind == CC_JumpTable)
|
||
dbgs() << "JT:";
|
||
if (C.Kind == CC_BitTests)
|
||
dbgs() << "BT:";
|
||
|
||
C.Low->getValue().print(dbgs(), true);
|
||
if (C.Low != C.High) {
|
||
dbgs() << '-';
|
||
C.High->getValue().print(dbgs(), true);
|
||
}
|
||
dbgs() << ' ';
|
||
}
|
||
dbgs() << '\n';
|
||
});
|
||
|
||
assert(!Clusters.empty());
|
||
SwitchWorkList WorkList;
|
||
CaseClusterIt First = Clusters.begin();
|
||
CaseClusterIt Last = Clusters.end() - 1;
|
||
auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
|
||
WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
|
||
|
||
// FIXME: At the moment we don't do any splitting optimizations here like
|
||
// SelectionDAG does, so this worklist only has one entry.
|
||
while (!WorkList.empty()) {
|
||
SwitchWorkListItem W = WorkList.back();
|
||
WorkList.pop_back();
|
||
if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
|
||
MachineBasicBlock *MBB) {
|
||
// Emit the code for the jump table
|
||
assert(JT.Reg != -1U && "Should lower JT Header first!");
|
||
MachineIRBuilder MIB(*MBB->getParent());
|
||
MIB.setMBB(*MBB);
|
||
MIB.setDebugLoc(CurBuilder->getDebugLoc());
|
||
|
||
Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
|
||
const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
|
||
|
||
auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
|
||
MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
|
||
}
|
||
|
||
bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
|
||
SwitchCG::JumpTableHeader &JTH,
|
||
MachineBasicBlock *HeaderBB) {
|
||
MachineIRBuilder MIB(*HeaderBB->getParent());
|
||
MIB.setMBB(*HeaderBB);
|
||
MIB.setDebugLoc(CurBuilder->getDebugLoc());
|
||
|
||
const Value &SValue = *JTH.SValue;
|
||
// Subtract the lowest switch case value from the value being switched on.
|
||
const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
|
||
Register SwitchOpReg = getOrCreateVReg(SValue);
|
||
auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
|
||
auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
|
||
|
||
// This value may be smaller or larger than the target's pointer type, and
|
||
// therefore require extension or truncating.
|
||
Type *PtrIRTy = SValue.getType()->getPointerTo();
|
||
const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
|
||
Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
|
||
|
||
JT.Reg = Sub.getReg(0);
|
||
|
||
if (JTH.OmitRangeCheck) {
|
||
if (JT.MBB != HeaderBB->getNextNode())
|
||
MIB.buildBr(*JT.MBB);
|
||
return true;
|
||
}
|
||
|
||
// Emit the range check for the jump table, and branch to the default block
|
||
// for the switch statement if the value being switched on exceeds the
|
||
// largest case in the switch.
|
||
auto Cst = getOrCreateVReg(
|
||
*ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
|
||
Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
|
||
auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
|
||
|
||
auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
|
||
|
||
// Avoid emitting unnecessary branches to the next block.
|
||
if (JT.MBB != HeaderBB->getNextNode())
|
||
BrCond = MIB.buildBr(*JT.MBB);
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
|
||
MachineBasicBlock *SwitchBB,
|
||
MachineIRBuilder &MIB) {
|
||
Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
|
||
Register Cond;
|
||
DebugLoc OldDbgLoc = MIB.getDebugLoc();
|
||
MIB.setDebugLoc(CB.DbgLoc);
|
||
MIB.setMBB(*CB.ThisBB);
|
||
|
||
if (CB.PredInfo.NoCmp) {
|
||
// Branch or fall through to TrueBB.
|
||
addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
|
||
addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
|
||
CB.ThisBB);
|
||
CB.ThisBB->normalizeSuccProbs();
|
||
if (CB.TrueBB != CB.ThisBB->getNextNode())
|
||
MIB.buildBr(*CB.TrueBB);
|
||
MIB.setDebugLoc(OldDbgLoc);
|
||
return;
|
||
}
|
||
|
||
const LLT i1Ty = LLT::scalar(1);
|
||
// Build the compare.
|
||
if (!CB.CmpMHS) {
|
||
const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
|
||
// For conditional branch lowering, we might try to do something silly like
|
||
// emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
|
||
// just re-use the existing condition vreg.
|
||
if (CI && CI->getZExtValue() == 1 &&
|
||
MRI->getType(CondLHS).getSizeInBits() == 1 &&
|
||
CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
|
||
Cond = CondLHS;
|
||
} else {
|
||
Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
|
||
if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
|
||
Cond =
|
||
MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
|
||
else
|
||
Cond =
|
||
MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
|
||
}
|
||
} else {
|
||
assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
|
||
"Can only handle SLE ranges");
|
||
|
||
const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
|
||
const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
|
||
|
||
Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
|
||
if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
|
||
Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
|
||
Cond =
|
||
MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
|
||
} else {
|
||
const LLT CmpTy = MRI->getType(CmpOpReg);
|
||
auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
|
||
auto Diff = MIB.buildConstant(CmpTy, High - Low);
|
||
Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
|
||
}
|
||
}
|
||
|
||
// Update successor info
|
||
addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
|
||
|
||
addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
|
||
CB.ThisBB);
|
||
|
||
// TrueBB and FalseBB are always different unless the incoming IR is
|
||
// degenerate. This only happens when running llc on weird IR.
|
||
if (CB.TrueBB != CB.FalseBB)
|
||
addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
|
||
CB.ThisBB->normalizeSuccProbs();
|
||
|
||
addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
|
||
CB.ThisBB);
|
||
|
||
MIB.buildBrCond(Cond, *CB.TrueBB);
|
||
MIB.buildBr(*CB.FalseBB);
|
||
MIB.setDebugLoc(OldDbgLoc);
|
||
}
|
||
|
||
bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
|
||
MachineBasicBlock *SwitchMBB,
|
||
MachineBasicBlock *CurMBB,
|
||
MachineBasicBlock *DefaultMBB,
|
||
MachineIRBuilder &MIB,
|
||
MachineFunction::iterator BBI,
|
||
BranchProbability UnhandledProbs,
|
||
SwitchCG::CaseClusterIt I,
|
||
MachineBasicBlock *Fallthrough,
|
||
bool FallthroughUnreachable) {
|
||
using namespace SwitchCG;
|
||
MachineFunction *CurMF = SwitchMBB->getParent();
|
||
// FIXME: Optimize away range check based on pivot comparisons.
|
||
JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
|
||
SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
|
||
BranchProbability DefaultProb = W.DefaultProb;
|
||
|
||
// The jump block hasn't been inserted yet; insert it here.
|
||
MachineBasicBlock *JumpMBB = JT->MBB;
|
||
CurMF->insert(BBI, JumpMBB);
|
||
|
||
// Since the jump table block is separate from the switch block, we need
|
||
// to keep track of it as a machine predecessor to the default block,
|
||
// otherwise we lose the phi edges.
|
||
addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
|
||
CurMBB);
|
||
addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
|
||
JumpMBB);
|
||
|
||
auto JumpProb = I->Prob;
|
||
auto FallthroughProb = UnhandledProbs;
|
||
|
||
// If the default statement is a target of the jump table, we evenly
|
||
// distribute the default probability to successors of CurMBB. Also
|
||
// update the probability on the edge from JumpMBB to Fallthrough.
|
||
for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
|
||
SE = JumpMBB->succ_end();
|
||
SI != SE; ++SI) {
|
||
if (*SI == DefaultMBB) {
|
||
JumpProb += DefaultProb / 2;
|
||
FallthroughProb -= DefaultProb / 2;
|
||
JumpMBB->setSuccProbability(SI, DefaultProb / 2);
|
||
JumpMBB->normalizeSuccProbs();
|
||
} else {
|
||
// Also record edges from the jump table block to it's successors.
|
||
addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
|
||
JumpMBB);
|
||
}
|
||
}
|
||
|
||
// Skip the range check if the fallthrough block is unreachable.
|
||
if (FallthroughUnreachable)
|
||
JTH->OmitRangeCheck = true;
|
||
|
||
if (!JTH->OmitRangeCheck)
|
||
addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
|
||
addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
|
||
CurMBB->normalizeSuccProbs();
|
||
|
||
// The jump table header will be inserted in our current block, do the
|
||
// range check, and fall through to our fallthrough block.
|
||
JTH->HeaderBB = CurMBB;
|
||
JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
|
||
|
||
// If we're in the right place, emit the jump table header right now.
|
||
if (CurMBB == SwitchMBB) {
|
||
if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
|
||
return false;
|
||
JTH->Emitted = true;
|
||
}
|
||
return true;
|
||
}
|
||
bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
|
||
Value *Cond,
|
||
MachineBasicBlock *Fallthrough,
|
||
bool FallthroughUnreachable,
|
||
BranchProbability UnhandledProbs,
|
||
MachineBasicBlock *CurMBB,
|
||
MachineIRBuilder &MIB,
|
||
MachineBasicBlock *SwitchMBB) {
|
||
using namespace SwitchCG;
|
||
const Value *RHS, *LHS, *MHS;
|
||
CmpInst::Predicate Pred;
|
||
if (I->Low == I->High) {
|
||
// Check Cond == I->Low.
|
||
Pred = CmpInst::ICMP_EQ;
|
||
LHS = Cond;
|
||
RHS = I->Low;
|
||
MHS = nullptr;
|
||
} else {
|
||
// Check I->Low <= Cond <= I->High.
|
||
Pred = CmpInst::ICMP_SLE;
|
||
LHS = I->Low;
|
||
MHS = Cond;
|
||
RHS = I->High;
|
||
}
|
||
|
||
// If Fallthrough is unreachable, fold away the comparison.
|
||
// The false probability is the sum of all unhandled cases.
|
||
CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
|
||
CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
|
||
|
||
emitSwitchCase(CB, SwitchMBB, MIB);
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
|
||
MachineBasicBlock *SwitchBB) {
|
||
MachineIRBuilder &MIB = *CurBuilder;
|
||
MIB.setMBB(*SwitchBB);
|
||
|
||
// Subtract the minimum value.
|
||
Register SwitchOpReg = getOrCreateVReg(*B.SValue);
|
||
|
||
LLT SwitchOpTy = MRI->getType(SwitchOpReg);
|
||
Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
|
||
auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
|
||
|
||
// Ensure that the type will fit the mask value.
|
||
LLT MaskTy = SwitchOpTy;
|
||
for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
|
||
if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
|
||
// Switch table case range are encoded into series of masks.
|
||
// Just use pointer type, it's guaranteed to fit.
|
||
MaskTy = LLT::scalar(64);
|
||
break;
|
||
}
|
||
}
|
||
Register SubReg = RangeSub.getReg(0);
|
||
if (SwitchOpTy != MaskTy)
|
||
SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
|
||
|
||
B.RegVT = getMVTForLLT(MaskTy);
|
||
B.Reg = SubReg;
|
||
|
||
MachineBasicBlock *MBB = B.Cases[0].ThisBB;
|
||
|
||
if (!B.OmitRangeCheck)
|
||
addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
|
||
addSuccessorWithProb(SwitchBB, MBB, B.Prob);
|
||
|
||
SwitchBB->normalizeSuccProbs();
|
||
|
||
if (!B.OmitRangeCheck) {
|
||
// Conditional branch to the default block.
|
||
auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
|
||
auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
|
||
RangeSub, RangeCst);
|
||
MIB.buildBrCond(RangeCmp, *B.Default);
|
||
}
|
||
|
||
// Avoid emitting unnecessary branches to the next block.
|
||
if (MBB != SwitchBB->getNextNode())
|
||
MIB.buildBr(*MBB);
|
||
}
|
||
|
||
void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
|
||
MachineBasicBlock *NextMBB,
|
||
BranchProbability BranchProbToNext,
|
||
Register Reg, SwitchCG::BitTestCase &B,
|
||
MachineBasicBlock *SwitchBB) {
|
||
MachineIRBuilder &MIB = *CurBuilder;
|
||
MIB.setMBB(*SwitchBB);
|
||
|
||
LLT SwitchTy = getLLTForMVT(BB.RegVT);
|
||
Register Cmp;
|
||
unsigned PopCount = countPopulation(B.Mask);
|
||
if (PopCount == 1) {
|
||
// Testing for a single bit; just compare the shift count with what it
|
||
// would need to be to shift a 1 bit in that position.
|
||
auto MaskTrailingZeros =
|
||
MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
|
||
Cmp =
|
||
MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
|
||
.getReg(0);
|
||
} else if (PopCount == BB.Range) {
|
||
// There is only one zero bit in the range, test for it directly.
|
||
auto MaskTrailingOnes =
|
||
MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
|
||
Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
|
||
.getReg(0);
|
||
} else {
|
||
// Make desired shift.
|
||
auto CstOne = MIB.buildConstant(SwitchTy, 1);
|
||
auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
|
||
|
||
// Emit bit tests and jumps.
|
||
auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
|
||
auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
|
||
auto CstZero = MIB.buildConstant(SwitchTy, 0);
|
||
Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
|
||
.getReg(0);
|
||
}
|
||
|
||
// The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
|
||
addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
|
||
// The branch probability from SwitchBB to NextMBB is BranchProbToNext.
|
||
addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
|
||
// It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
|
||
// one as they are relative probabilities (and thus work more like weights),
|
||
// and hence we need to normalize them to let the sum of them become one.
|
||
SwitchBB->normalizeSuccProbs();
|
||
|
||
// Record the fact that the IR edge from the header to the bit test target
|
||
// will go through our new block. Neeeded for PHIs to have nodes added.
|
||
addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
|
||
SwitchBB);
|
||
|
||
MIB.buildBrCond(Cmp, *B.TargetBB);
|
||
|
||
// Avoid emitting unnecessary branches to the next block.
|
||
if (NextMBB != SwitchBB->getNextNode())
|
||
MIB.buildBr(*NextMBB);
|
||
}
|
||
|
||
bool IRTranslator::lowerBitTestWorkItem(
|
||
SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
|
||
MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
|
||
MachineIRBuilder &MIB, MachineFunction::iterator BBI,
|
||
BranchProbability DefaultProb, BranchProbability UnhandledProbs,
|
||
SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
|
||
bool FallthroughUnreachable) {
|
||
using namespace SwitchCG;
|
||
MachineFunction *CurMF = SwitchMBB->getParent();
|
||
// FIXME: Optimize away range check based on pivot comparisons.
|
||
BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
|
||
// The bit test blocks haven't been inserted yet; insert them here.
|
||
for (BitTestCase &BTC : BTB->Cases)
|
||
CurMF->insert(BBI, BTC.ThisBB);
|
||
|
||
// Fill in fields of the BitTestBlock.
|
||
BTB->Parent = CurMBB;
|
||
BTB->Default = Fallthrough;
|
||
|
||
BTB->DefaultProb = UnhandledProbs;
|
||
// If the cases in bit test don't form a contiguous range, we evenly
|
||
// distribute the probability on the edge to Fallthrough to two
|
||
// successors of CurMBB.
|
||
if (!BTB->ContiguousRange) {
|
||
BTB->Prob += DefaultProb / 2;
|
||
BTB->DefaultProb -= DefaultProb / 2;
|
||
}
|
||
|
||
if (FallthroughUnreachable) {
|
||
// Skip the range check if the fallthrough block is unreachable.
|
||
BTB->OmitRangeCheck = true;
|
||
}
|
||
|
||
// If we're in the right place, emit the bit test header right now.
|
||
if (CurMBB == SwitchMBB) {
|
||
emitBitTestHeader(*BTB, SwitchMBB);
|
||
BTB->Emitted = true;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
|
||
Value *Cond,
|
||
MachineBasicBlock *SwitchMBB,
|
||
MachineBasicBlock *DefaultMBB,
|
||
MachineIRBuilder &MIB) {
|
||
using namespace SwitchCG;
|
||
MachineFunction *CurMF = FuncInfo.MF;
|
||
MachineBasicBlock *NextMBB = nullptr;
|
||
MachineFunction::iterator BBI(W.MBB);
|
||
if (++BBI != FuncInfo.MF->end())
|
||
NextMBB = &*BBI;
|
||
|
||
if (EnableOpts) {
|
||
// Here, we order cases by probability so the most likely case will be
|
||
// checked first. However, two clusters can have the same probability in
|
||
// which case their relative ordering is non-deterministic. So we use Low
|
||
// as a tie-breaker as clusters are guaranteed to never overlap.
|
||
llvm::sort(W.FirstCluster, W.LastCluster + 1,
|
||
[](const CaseCluster &a, const CaseCluster &b) {
|
||
return a.Prob != b.Prob
|
||
? a.Prob > b.Prob
|
||
: a.Low->getValue().slt(b.Low->getValue());
|
||
});
|
||
|
||
// Rearrange the case blocks so that the last one falls through if possible
|
||
// without changing the order of probabilities.
|
||
for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
|
||
--I;
|
||
if (I->Prob > W.LastCluster->Prob)
|
||
break;
|
||
if (I->Kind == CC_Range && I->MBB == NextMBB) {
|
||
std::swap(*I, *W.LastCluster);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Compute total probability.
|
||
BranchProbability DefaultProb = W.DefaultProb;
|
||
BranchProbability UnhandledProbs = DefaultProb;
|
||
for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
|
||
UnhandledProbs += I->Prob;
|
||
|
||
MachineBasicBlock *CurMBB = W.MBB;
|
||
for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
|
||
bool FallthroughUnreachable = false;
|
||
MachineBasicBlock *Fallthrough;
|
||
if (I == W.LastCluster) {
|
||
// For the last cluster, fall through to the default destination.
|
||
Fallthrough = DefaultMBB;
|
||
FallthroughUnreachable = isa<UnreachableInst>(
|
||
DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
|
||
} else {
|
||
Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
|
||
CurMF->insert(BBI, Fallthrough);
|
||
}
|
||
UnhandledProbs -= I->Prob;
|
||
|
||
switch (I->Kind) {
|
||
case CC_BitTests: {
|
||
if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
|
||
DefaultProb, UnhandledProbs, I, Fallthrough,
|
||
FallthroughUnreachable)) {
|
||
LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
|
||
return false;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case CC_JumpTable: {
|
||
if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
|
||
UnhandledProbs, I, Fallthrough,
|
||
FallthroughUnreachable)) {
|
||
LLVM_DEBUG(dbgs() << "Failed to lower jump table");
|
||
return false;
|
||
}
|
||
break;
|
||
}
|
||
case CC_Range: {
|
||
if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
|
||
FallthroughUnreachable, UnhandledProbs,
|
||
CurMBB, MIB, SwitchMBB)) {
|
||
LLVM_DEBUG(dbgs() << "Failed to lower switch range");
|
||
return false;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
CurMBB = Fallthrough;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateIndirectBr(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
|
||
|
||
const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
|
||
MIRBuilder.buildBrIndirect(Tgt);
|
||
|
||
// Link successors.
|
||
SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
|
||
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
|
||
for (const BasicBlock *Succ : successors(&BrInst)) {
|
||
// It's legal for indirectbr instructions to have duplicate blocks in the
|
||
// destination list. We don't allow this in MIR. Skip anything that's
|
||
// already a successor.
|
||
if (!AddedSuccessors.insert(Succ).second)
|
||
continue;
|
||
CurBB.addSuccessor(&getMBB(*Succ));
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool isSwiftError(const Value *V) {
|
||
if (auto Arg = dyn_cast<Argument>(V))
|
||
return Arg->hasSwiftErrorAttr();
|
||
if (auto AI = dyn_cast<AllocaInst>(V))
|
||
return AI->isSwiftError();
|
||
return false;
|
||
}
|
||
|
||
bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
const LoadInst &LI = cast<LoadInst>(U);
|
||
if (DL->getTypeStoreSize(LI.getType()) == 0)
|
||
return true;
|
||
|
||
ArrayRef<Register> Regs = getOrCreateVRegs(LI);
|
||
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
|
||
Register Base = getOrCreateVReg(*LI.getPointerOperand());
|
||
|
||
Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
|
||
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
|
||
|
||
if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
|
||
assert(Regs.size() == 1 && "swifterror should be single pointer");
|
||
Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
|
||
LI.getPointerOperand());
|
||
MIRBuilder.buildCopy(Regs[0], VReg);
|
||
return true;
|
||
}
|
||
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
|
||
|
||
const MDNode *Ranges =
|
||
Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
|
||
for (unsigned i = 0; i < Regs.size(); ++i) {
|
||
Register Addr;
|
||
MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
|
||
|
||
MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
|
||
Align BaseAlign = getMemOpAlign(LI);
|
||
AAMDNodes AAMetadata;
|
||
LI.getAAMetadata(AAMetadata);
|
||
auto MMO = MF->getMachineMemOperand(
|
||
Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
|
||
commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
|
||
LI.getSyncScopeID(), LI.getOrdering());
|
||
MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
const StoreInst &SI = cast<StoreInst>(U);
|
||
if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
|
||
return true;
|
||
|
||
ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
|
||
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
|
||
Register Base = getOrCreateVReg(*SI.getPointerOperand());
|
||
|
||
Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
|
||
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
|
||
|
||
if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
|
||
assert(Vals.size() == 1 && "swifterror should be single pointer");
|
||
|
||
Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
|
||
SI.getPointerOperand());
|
||
MIRBuilder.buildCopy(VReg, Vals[0]);
|
||
return true;
|
||
}
|
||
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
|
||
|
||
for (unsigned i = 0; i < Vals.size(); ++i) {
|
||
Register Addr;
|
||
MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
|
||
|
||
MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
|
||
Align BaseAlign = getMemOpAlign(SI);
|
||
AAMDNodes AAMetadata;
|
||
SI.getAAMetadata(AAMetadata);
|
||
auto MMO = MF->getMachineMemOperand(
|
||
Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
|
||
commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
|
||
SI.getSyncScopeID(), SI.getOrdering());
|
||
MIRBuilder.buildStore(Vals[i], Addr, *MMO);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
|
||
const Value *Src = U.getOperand(0);
|
||
Type *Int32Ty = Type::getInt32Ty(U.getContext());
|
||
|
||
// getIndexedOffsetInType is designed for GEPs, so the first index is the
|
||
// usual array element rather than looking into the actual aggregate.
|
||
SmallVector<Value *, 1> Indices;
|
||
Indices.push_back(ConstantInt::get(Int32Ty, 0));
|
||
|
||
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
|
||
for (auto Idx : EVI->indices())
|
||
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
|
||
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
|
||
for (auto Idx : IVI->indices())
|
||
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
|
||
} else {
|
||
for (unsigned i = 1; i < U.getNumOperands(); ++i)
|
||
Indices.push_back(U.getOperand(i));
|
||
}
|
||
|
||
return 8 * static_cast<uint64_t>(
|
||
DL.getIndexedOffsetInType(Src->getType(), Indices));
|
||
}
|
||
|
||
bool IRTranslator::translateExtractValue(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const Value *Src = U.getOperand(0);
|
||
uint64_t Offset = getOffsetFromIndices(U, *DL);
|
||
ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
|
||
ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
|
||
unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
|
||
auto &DstRegs = allocateVRegs(U);
|
||
|
||
for (unsigned i = 0; i < DstRegs.size(); ++i)
|
||
DstRegs[i] = SrcRegs[Idx++];
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateInsertValue(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const Value *Src = U.getOperand(0);
|
||
uint64_t Offset = getOffsetFromIndices(U, *DL);
|
||
auto &DstRegs = allocateVRegs(U);
|
||
ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
|
||
ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
|
||
ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
|
||
auto InsertedIt = InsertedRegs.begin();
|
||
|
||
for (unsigned i = 0; i < DstRegs.size(); ++i) {
|
||
if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
|
||
DstRegs[i] = *InsertedIt++;
|
||
else
|
||
DstRegs[i] = SrcRegs[i];
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateSelect(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
Register Tst = getOrCreateVReg(*U.getOperand(0));
|
||
ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
|
||
ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
|
||
ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
|
||
|
||
uint16_t Flags = 0;
|
||
if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
|
||
Flags = MachineInstr::copyFlagsFromInstruction(*SI);
|
||
|
||
for (unsigned i = 0; i < ResRegs.size(); ++i) {
|
||
MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateCopy(const User &U, const Value &V,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
Register Src = getOrCreateVReg(V);
|
||
auto &Regs = *VMap.getVRegs(U);
|
||
if (Regs.empty()) {
|
||
Regs.push_back(Src);
|
||
VMap.getOffsets(U)->push_back(0);
|
||
} else {
|
||
// If we already assigned a vreg for this instruction, we can't change that.
|
||
// Emit a copy to satisfy the users we already emitted.
|
||
MIRBuilder.buildCopy(Regs[0], Src);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateBitCast(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
// If we're bitcasting to the source type, we can reuse the source vreg.
|
||
if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
|
||
getLLTForType(*U.getType(), *DL))
|
||
return translateCopy(U, *U.getOperand(0), MIRBuilder);
|
||
|
||
return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
|
||
}
|
||
|
||
bool IRTranslator::translateCast(unsigned Opcode, const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
Register Op = getOrCreateVReg(*U.getOperand(0));
|
||
Register Res = getOrCreateVReg(U);
|
||
MIRBuilder.buildInstr(Opcode, {Res}, {Op});
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateGetElementPtr(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
Value &Op0 = *U.getOperand(0);
|
||
Register BaseReg = getOrCreateVReg(Op0);
|
||
Type *PtrIRTy = Op0.getType();
|
||
LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
|
||
Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
|
||
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
|
||
|
||
// Normalize Vector GEP - all scalar operands should be converted to the
|
||
// splat vector.
|
||
unsigned VectorWidth = 0;
|
||
if (auto *VT = dyn_cast<VectorType>(U.getType()))
|
||
VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
|
||
|
||
// We might need to splat the base pointer into a vector if the offsets
|
||
// are vectors.
|
||
if (VectorWidth && !PtrTy.isVector()) {
|
||
BaseReg =
|
||
MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
|
||
.getReg(0);
|
||
PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
|
||
PtrTy = getLLTForType(*PtrIRTy, *DL);
|
||
OffsetIRTy = DL->getIntPtrType(PtrIRTy);
|
||
OffsetTy = getLLTForType(*OffsetIRTy, *DL);
|
||
}
|
||
|
||
int64_t Offset = 0;
|
||
for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
|
||
GTI != E; ++GTI) {
|
||
const Value *Idx = GTI.getOperand();
|
||
if (StructType *StTy = GTI.getStructTypeOrNull()) {
|
||
unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
|
||
Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
|
||
continue;
|
||
} else {
|
||
uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
|
||
|
||
// If this is a scalar constant or a splat vector of constants,
|
||
// handle it quickly.
|
||
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
|
||
Offset += ElementSize * CI->getSExtValue();
|
||
continue;
|
||
}
|
||
|
||
if (Offset != 0) {
|
||
auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
|
||
BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
|
||
.getReg(0);
|
||
Offset = 0;
|
||
}
|
||
|
||
Register IdxReg = getOrCreateVReg(*Idx);
|
||
LLT IdxTy = MRI->getType(IdxReg);
|
||
if (IdxTy != OffsetTy) {
|
||
if (!IdxTy.isVector() && VectorWidth) {
|
||
IdxReg = MIRBuilder.buildSplatVector(
|
||
OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
|
||
}
|
||
|
||
IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
|
||
}
|
||
|
||
// N = N + Idx * ElementSize;
|
||
// Avoid doing it for ElementSize of 1.
|
||
Register GepOffsetReg;
|
||
if (ElementSize != 1) {
|
||
auto ElementSizeMIB = MIRBuilder.buildConstant(
|
||
getLLTForType(*OffsetIRTy, *DL), ElementSize);
|
||
GepOffsetReg =
|
||
MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
|
||
} else
|
||
GepOffsetReg = IdxReg;
|
||
|
||
BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
|
||
}
|
||
}
|
||
|
||
if (Offset != 0) {
|
||
auto OffsetMIB =
|
||
MIRBuilder.buildConstant(OffsetTy, Offset);
|
||
MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
|
||
return true;
|
||
}
|
||
|
||
MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateMemFunc(const CallInst &CI,
|
||
MachineIRBuilder &MIRBuilder,
|
||
unsigned Opcode) {
|
||
|
||
// If the source is undef, then just emit a nop.
|
||
if (isa<UndefValue>(CI.getArgOperand(1)))
|
||
return true;
|
||
|
||
SmallVector<Register, 3> SrcRegs;
|
||
|
||
unsigned MinPtrSize = UINT_MAX;
|
||
for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
|
||
Register SrcReg = getOrCreateVReg(**AI);
|
||
LLT SrcTy = MRI->getType(SrcReg);
|
||
if (SrcTy.isPointer())
|
||
MinPtrSize = std::min(SrcTy.getSizeInBits(), MinPtrSize);
|
||
SrcRegs.push_back(SrcReg);
|
||
}
|
||
|
||
LLT SizeTy = LLT::scalar(MinPtrSize);
|
||
|
||
// The size operand should be the minimum of the pointer sizes.
|
||
Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
|
||
if (MRI->getType(SizeOpReg) != SizeTy)
|
||
SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
|
||
|
||
auto ICall = MIRBuilder.buildInstr(Opcode);
|
||
for (Register SrcReg : SrcRegs)
|
||
ICall.addUse(SrcReg);
|
||
|
||
Align DstAlign;
|
||
Align SrcAlign;
|
||
unsigned IsVol =
|
||
cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
|
||
->getZExtValue();
|
||
|
||
if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
|
||
DstAlign = MCI->getDestAlign().valueOrOne();
|
||
SrcAlign = MCI->getSourceAlign().valueOrOne();
|
||
} else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
|
||
DstAlign = MMI->getDestAlign().valueOrOne();
|
||
SrcAlign = MMI->getSourceAlign().valueOrOne();
|
||
} else {
|
||
auto *MSI = cast<MemSetInst>(&CI);
|
||
DstAlign = MSI->getDestAlign().valueOrOne();
|
||
}
|
||
|
||
// We need to propagate the tail call flag from the IR inst as an argument.
|
||
// Otherwise, we have to pessimize and assume later that we cannot tail call
|
||
// any memory intrinsics.
|
||
ICall.addImm(CI.isTailCall() ? 1 : 0);
|
||
|
||
// Create mem operands to store the alignment and volatile info.
|
||
auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
|
||
ICall.addMemOperand(MF->getMachineMemOperand(
|
||
MachinePointerInfo(CI.getArgOperand(0)),
|
||
MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
|
||
if (Opcode != TargetOpcode::G_MEMSET)
|
||
ICall.addMemOperand(MF->getMachineMemOperand(
|
||
MachinePointerInfo(CI.getArgOperand(1)),
|
||
MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
|
||
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::getStackGuard(Register DstReg,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
||
MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
|
||
auto MIB =
|
||
MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
|
||
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
|
||
if (!Global)
|
||
return;
|
||
|
||
MachinePointerInfo MPInfo(Global);
|
||
auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
|
||
MachineMemOperand::MODereferenceable;
|
||
MachineMemOperand *MemRef =
|
||
MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
|
||
DL->getPointerABIAlignment(0));
|
||
MIB.setMemRefs({MemRef});
|
||
}
|
||
|
||
bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
|
||
MIRBuilder.buildInstr(
|
||
Op, {ResRegs[0], ResRegs[1]},
|
||
{getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
Register Dst = getOrCreateVReg(CI);
|
||
Register Src0 = getOrCreateVReg(*CI.getOperand(0));
|
||
Register Src1 = getOrCreateVReg(*CI.getOperand(1));
|
||
uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
|
||
MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
|
||
return true;
|
||
}
|
||
|
||
unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
|
||
switch (ID) {
|
||
default:
|
||
break;
|
||
case Intrinsic::bswap:
|
||
return TargetOpcode::G_BSWAP;
|
||
case Intrinsic::bitreverse:
|
||
return TargetOpcode::G_BITREVERSE;
|
||
case Intrinsic::fshl:
|
||
return TargetOpcode::G_FSHL;
|
||
case Intrinsic::fshr:
|
||
return TargetOpcode::G_FSHR;
|
||
case Intrinsic::ceil:
|
||
return TargetOpcode::G_FCEIL;
|
||
case Intrinsic::cos:
|
||
return TargetOpcode::G_FCOS;
|
||
case Intrinsic::ctpop:
|
||
return TargetOpcode::G_CTPOP;
|
||
case Intrinsic::exp:
|
||
return TargetOpcode::G_FEXP;
|
||
case Intrinsic::exp2:
|
||
return TargetOpcode::G_FEXP2;
|
||
case Intrinsic::fabs:
|
||
return TargetOpcode::G_FABS;
|
||
case Intrinsic::copysign:
|
||
return TargetOpcode::G_FCOPYSIGN;
|
||
case Intrinsic::minnum:
|
||
return TargetOpcode::G_FMINNUM;
|
||
case Intrinsic::maxnum:
|
||
return TargetOpcode::G_FMAXNUM;
|
||
case Intrinsic::minimum:
|
||
return TargetOpcode::G_FMINIMUM;
|
||
case Intrinsic::maximum:
|
||
return TargetOpcode::G_FMAXIMUM;
|
||
case Intrinsic::canonicalize:
|
||
return TargetOpcode::G_FCANONICALIZE;
|
||
case Intrinsic::floor:
|
||
return TargetOpcode::G_FFLOOR;
|
||
case Intrinsic::fma:
|
||
return TargetOpcode::G_FMA;
|
||
case Intrinsic::log:
|
||
return TargetOpcode::G_FLOG;
|
||
case Intrinsic::log2:
|
||
return TargetOpcode::G_FLOG2;
|
||
case Intrinsic::log10:
|
||
return TargetOpcode::G_FLOG10;
|
||
case Intrinsic::nearbyint:
|
||
return TargetOpcode::G_FNEARBYINT;
|
||
case Intrinsic::pow:
|
||
return TargetOpcode::G_FPOW;
|
||
case Intrinsic::powi:
|
||
return TargetOpcode::G_FPOWI;
|
||
case Intrinsic::rint:
|
||
return TargetOpcode::G_FRINT;
|
||
case Intrinsic::round:
|
||
return TargetOpcode::G_INTRINSIC_ROUND;
|
||
case Intrinsic::roundeven:
|
||
return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
|
||
case Intrinsic::sin:
|
||
return TargetOpcode::G_FSIN;
|
||
case Intrinsic::sqrt:
|
||
return TargetOpcode::G_FSQRT;
|
||
case Intrinsic::trunc:
|
||
return TargetOpcode::G_INTRINSIC_TRUNC;
|
||
case Intrinsic::readcyclecounter:
|
||
return TargetOpcode::G_READCYCLECOUNTER;
|
||
case Intrinsic::ptrmask:
|
||
return TargetOpcode::G_PTRMASK;
|
||
case Intrinsic::lrint:
|
||
return TargetOpcode::G_INTRINSIC_LRINT;
|
||
// FADD/FMUL require checking the FMF, so are handled elsewhere.
|
||
case Intrinsic::vector_reduce_fmin:
|
||
return TargetOpcode::G_VECREDUCE_FMIN;
|
||
case Intrinsic::vector_reduce_fmax:
|
||
return TargetOpcode::G_VECREDUCE_FMAX;
|
||
case Intrinsic::vector_reduce_add:
|
||
return TargetOpcode::G_VECREDUCE_ADD;
|
||
case Intrinsic::vector_reduce_mul:
|
||
return TargetOpcode::G_VECREDUCE_MUL;
|
||
case Intrinsic::vector_reduce_and:
|
||
return TargetOpcode::G_VECREDUCE_AND;
|
||
case Intrinsic::vector_reduce_or:
|
||
return TargetOpcode::G_VECREDUCE_OR;
|
||
case Intrinsic::vector_reduce_xor:
|
||
return TargetOpcode::G_VECREDUCE_XOR;
|
||
case Intrinsic::vector_reduce_smax:
|
||
return TargetOpcode::G_VECREDUCE_SMAX;
|
||
case Intrinsic::vector_reduce_smin:
|
||
return TargetOpcode::G_VECREDUCE_SMIN;
|
||
case Intrinsic::vector_reduce_umax:
|
||
return TargetOpcode::G_VECREDUCE_UMAX;
|
||
case Intrinsic::vector_reduce_umin:
|
||
return TargetOpcode::G_VECREDUCE_UMIN;
|
||
}
|
||
return Intrinsic::not_intrinsic;
|
||
}
|
||
|
||
bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
|
||
Intrinsic::ID ID,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
|
||
unsigned Op = getSimpleIntrinsicOpcode(ID);
|
||
|
||
// Is this a simple intrinsic?
|
||
if (Op == Intrinsic::not_intrinsic)
|
||
return false;
|
||
|
||
// Yes. Let's translate it.
|
||
SmallVector<llvm::SrcOp, 4> VRegs;
|
||
for (auto &Arg : CI.arg_operands())
|
||
VRegs.push_back(getOrCreateVReg(*Arg));
|
||
|
||
MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
|
||
MachineInstr::copyFlagsFromInstruction(CI));
|
||
return true;
|
||
}
|
||
|
||
// TODO: Include ConstainedOps.def when all strict instructions are defined.
|
||
static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
|
||
switch (ID) {
|
||
case Intrinsic::experimental_constrained_fadd:
|
||
return TargetOpcode::G_STRICT_FADD;
|
||
case Intrinsic::experimental_constrained_fsub:
|
||
return TargetOpcode::G_STRICT_FSUB;
|
||
case Intrinsic::experimental_constrained_fmul:
|
||
return TargetOpcode::G_STRICT_FMUL;
|
||
case Intrinsic::experimental_constrained_fdiv:
|
||
return TargetOpcode::G_STRICT_FDIV;
|
||
case Intrinsic::experimental_constrained_frem:
|
||
return TargetOpcode::G_STRICT_FREM;
|
||
case Intrinsic::experimental_constrained_fma:
|
||
return TargetOpcode::G_STRICT_FMA;
|
||
case Intrinsic::experimental_constrained_sqrt:
|
||
return TargetOpcode::G_STRICT_FSQRT;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
bool IRTranslator::translateConstrainedFPIntrinsic(
|
||
const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
|
||
fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
|
||
|
||
unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
|
||
if (!Opcode)
|
||
return false;
|
||
|
||
unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
|
||
if (EB == fp::ExceptionBehavior::ebIgnore)
|
||
Flags |= MachineInstr::NoFPExcept;
|
||
|
||
SmallVector<llvm::SrcOp, 4> VRegs;
|
||
VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
|
||
if (!FPI.isUnaryOp())
|
||
VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
|
||
if (FPI.isTernaryOp())
|
||
VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
|
||
|
||
MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
|
||
// If this is a simple intrinsic (that is, we just need to add a def of
|
||
// a vreg, and uses for each arg operand, then translate it.
|
||
if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
|
||
return true;
|
||
|
||
switch (ID) {
|
||
default:
|
||
break;
|
||
case Intrinsic::lifetime_start:
|
||
case Intrinsic::lifetime_end: {
|
||
// No stack colouring in O0, discard region information.
|
||
if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
|
||
return true;
|
||
|
||
unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
|
||
: TargetOpcode::LIFETIME_END;
|
||
|
||
// Get the underlying objects for the location passed on the lifetime
|
||
// marker.
|
||
SmallVector<const Value *, 4> Allocas;
|
||
getUnderlyingObjects(CI.getArgOperand(1), Allocas);
|
||
|
||
// Iterate over each underlying object, creating lifetime markers for each
|
||
// static alloca. Quit if we find a non-static alloca.
|
||
for (const Value *V : Allocas) {
|
||
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
|
||
if (!AI)
|
||
continue;
|
||
|
||
if (!AI->isStaticAlloca())
|
||
return true;
|
||
|
||
MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
|
||
}
|
||
return true;
|
||
}
|
||
case Intrinsic::dbg_declare: {
|
||
const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
|
||
assert(DI.getVariable() && "Missing variable");
|
||
|
||
const Value *Address = DI.getAddress();
|
||
if (!Address || isa<UndefValue>(Address)) {
|
||
LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
|
||
return true;
|
||
}
|
||
|
||
assert(DI.getVariable()->isValidLocationForIntrinsic(
|
||
MIRBuilder.getDebugLoc()) &&
|
||
"Expected inlined-at fields to agree");
|
||
auto AI = dyn_cast<AllocaInst>(Address);
|
||
if (AI && AI->isStaticAlloca()) {
|
||
// Static allocas are tracked at the MF level, no need for DBG_VALUE
|
||
// instructions (in fact, they get ignored if they *do* exist).
|
||
MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
|
||
getOrCreateFrameIndex(*AI), DI.getDebugLoc());
|
||
} else {
|
||
// A dbg.declare describes the address of a source variable, so lower it
|
||
// into an indirect DBG_VALUE.
|
||
MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
|
||
DI.getVariable(), DI.getExpression());
|
||
}
|
||
return true;
|
||
}
|
||
case Intrinsic::dbg_label: {
|
||
const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
|
||
assert(DI.getLabel() && "Missing label");
|
||
|
||
assert(DI.getLabel()->isValidLocationForIntrinsic(
|
||
MIRBuilder.getDebugLoc()) &&
|
||
"Expected inlined-at fields to agree");
|
||
|
||
MIRBuilder.buildDbgLabel(DI.getLabel());
|
||
return true;
|
||
}
|
||
case Intrinsic::vaend:
|
||
// No target I know of cares about va_end. Certainly no in-tree target
|
||
// does. Simplest intrinsic ever!
|
||
return true;
|
||
case Intrinsic::vastart: {
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
Value *Ptr = CI.getArgOperand(0);
|
||
unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
|
||
|
||
// FIXME: Get alignment
|
||
MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
|
||
.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
|
||
MachineMemOperand::MOStore,
|
||
ListSize, Align(1)));
|
||
return true;
|
||
}
|
||
case Intrinsic::dbg_value: {
|
||
// This form of DBG_VALUE is target-independent.
|
||
const DbgValueInst &DI = cast<DbgValueInst>(CI);
|
||
const Value *V = DI.getValue();
|
||
assert(DI.getVariable()->isValidLocationForIntrinsic(
|
||
MIRBuilder.getDebugLoc()) &&
|
||
"Expected inlined-at fields to agree");
|
||
if (!V) {
|
||
// Currently the optimizer can produce this; insert an undef to
|
||
// help debugging. Probably the optimizer should not do this.
|
||
MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
|
||
} else if (const auto *CI = dyn_cast<Constant>(V)) {
|
||
MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
|
||
} else {
|
||
for (Register Reg : getOrCreateVRegs(*V)) {
|
||
// FIXME: This does not handle register-indirect values at offset 0. The
|
||
// direct/indirect thing shouldn't really be handled by something as
|
||
// implicit as reg+noreg vs reg+imm in the first place, but it seems
|
||
// pretty baked in right now.
|
||
MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
case Intrinsic::uadd_with_overflow:
|
||
return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
|
||
case Intrinsic::sadd_with_overflow:
|
||
return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
|
||
case Intrinsic::usub_with_overflow:
|
||
return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
|
||
case Intrinsic::ssub_with_overflow:
|
||
return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
|
||
case Intrinsic::umul_with_overflow:
|
||
return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
|
||
case Intrinsic::smul_with_overflow:
|
||
return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
|
||
case Intrinsic::uadd_sat:
|
||
return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
|
||
case Intrinsic::sadd_sat:
|
||
return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
|
||
case Intrinsic::usub_sat:
|
||
return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
|
||
case Intrinsic::ssub_sat:
|
||
return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
|
||
case Intrinsic::ushl_sat:
|
||
return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
|
||
case Intrinsic::sshl_sat:
|
||
return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
|
||
case Intrinsic::umin:
|
||
return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
|
||
case Intrinsic::umax:
|
||
return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
|
||
case Intrinsic::smin:
|
||
return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
|
||
case Intrinsic::smax:
|
||
return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
|
||
case Intrinsic::abs:
|
||
// TODO: Preserve "int min is poison" arg in GMIR?
|
||
return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
|
||
case Intrinsic::smul_fix:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
|
||
case Intrinsic::umul_fix:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
|
||
case Intrinsic::smul_fix_sat:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
|
||
case Intrinsic::umul_fix_sat:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
|
||
case Intrinsic::sdiv_fix:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
|
||
case Intrinsic::udiv_fix:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
|
||
case Intrinsic::sdiv_fix_sat:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
|
||
case Intrinsic::udiv_fix_sat:
|
||
return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
|
||
case Intrinsic::fmuladd: {
|
||
const TargetMachine &TM = MF->getTarget();
|
||
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
|
||
Register Dst = getOrCreateVReg(CI);
|
||
Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
|
||
Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
|
||
Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
|
||
if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
|
||
TLI.isFMAFasterThanFMulAndFAdd(*MF,
|
||
TLI.getValueType(*DL, CI.getType()))) {
|
||
// TODO: Revisit this to see if we should move this part of the
|
||
// lowering to the combiner.
|
||
MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
|
||
MachineInstr::copyFlagsFromInstruction(CI));
|
||
} else {
|
||
LLT Ty = getLLTForType(*CI.getType(), *DL);
|
||
auto FMul = MIRBuilder.buildFMul(
|
||
Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
|
||
MIRBuilder.buildFAdd(Dst, FMul, Op2,
|
||
MachineInstr::copyFlagsFromInstruction(CI));
|
||
}
|
||
return true;
|
||
}
|
||
case Intrinsic::convert_from_fp16:
|
||
// FIXME: This intrinsic should probably be removed from the IR.
|
||
MIRBuilder.buildFPExt(getOrCreateVReg(CI),
|
||
getOrCreateVReg(*CI.getArgOperand(0)),
|
||
MachineInstr::copyFlagsFromInstruction(CI));
|
||
return true;
|
||
case Intrinsic::convert_to_fp16:
|
||
// FIXME: This intrinsic should probably be removed from the IR.
|
||
MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
|
||
getOrCreateVReg(*CI.getArgOperand(0)),
|
||
MachineInstr::copyFlagsFromInstruction(CI));
|
||
return true;
|
||
case Intrinsic::memcpy:
|
||
return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
|
||
case Intrinsic::memmove:
|
||
return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
|
||
case Intrinsic::memset:
|
||
return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
|
||
case Intrinsic::eh_typeid_for: {
|
||
GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
|
||
Register Reg = getOrCreateVReg(CI);
|
||
unsigned TypeID = MF->getTypeIDFor(GV);
|
||
MIRBuilder.buildConstant(Reg, TypeID);
|
||
return true;
|
||
}
|
||
case Intrinsic::objectsize:
|
||
llvm_unreachable("llvm.objectsize.* should have been lowered already");
|
||
|
||
case Intrinsic::is_constant:
|
||
llvm_unreachable("llvm.is.constant.* should have been lowered already");
|
||
|
||
case Intrinsic::stackguard:
|
||
getStackGuard(getOrCreateVReg(CI), MIRBuilder);
|
||
return true;
|
||
case Intrinsic::stackprotector: {
|
||
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
|
||
Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
|
||
getStackGuard(GuardVal, MIRBuilder);
|
||
|
||
AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
|
||
int FI = getOrCreateFrameIndex(*Slot);
|
||
MF->getFrameInfo().setStackProtectorIndex(FI);
|
||
|
||
MIRBuilder.buildStore(
|
||
GuardVal, getOrCreateVReg(*Slot),
|
||
*MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
|
||
MachineMemOperand::MOStore |
|
||
MachineMemOperand::MOVolatile,
|
||
PtrTy.getSizeInBits() / 8, Align(8)));
|
||
return true;
|
||
}
|
||
case Intrinsic::stacksave: {
|
||
// Save the stack pointer to the location provided by the intrinsic.
|
||
Register Reg = getOrCreateVReg(CI);
|
||
Register StackPtr = MF->getSubtarget()
|
||
.getTargetLowering()
|
||
->getStackPointerRegisterToSaveRestore();
|
||
|
||
// If the target doesn't specify a stack pointer, then fall back.
|
||
if (!StackPtr)
|
||
return false;
|
||
|
||
MIRBuilder.buildCopy(Reg, StackPtr);
|
||
return true;
|
||
}
|
||
case Intrinsic::stackrestore: {
|
||
// Restore the stack pointer from the location provided by the intrinsic.
|
||
Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
|
||
Register StackPtr = MF->getSubtarget()
|
||
.getTargetLowering()
|
||
->getStackPointerRegisterToSaveRestore();
|
||
|
||
// If the target doesn't specify a stack pointer, then fall back.
|
||
if (!StackPtr)
|
||
return false;
|
||
|
||
MIRBuilder.buildCopy(StackPtr, Reg);
|
||
return true;
|
||
}
|
||
case Intrinsic::cttz:
|
||
case Intrinsic::ctlz: {
|
||
ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
|
||
bool isTrailing = ID == Intrinsic::cttz;
|
||
unsigned Opcode = isTrailing
|
||
? Cst->isZero() ? TargetOpcode::G_CTTZ
|
||
: TargetOpcode::G_CTTZ_ZERO_UNDEF
|
||
: Cst->isZero() ? TargetOpcode::G_CTLZ
|
||
: TargetOpcode::G_CTLZ_ZERO_UNDEF;
|
||
MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
|
||
{getOrCreateVReg(*CI.getArgOperand(0))});
|
||
return true;
|
||
}
|
||
case Intrinsic::invariant_start: {
|
||
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
|
||
Register Undef = MRI->createGenericVirtualRegister(PtrTy);
|
||
MIRBuilder.buildUndef(Undef);
|
||
return true;
|
||
}
|
||
case Intrinsic::invariant_end:
|
||
return true;
|
||
case Intrinsic::expect:
|
||
case Intrinsic::annotation:
|
||
case Intrinsic::ptr_annotation:
|
||
case Intrinsic::launder_invariant_group:
|
||
case Intrinsic::strip_invariant_group: {
|
||
// Drop the intrinsic, but forward the value.
|
||
MIRBuilder.buildCopy(getOrCreateVReg(CI),
|
||
getOrCreateVReg(*CI.getArgOperand(0)));
|
||
return true;
|
||
}
|
||
case Intrinsic::assume:
|
||
case Intrinsic::experimental_noalias_scope_decl:
|
||
case Intrinsic::var_annotation:
|
||
case Intrinsic::sideeffect:
|
||
// Discard annotate attributes, assumptions, and artificial side-effects.
|
||
return true;
|
||
case Intrinsic::read_volatile_register:
|
||
case Intrinsic::read_register: {
|
||
Value *Arg = CI.getArgOperand(0);
|
||
MIRBuilder
|
||
.buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
|
||
.addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
|
||
return true;
|
||
}
|
||
case Intrinsic::write_register: {
|
||
Value *Arg = CI.getArgOperand(0);
|
||
MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
|
||
.addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
|
||
.addUse(getOrCreateVReg(*CI.getArgOperand(1)));
|
||
return true;
|
||
}
|
||
case Intrinsic::localescape: {
|
||
MachineBasicBlock &EntryMBB = MF->front();
|
||
StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
|
||
|
||
// Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
|
||
// is the same on all targets.
|
||
for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
|
||
Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
|
||
if (isa<ConstantPointerNull>(Arg))
|
||
continue; // Skip null pointers. They represent a hole in index space.
|
||
|
||
int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
|
||
MCSymbol *FrameAllocSym =
|
||
MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
|
||
Idx);
|
||
|
||
// This should be inserted at the start of the entry block.
|
||
auto LocalEscape =
|
||
MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
|
||
.addSym(FrameAllocSym)
|
||
.addFrameIndex(FI);
|
||
|
||
EntryMBB.insert(EntryMBB.begin(), LocalEscape);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
case Intrinsic::vector_reduce_fadd:
|
||
case Intrinsic::vector_reduce_fmul: {
|
||
// Need to check for the reassoc flag to decide whether we want a
|
||
// sequential reduction opcode or not.
|
||
Register Dst = getOrCreateVReg(CI);
|
||
Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
|
||
Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
|
||
unsigned Opc = 0;
|
||
if (!CI.hasAllowReassoc()) {
|
||
// The sequential ordering case.
|
||
Opc = ID == Intrinsic::vector_reduce_fadd
|
||
? TargetOpcode::G_VECREDUCE_SEQ_FADD
|
||
: TargetOpcode::G_VECREDUCE_SEQ_FMUL;
|
||
MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
|
||
MachineInstr::copyFlagsFromInstruction(CI));
|
||
return true;
|
||
}
|
||
// We split the operation into a separate G_FADD/G_FMUL + the reduce,
|
||
// since the associativity doesn't matter.
|
||
unsigned ScalarOpc;
|
||
if (ID == Intrinsic::vector_reduce_fadd) {
|
||
Opc = TargetOpcode::G_VECREDUCE_FADD;
|
||
ScalarOpc = TargetOpcode::G_FADD;
|
||
} else {
|
||
Opc = TargetOpcode::G_VECREDUCE_FMUL;
|
||
ScalarOpc = TargetOpcode::G_FMUL;
|
||
}
|
||
LLT DstTy = MRI->getType(Dst);
|
||
auto Rdx = MIRBuilder.buildInstr(
|
||
Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
|
||
MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
|
||
MachineInstr::copyFlagsFromInstruction(CI));
|
||
|
||
return true;
|
||
}
|
||
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
|
||
case Intrinsic::INTRINSIC:
|
||
#include "llvm/IR/ConstrainedOps.def"
|
||
return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
|
||
MIRBuilder);
|
||
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool IRTranslator::translateInlineAsm(const CallBase &CB,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
|
||
const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
|
||
|
||
if (!ALI) {
|
||
LLVM_DEBUG(
|
||
dbgs() << "Inline asm lowering is not supported for this target yet\n");
|
||
return false;
|
||
}
|
||
|
||
return ALI->lowerInlineAsm(
|
||
MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
|
||
}
|
||
|
||
bool IRTranslator::translateCallBase(const CallBase &CB,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
ArrayRef<Register> Res = getOrCreateVRegs(CB);
|
||
|
||
SmallVector<ArrayRef<Register>, 8> Args;
|
||
Register SwiftInVReg = 0;
|
||
Register SwiftErrorVReg = 0;
|
||
for (auto &Arg : CB.args()) {
|
||
if (CLI->supportSwiftError() && isSwiftError(Arg)) {
|
||
assert(SwiftInVReg == 0 && "Expected only one swift error argument");
|
||
LLT Ty = getLLTForType(*Arg->getType(), *DL);
|
||
SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
|
||
MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
|
||
&CB, &MIRBuilder.getMBB(), Arg));
|
||
Args.emplace_back(makeArrayRef(SwiftInVReg));
|
||
SwiftErrorVReg =
|
||
SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
|
||
continue;
|
||
}
|
||
Args.push_back(getOrCreateVRegs(*Arg));
|
||
}
|
||
|
||
// We don't set HasCalls on MFI here yet because call lowering may decide to
|
||
// optimize into tail calls. Instead, we defer that to selection where a final
|
||
// scan is done to check if any instructions are calls.
|
||
bool Success =
|
||
CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
|
||
[&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
|
||
|
||
// Check if we just inserted a tail call.
|
||
if (Success) {
|
||
assert(!HasTailCall && "Can't tail call return twice from block?");
|
||
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
||
HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
|
||
}
|
||
|
||
return Success;
|
||
}
|
||
|
||
bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
const CallInst &CI = cast<CallInst>(U);
|
||
auto TII = MF->getTarget().getIntrinsicInfo();
|
||
const Function *F = CI.getCalledFunction();
|
||
|
||
// FIXME: support Windows dllimport function calls.
|
||
if (F && (F->hasDLLImportStorageClass() ||
|
||
(MF->getTarget().getTargetTriple().isOSWindows() &&
|
||
F->hasExternalWeakLinkage())))
|
||
return false;
|
||
|
||
// FIXME: support control flow guard targets.
|
||
if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
|
||
return false;
|
||
|
||
if (CI.isInlineAsm())
|
||
return translateInlineAsm(CI, MIRBuilder);
|
||
|
||
Intrinsic::ID ID = Intrinsic::not_intrinsic;
|
||
if (F && F->isIntrinsic()) {
|
||
ID = F->getIntrinsicID();
|
||
if (TII && ID == Intrinsic::not_intrinsic)
|
||
ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
|
||
}
|
||
|
||
if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
|
||
return translateCallBase(CI, MIRBuilder);
|
||
|
||
assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
|
||
|
||
if (translateKnownIntrinsic(CI, ID, MIRBuilder))
|
||
return true;
|
||
|
||
ArrayRef<Register> ResultRegs;
|
||
if (!CI.getType()->isVoidTy())
|
||
ResultRegs = getOrCreateVRegs(CI);
|
||
|
||
// Ignore the callsite attributes. Backend code is most likely not expecting
|
||
// an intrinsic to sometimes have side effects and sometimes not.
|
||
MachineInstrBuilder MIB =
|
||
MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
|
||
if (isa<FPMathOperator>(CI))
|
||
MIB->copyIRFlags(CI);
|
||
|
||
for (auto &Arg : enumerate(CI.arg_operands())) {
|
||
// If this is required to be an immediate, don't materialize it in a
|
||
// register.
|
||
if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
|
||
if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
|
||
// imm arguments are more convenient than cimm (and realistically
|
||
// probably sufficient), so use them.
|
||
assert(CI->getBitWidth() <= 64 &&
|
||
"large intrinsic immediates not handled");
|
||
MIB.addImm(CI->getSExtValue());
|
||
} else {
|
||
MIB.addFPImm(cast<ConstantFP>(Arg.value()));
|
||
}
|
||
} else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
|
||
auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
|
||
if (!MDN) // This was probably an MDString.
|
||
return false;
|
||
MIB.addMetadata(MDN);
|
||
} else {
|
||
ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
|
||
if (VRegs.size() > 1)
|
||
return false;
|
||
MIB.addUse(VRegs[0]);
|
||
}
|
||
}
|
||
|
||
// Add a MachineMemOperand if it is a target mem intrinsic.
|
||
const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
|
||
TargetLowering::IntrinsicInfo Info;
|
||
// TODO: Add a GlobalISel version of getTgtMemIntrinsic.
|
||
if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
|
||
Align Alignment = Info.align.getValueOr(
|
||
DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
|
||
|
||
uint64_t Size = Info.memVT.getStoreSize();
|
||
MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
|
||
Info.flags, Size, Alignment));
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::findUnwindDestinations(
|
||
const BasicBlock *EHPadBB,
|
||
BranchProbability Prob,
|
||
SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
|
||
&UnwindDests) {
|
||
EHPersonality Personality = classifyEHPersonality(
|
||
EHPadBB->getParent()->getFunction().getPersonalityFn());
|
||
bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
|
||
bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
|
||
bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
|
||
bool IsSEH = isAsynchronousEHPersonality(Personality);
|
||
|
||
if (IsWasmCXX) {
|
||
// Ignore this for now.
|
||
return false;
|
||
}
|
||
|
||
while (EHPadBB) {
|
||
const Instruction *Pad = EHPadBB->getFirstNonPHI();
|
||
BasicBlock *NewEHPadBB = nullptr;
|
||
if (isa<LandingPadInst>(Pad)) {
|
||
// Stop on landingpads. They are not funclets.
|
||
UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
|
||
break;
|
||
}
|
||
if (isa<CleanupPadInst>(Pad)) {
|
||
// Stop on cleanup pads. Cleanups are always funclet entries for all known
|
||
// personalities.
|
||
UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
|
||
UnwindDests.back().first->setIsEHScopeEntry();
|
||
UnwindDests.back().first->setIsEHFuncletEntry();
|
||
break;
|
||
}
|
||
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
|
||
// Add the catchpad handlers to the possible destinations.
|
||
for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
|
||
UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
|
||
// For MSVC++ and the CLR, catchblocks are funclets and need prologues.
|
||
if (IsMSVCCXX || IsCoreCLR)
|
||
UnwindDests.back().first->setIsEHFuncletEntry();
|
||
if (!IsSEH)
|
||
UnwindDests.back().first->setIsEHScopeEntry();
|
||
}
|
||
NewEHPadBB = CatchSwitch->getUnwindDest();
|
||
} else {
|
||
continue;
|
||
}
|
||
|
||
BranchProbabilityInfo *BPI = FuncInfo.BPI;
|
||
if (BPI && NewEHPadBB)
|
||
Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
|
||
EHPadBB = NewEHPadBB;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateInvoke(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const InvokeInst &I = cast<InvokeInst>(U);
|
||
MCContext &Context = MF->getContext();
|
||
|
||
const BasicBlock *ReturnBB = I.getSuccessor(0);
|
||
const BasicBlock *EHPadBB = I.getSuccessor(1);
|
||
|
||
const Function *Fn = I.getCalledFunction();
|
||
if (I.isInlineAsm())
|
||
return false;
|
||
|
||
// FIXME: support invoking patchpoint and statepoint intrinsics.
|
||
if (Fn && Fn->isIntrinsic())
|
||
return false;
|
||
|
||
// FIXME: support whatever these are.
|
||
if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
|
||
return false;
|
||
|
||
// FIXME: support control flow guard targets.
|
||
if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
|
||
return false;
|
||
|
||
// FIXME: support Windows exception handling.
|
||
if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
|
||
return false;
|
||
|
||
// Emit the actual call, bracketed by EH_LABELs so that the MF knows about
|
||
// the region covered by the try.
|
||
MCSymbol *BeginSymbol = Context.createTempSymbol();
|
||
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
|
||
|
||
if (!translateCallBase(I, MIRBuilder))
|
||
return false;
|
||
|
||
MCSymbol *EndSymbol = Context.createTempSymbol();
|
||
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
|
||
|
||
SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
|
||
BranchProbabilityInfo *BPI = FuncInfo.BPI;
|
||
MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
|
||
BranchProbability EHPadBBProb =
|
||
BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
|
||
: BranchProbability::getZero();
|
||
|
||
if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
|
||
return false;
|
||
|
||
MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
|
||
&ReturnMBB = getMBB(*ReturnBB);
|
||
// Update successor info.
|
||
addSuccessorWithProb(InvokeMBB, &ReturnMBB);
|
||
for (auto &UnwindDest : UnwindDests) {
|
||
UnwindDest.first->setIsEHPad();
|
||
addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
|
||
}
|
||
InvokeMBB->normalizeSuccProbs();
|
||
|
||
MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
|
||
MIRBuilder.buildBr(ReturnMBB);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateCallBr(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
// FIXME: Implement this.
|
||
return false;
|
||
}
|
||
|
||
bool IRTranslator::translateLandingPad(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const LandingPadInst &LP = cast<LandingPadInst>(U);
|
||
|
||
MachineBasicBlock &MBB = MIRBuilder.getMBB();
|
||
|
||
MBB.setIsEHPad();
|
||
|
||
// If there aren't registers to copy the values into (e.g., during SjLj
|
||
// exceptions), then don't bother.
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
|
||
if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
|
||
TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
|
||
return true;
|
||
|
||
// If landingpad's return type is token type, we don't create DAG nodes
|
||
// for its exception pointer and selector value. The extraction of exception
|
||
// pointer or selector value from token type landingpads is not currently
|
||
// supported.
|
||
if (LP.getType()->isTokenTy())
|
||
return true;
|
||
|
||
// Add a label to mark the beginning of the landing pad. Deletion of the
|
||
// landing pad can thus be detected via the MachineModuleInfo.
|
||
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
|
||
.addSym(MF->addLandingPad(&MBB));
|
||
|
||
// If the unwinder does not preserve all registers, ensure that the
|
||
// function marks the clobbered registers as used.
|
||
const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
|
||
if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
|
||
MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
|
||
|
||
LLT Ty = getLLTForType(*LP.getType(), *DL);
|
||
Register Undef = MRI->createGenericVirtualRegister(Ty);
|
||
MIRBuilder.buildUndef(Undef);
|
||
|
||
SmallVector<LLT, 2> Tys;
|
||
for (Type *Ty : cast<StructType>(LP.getType())->elements())
|
||
Tys.push_back(getLLTForType(*Ty, *DL));
|
||
assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
|
||
|
||
// Mark exception register as live in.
|
||
Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
|
||
if (!ExceptionReg)
|
||
return false;
|
||
|
||
MBB.addLiveIn(ExceptionReg);
|
||
ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
|
||
MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
|
||
|
||
Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
|
||
if (!SelectorReg)
|
||
return false;
|
||
|
||
MBB.addLiveIn(SelectorReg);
|
||
Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
|
||
MIRBuilder.buildCopy(PtrVReg, SelectorReg);
|
||
MIRBuilder.buildCast(ResRegs[1], PtrVReg);
|
||
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateAlloca(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
auto &AI = cast<AllocaInst>(U);
|
||
|
||
if (AI.isSwiftError())
|
||
return true;
|
||
|
||
if (AI.isStaticAlloca()) {
|
||
Register Res = getOrCreateVReg(AI);
|
||
int FI = getOrCreateFrameIndex(AI);
|
||
MIRBuilder.buildFrameIndex(Res, FI);
|
||
return true;
|
||
}
|
||
|
||
// FIXME: support stack probing for Windows.
|
||
if (MF->getTarget().getTargetTriple().isOSWindows())
|
||
return false;
|
||
|
||
// Now we're in the harder dynamic case.
|
||
Register NumElts = getOrCreateVReg(*AI.getArraySize());
|
||
Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
|
||
LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
|
||
if (MRI->getType(NumElts) != IntPtrTy) {
|
||
Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
|
||
MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
|
||
NumElts = ExtElts;
|
||
}
|
||
|
||
Type *Ty = AI.getAllocatedType();
|
||
|
||
Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
|
||
Register TySize =
|
||
getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
|
||
MIRBuilder.buildMul(AllocSize, NumElts, TySize);
|
||
|
||
// Round the size of the allocation up to the stack alignment size
|
||
// by add SA-1 to the size. This doesn't overflow because we're computing
|
||
// an address inside an alloca.
|
||
Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
|
||
auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
|
||
auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
|
||
MachineInstr::NoUWrap);
|
||
auto AlignCst =
|
||
MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
|
||
auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
|
||
|
||
Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
|
||
if (Alignment <= StackAlign)
|
||
Alignment = Align(1);
|
||
MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
|
||
|
||
MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
|
||
assert(MF->getFrameInfo().hasVarSizedObjects());
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
// FIXME: We may need more info about the type. Because of how LLT works,
|
||
// we're completely discarding the i64/double distinction here (amongst
|
||
// others). Fortunately the ABIs I know of where that matters don't use va_arg
|
||
// anyway but that's not guaranteed.
|
||
MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
|
||
{getOrCreateVReg(*U.getOperand(0)),
|
||
DL->getABITypeAlign(U.getType()).value()});
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateInsertElement(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
// If it is a <1 x Ty> vector, use the scalar as it is
|
||
// not a legal vector type in LLT.
|
||
if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
|
||
return translateCopy(U, *U.getOperand(1), MIRBuilder);
|
||
|
||
Register Res = getOrCreateVReg(U);
|
||
Register Val = getOrCreateVReg(*U.getOperand(0));
|
||
Register Elt = getOrCreateVReg(*U.getOperand(1));
|
||
Register Idx = getOrCreateVReg(*U.getOperand(2));
|
||
MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateExtractElement(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
// If it is a <1 x Ty> vector, use the scalar as it is
|
||
// not a legal vector type in LLT.
|
||
if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
|
||
return translateCopy(U, *U.getOperand(0), MIRBuilder);
|
||
|
||
Register Res = getOrCreateVReg(U);
|
||
Register Val = getOrCreateVReg(*U.getOperand(0));
|
||
const auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
|
||
Register Idx;
|
||
if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
|
||
if (CI->getBitWidth() != PreferredVecIdxWidth) {
|
||
APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
|
||
auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
|
||
Idx = getOrCreateVReg(*NewIdxCI);
|
||
}
|
||
}
|
||
if (!Idx)
|
||
Idx = getOrCreateVReg(*U.getOperand(1));
|
||
if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
|
||
const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
|
||
Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
|
||
}
|
||
MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateShuffleVector(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
ArrayRef<int> Mask;
|
||
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
|
||
Mask = SVI->getShuffleMask();
|
||
else
|
||
Mask = cast<ConstantExpr>(U).getShuffleMask();
|
||
ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
|
||
MIRBuilder
|
||
.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
|
||
{getOrCreateVReg(*U.getOperand(0)),
|
||
getOrCreateVReg(*U.getOperand(1))})
|
||
.addShuffleMask(MaskAlloc);
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
|
||
const PHINode &PI = cast<PHINode>(U);
|
||
|
||
SmallVector<MachineInstr *, 4> Insts;
|
||
for (auto Reg : getOrCreateVRegs(PI)) {
|
||
auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
|
||
Insts.push_back(MIB.getInstr());
|
||
}
|
||
|
||
PendingPHIs.emplace_back(&PI, std::move(Insts));
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateAtomicCmpXchg(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
|
||
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
|
||
|
||
Type *ResType = I.getType();
|
||
Type *ValType = ResType->Type::getStructElementType(0);
|
||
|
||
auto Res = getOrCreateVRegs(I);
|
||
Register OldValRes = Res[0];
|
||
Register SuccessRes = Res[1];
|
||
Register Addr = getOrCreateVReg(*I.getPointerOperand());
|
||
Register Cmp = getOrCreateVReg(*I.getCompareOperand());
|
||
Register NewVal = getOrCreateVReg(*I.getNewValOperand());
|
||
|
||
AAMDNodes AAMetadata;
|
||
I.getAAMetadata(AAMetadata);
|
||
|
||
MIRBuilder.buildAtomicCmpXchgWithSuccess(
|
||
OldValRes, SuccessRes, Addr, Cmp, NewVal,
|
||
*MF->getMachineMemOperand(
|
||
MachinePointerInfo(I.getPointerOperand()), Flags,
|
||
DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
|
||
I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateAtomicRMW(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
|
||
|
||
Type *ResType = I.getType();
|
||
|
||
Register Res = getOrCreateVReg(I);
|
||
Register Addr = getOrCreateVReg(*I.getPointerOperand());
|
||
Register Val = getOrCreateVReg(*I.getValOperand());
|
||
|
||
unsigned Opcode = 0;
|
||
switch (I.getOperation()) {
|
||
default:
|
||
return false;
|
||
case AtomicRMWInst::Xchg:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
|
||
break;
|
||
case AtomicRMWInst::Add:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_ADD;
|
||
break;
|
||
case AtomicRMWInst::Sub:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_SUB;
|
||
break;
|
||
case AtomicRMWInst::And:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_AND;
|
||
break;
|
||
case AtomicRMWInst::Nand:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_NAND;
|
||
break;
|
||
case AtomicRMWInst::Or:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_OR;
|
||
break;
|
||
case AtomicRMWInst::Xor:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_XOR;
|
||
break;
|
||
case AtomicRMWInst::Max:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_MAX;
|
||
break;
|
||
case AtomicRMWInst::Min:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_MIN;
|
||
break;
|
||
case AtomicRMWInst::UMax:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
|
||
break;
|
||
case AtomicRMWInst::UMin:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
|
||
break;
|
||
case AtomicRMWInst::FAdd:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_FADD;
|
||
break;
|
||
case AtomicRMWInst::FSub:
|
||
Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
|
||
break;
|
||
}
|
||
|
||
AAMDNodes AAMetadata;
|
||
I.getAAMetadata(AAMetadata);
|
||
|
||
MIRBuilder.buildAtomicRMW(
|
||
Opcode, Res, Addr, Val,
|
||
*MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
|
||
Flags, DL->getTypeStoreSize(ResType),
|
||
getMemOpAlign(I), AAMetadata, nullptr,
|
||
I.getSyncScopeID(), I.getOrdering()));
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateFence(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const FenceInst &Fence = cast<FenceInst>(U);
|
||
MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
|
||
Fence.getSyncScopeID());
|
||
return true;
|
||
}
|
||
|
||
bool IRTranslator::translateFreeze(const User &U,
|
||
MachineIRBuilder &MIRBuilder) {
|
||
const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
|
||
const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
|
||
|
||
assert(DstRegs.size() == SrcRegs.size() &&
|
||
"Freeze with different source and destination type?");
|
||
|
||
for (unsigned I = 0; I < DstRegs.size(); ++I) {
|
||
MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::finishPendingPhis() {
|
||
#ifndef NDEBUG
|
||
DILocationVerifier Verifier;
|
||
GISelObserverWrapper WrapperObserver(&Verifier);
|
||
RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
|
||
#endif // ifndef NDEBUG
|
||
for (auto &Phi : PendingPHIs) {
|
||
const PHINode *PI = Phi.first;
|
||
ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
|
||
MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
|
||
EntryBuilder->setDebugLoc(PI->getDebugLoc());
|
||
#ifndef NDEBUG
|
||
Verifier.setCurrentInst(PI);
|
||
#endif // ifndef NDEBUG
|
||
|
||
SmallSet<const MachineBasicBlock *, 16> SeenPreds;
|
||
for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
|
||
auto IRPred = PI->getIncomingBlock(i);
|
||
ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
|
||
for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
|
||
if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
|
||
continue;
|
||
SeenPreds.insert(Pred);
|
||
for (unsigned j = 0; j < ValRegs.size(); ++j) {
|
||
MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
|
||
MIB.addUse(ValRegs[j]);
|
||
MIB.addMBB(Pred);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bool IRTranslator::valueIsSplit(const Value &V,
|
||
SmallVectorImpl<uint64_t> *Offsets) {
|
||
SmallVector<LLT, 4> SplitTys;
|
||
if (Offsets && !Offsets->empty())
|
||
Offsets->clear();
|
||
computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
|
||
return SplitTys.size() > 1;
|
||
}
|
||
|
||
bool IRTranslator::translate(const Instruction &Inst) {
|
||
CurBuilder->setDebugLoc(Inst.getDebugLoc());
|
||
// We only emit constants into the entry block from here. To prevent jumpy
|
||
// debug behaviour set the line to 0.
|
||
if (const DebugLoc &DL = Inst.getDebugLoc())
|
||
EntryBuilder->setDebugLoc(DILocation::get(
|
||
Inst.getContext(), 0, 0, DL.getScope(), DL.getInlinedAt()));
|
||
else
|
||
EntryBuilder->setDebugLoc(DebugLoc());
|
||
|
||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
if (TLI.fallBackToDAGISel(Inst))
|
||
return false;
|
||
|
||
switch (Inst.getOpcode()) {
|
||
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
||
case Instruction::OPCODE: \
|
||
return translate##OPCODE(Inst, *CurBuilder.get());
|
||
#include "llvm/IR/Instruction.def"
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
bool IRTranslator::translate(const Constant &C, Register Reg) {
|
||
if (auto CI = dyn_cast<ConstantInt>(&C))
|
||
EntryBuilder->buildConstant(Reg, *CI);
|
||
else if (auto CF = dyn_cast<ConstantFP>(&C))
|
||
EntryBuilder->buildFConstant(Reg, *CF);
|
||
else if (isa<UndefValue>(C))
|
||
EntryBuilder->buildUndef(Reg);
|
||
else if (isa<ConstantPointerNull>(C))
|
||
EntryBuilder->buildConstant(Reg, 0);
|
||
else if (auto GV = dyn_cast<GlobalValue>(&C))
|
||
EntryBuilder->buildGlobalValue(Reg, GV);
|
||
else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
|
||
if (!CAZ->getType()->isVectorTy())
|
||
return false;
|
||
// Return the scalar if it is a <1 x Ty> vector.
|
||
if (CAZ->getNumElements() == 1)
|
||
return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
|
||
SmallVector<Register, 4> Ops;
|
||
for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
|
||
Constant &Elt = *CAZ->getElementValue(i);
|
||
Ops.push_back(getOrCreateVReg(Elt));
|
||
}
|
||
EntryBuilder->buildBuildVector(Reg, Ops);
|
||
} else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
|
||
// Return the scalar if it is a <1 x Ty> vector.
|
||
if (CV->getNumElements() == 1)
|
||
return translateCopy(C, *CV->getElementAsConstant(0),
|
||
*EntryBuilder.get());
|
||
SmallVector<Register, 4> Ops;
|
||
for (unsigned i = 0; i < CV->getNumElements(); ++i) {
|
||
Constant &Elt = *CV->getElementAsConstant(i);
|
||
Ops.push_back(getOrCreateVReg(Elt));
|
||
}
|
||
EntryBuilder->buildBuildVector(Reg, Ops);
|
||
} else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
|
||
switch(CE->getOpcode()) {
|
||
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
||
case Instruction::OPCODE: \
|
||
return translate##OPCODE(*CE, *EntryBuilder.get());
|
||
#include "llvm/IR/Instruction.def"
|
||
default:
|
||
return false;
|
||
}
|
||
} else if (auto CV = dyn_cast<ConstantVector>(&C)) {
|
||
if (CV->getNumOperands() == 1)
|
||
return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
|
||
SmallVector<Register, 4> Ops;
|
||
for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
|
||
Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
|
||
}
|
||
EntryBuilder->buildBuildVector(Reg, Ops);
|
||
} else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
|
||
EntryBuilder->buildBlockAddress(Reg, BA);
|
||
} else
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
void IRTranslator::finalizeBasicBlock() {
|
||
for (auto &BTB : SL->BitTestCases) {
|
||
// Emit header first, if it wasn't already emitted.
|
||
if (!BTB.Emitted)
|
||
emitBitTestHeader(BTB, BTB.Parent);
|
||
|
||
BranchProbability UnhandledProb = BTB.Prob;
|
||
for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
|
||
UnhandledProb -= BTB.Cases[j].ExtraProb;
|
||
// Set the current basic block to the mbb we wish to insert the code into
|
||
MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
|
||
// If all cases cover a contiguous range, it is not necessary to jump to
|
||
// the default block after the last bit test fails. This is because the
|
||
// range check during bit test header creation has guaranteed that every
|
||
// case here doesn't go outside the range. In this case, there is no need
|
||
// to perform the last bit test, as it will always be true. Instead, make
|
||
// the second-to-last bit-test fall through to the target of the last bit
|
||
// test, and delete the last bit test.
|
||
|
||
MachineBasicBlock *NextMBB;
|
||
if (BTB.ContiguousRange && j + 2 == ej) {
|
||
// Second-to-last bit-test with contiguous range: fall through to the
|
||
// target of the final bit test.
|
||
NextMBB = BTB.Cases[j + 1].TargetBB;
|
||
} else if (j + 1 == ej) {
|
||
// For the last bit test, fall through to Default.
|
||
NextMBB = BTB.Default;
|
||
} else {
|
||
// Otherwise, fall through to the next bit test.
|
||
NextMBB = BTB.Cases[j + 1].ThisBB;
|
||
}
|
||
|
||
emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
|
||
|
||
// FIXME delete this block below?
|
||
if (BTB.ContiguousRange && j + 2 == ej) {
|
||
// Since we're not going to use the final bit test, remove it.
|
||
BTB.Cases.pop_back();
|
||
break;
|
||
}
|
||
}
|
||
// This is "default" BB. We have two jumps to it. From "header" BB and from
|
||
// last "case" BB, unless the latter was skipped.
|
||
CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
|
||
BTB.Default->getBasicBlock()};
|
||
addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
|
||
if (!BTB.ContiguousRange) {
|
||
addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
|
||
}
|
||
}
|
||
SL->BitTestCases.clear();
|
||
|
||
for (auto &JTCase : SL->JTCases) {
|
||
// Emit header first, if it wasn't already emitted.
|
||
if (!JTCase.first.Emitted)
|
||
emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
|
||
|
||
emitJumpTable(JTCase.second, JTCase.second.MBB);
|
||
}
|
||
SL->JTCases.clear();
|
||
|
||
for (auto &SwCase : SL->SwitchCases)
|
||
emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
|
||
SL->SwitchCases.clear();
|
||
}
|
||
|
||
void IRTranslator::finalizeFunction() {
|
||
// Release the memory used by the different maps we
|
||
// needed during the translation.
|
||
PendingPHIs.clear();
|
||
VMap.reset();
|
||
FrameIndices.clear();
|
||
MachinePreds.clear();
|
||
// MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
|
||
// to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
|
||
// destroying it twice (in ~IRTranslator() and ~LLVMContext())
|
||
EntryBuilder.reset();
|
||
CurBuilder.reset();
|
||
FuncInfo.clear();
|
||
}
|
||
|
||
/// Returns true if a BasicBlock \p BB within a variadic function contains a
|
||
/// variadic musttail call.
|
||
static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
|
||
if (!IsVarArg)
|
||
return false;
|
||
|
||
// Walk the block backwards, because tail calls usually only appear at the end
|
||
// of a block.
|
||
return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
|
||
const auto *CI = dyn_cast<CallInst>(&I);
|
||
return CI && CI->isMustTailCall();
|
||
});
|
||
}
|
||
|
||
bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
|
||
MF = &CurMF;
|
||
const Function &F = MF->getFunction();
|
||
if (F.empty())
|
||
return false;
|
||
GISelCSEAnalysisWrapper &Wrapper =
|
||
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
|
||
// Set the CSEConfig and run the analysis.
|
||
GISelCSEInfo *CSEInfo = nullptr;
|
||
TPC = &getAnalysis<TargetPassConfig>();
|
||
bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
|
||
? EnableCSEInIRTranslator
|
||
: TPC->isGISelCSEEnabled();
|
||
|
||
if (EnableCSE) {
|
||
EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
|
||
CSEInfo = &Wrapper.get(TPC->getCSEConfig());
|
||
EntryBuilder->setCSEInfo(CSEInfo);
|
||
CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
|
||
CurBuilder->setCSEInfo(CSEInfo);
|
||
} else {
|
||
EntryBuilder = std::make_unique<MachineIRBuilder>();
|
||
CurBuilder = std::make_unique<MachineIRBuilder>();
|
||
}
|
||
CLI = MF->getSubtarget().getCallLowering();
|
||
CurBuilder->setMF(*MF);
|
||
EntryBuilder->setMF(*MF);
|
||
MRI = &MF->getRegInfo();
|
||
DL = &F.getParent()->getDataLayout();
|
||
ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
|
||
const TargetMachine &TM = MF->getTarget();
|
||
TM.resetTargetOptions(F);
|
||
EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
|
||
FuncInfo.MF = MF;
|
||
if (EnableOpts)
|
||
FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
|
||
else
|
||
FuncInfo.BPI = nullptr;
|
||
|
||
FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
|
||
|
||
const auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||
|
||
SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
|
||
SL->init(TLI, TM, *DL);
|
||
|
||
|
||
|
||
assert(PendingPHIs.empty() && "stale PHIs");
|
||
|
||
if (!DL->isLittleEndian()) {
|
||
// Currently we don't properly handle big endian code.
|
||
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
||
F.getSubprogram(), &F.getEntryBlock());
|
||
R << "unable to translate in big endian mode";
|
||
reportTranslationError(*MF, *TPC, *ORE, R);
|
||
}
|
||
|
||
// Release the per-function state when we return, whether we succeeded or not.
|
||
auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
|
||
|
||
// Setup a separate basic-block for the arguments and constants
|
||
MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
|
||
MF->push_back(EntryBB);
|
||
EntryBuilder->setMBB(*EntryBB);
|
||
|
||
DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
|
||
SwiftError.setFunction(CurMF);
|
||
SwiftError.createEntriesInEntryBlock(DbgLoc);
|
||
|
||
bool IsVarArg = F.isVarArg();
|
||
bool HasMustTailInVarArgFn = false;
|
||
|
||
// Create all blocks, in IR order, to preserve the layout.
|
||
for (const BasicBlock &BB: F) {
|
||
auto *&MBB = BBToMBB[&BB];
|
||
|
||
MBB = MF->CreateMachineBasicBlock(&BB);
|
||
MF->push_back(MBB);
|
||
|
||
if (BB.hasAddressTaken())
|
||
MBB->setHasAddressTaken();
|
||
|
||
if (!HasMustTailInVarArgFn)
|
||
HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
|
||
}
|
||
|
||
MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
|
||
|
||
// Make our arguments/constants entry block fallthrough to the IR entry block.
|
||
EntryBB->addSuccessor(&getMBB(F.front()));
|
||
|
||
if (CLI->fallBackToDAGISel(F)) {
|
||
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
||
F.getSubprogram(), &F.getEntryBlock());
|
||
R << "unable to lower function: " << ore::NV("Prototype", F.getType());
|
||
reportTranslationError(*MF, *TPC, *ORE, R);
|
||
return false;
|
||
}
|
||
|
||
// Lower the actual args into this basic block.
|
||
SmallVector<ArrayRef<Register>, 8> VRegArgs;
|
||
for (const Argument &Arg: F.args()) {
|
||
if (DL->getTypeStoreSize(Arg.getType()).isZero())
|
||
continue; // Don't handle zero sized types.
|
||
ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
|
||
VRegArgs.push_back(VRegs);
|
||
|
||
if (Arg.hasSwiftErrorAttr()) {
|
||
assert(VRegs.size() == 1 && "Too many vregs for Swift error");
|
||
SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
|
||
}
|
||
}
|
||
|
||
if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
|
||
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
||
F.getSubprogram(), &F.getEntryBlock());
|
||
R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
|
||
reportTranslationError(*MF, *TPC, *ORE, R);
|
||
return false;
|
||
}
|
||
|
||
// Need to visit defs before uses when translating instructions.
|
||
GISelObserverWrapper WrapperObserver;
|
||
if (EnableCSE && CSEInfo)
|
||
WrapperObserver.addObserver(CSEInfo);
|
||
{
|
||
ReversePostOrderTraversal<const Function *> RPOT(&F);
|
||
#ifndef NDEBUG
|
||
DILocationVerifier Verifier;
|
||
WrapperObserver.addObserver(&Verifier);
|
||
#endif // ifndef NDEBUG
|
||
RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
|
||
RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
|
||
for (const BasicBlock *BB : RPOT) {
|
||
MachineBasicBlock &MBB = getMBB(*BB);
|
||
// Set the insertion point of all the following translations to
|
||
// the end of this basic block.
|
||
CurBuilder->setMBB(MBB);
|
||
HasTailCall = false;
|
||
for (const Instruction &Inst : *BB) {
|
||
// If we translated a tail call in the last step, then we know
|
||
// everything after the call is either a return, or something that is
|
||
// handled by the call itself. (E.g. a lifetime marker or assume
|
||
// intrinsic.) In this case, we should stop translating the block and
|
||
// move on.
|
||
if (HasTailCall)
|
||
break;
|
||
#ifndef NDEBUG
|
||
Verifier.setCurrentInst(&Inst);
|
||
#endif // ifndef NDEBUG
|
||
if (translate(Inst))
|
||
continue;
|
||
|
||
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
||
Inst.getDebugLoc(), BB);
|
||
R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
|
||
|
||
if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
|
||
std::string InstStrStorage;
|
||
raw_string_ostream InstStr(InstStrStorage);
|
||
InstStr << Inst;
|
||
|
||
R << ": '" << InstStr.str() << "'";
|
||
}
|
||
|
||
reportTranslationError(*MF, *TPC, *ORE, R);
|
||
return false;
|
||
}
|
||
|
||
finalizeBasicBlock();
|
||
}
|
||
#ifndef NDEBUG
|
||
WrapperObserver.removeObserver(&Verifier);
|
||
#endif
|
||
}
|
||
|
||
finishPendingPhis();
|
||
|
||
SwiftError.propagateVRegs();
|
||
|
||
// Merge the argument lowering and constants block with its single
|
||
// successor, the LLVM-IR entry block. We want the basic block to
|
||
// be maximal.
|
||
assert(EntryBB->succ_size() == 1 &&
|
||
"Custom BB used for lowering should have only one successor");
|
||
// Get the successor of the current entry block.
|
||
MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
|
||
assert(NewEntryBB.pred_size() == 1 &&
|
||
"LLVM-IR entry block has a predecessor!?");
|
||
// Move all the instruction from the current entry block to the
|
||
// new entry block.
|
||
NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
|
||
EntryBB->end());
|
||
|
||
// Update the live-in information for the new entry block.
|
||
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
|
||
NewEntryBB.addLiveIn(LiveIn);
|
||
NewEntryBB.sortUniqueLiveIns();
|
||
|
||
// Get rid of the now empty basic block.
|
||
EntryBB->removeSuccessor(&NewEntryBB);
|
||
MF->remove(EntryBB);
|
||
MF->DeleteMachineBasicBlock(EntryBB);
|
||
|
||
assert(&MF->front() == &NewEntryBB &&
|
||
"New entry wasn't next in the list of basic block!");
|
||
|
||
// Initialize stack protector information.
|
||
StackProtector &SP = getAnalysis<StackProtector>();
|
||
SP.copyToMachineFrameInfo(MF->getFrameInfo());
|
||
|
||
return false;
|
||
}
|