764 lines
29 KiB
C++
764 lines
29 KiB
C++
//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements some simple delegations needed for call lowering.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "call-lowering"
|
|
|
|
using namespace llvm;
|
|
|
|
void CallLowering::anchor() {}
|
|
|
|
/// Helper function which updates \p Flags when \p AttrFn returns true.
|
|
static void
|
|
addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
|
|
const std::function<bool(Attribute::AttrKind)> &AttrFn) {
|
|
if (AttrFn(Attribute::SExt))
|
|
Flags.setSExt();
|
|
if (AttrFn(Attribute::ZExt))
|
|
Flags.setZExt();
|
|
if (AttrFn(Attribute::InReg))
|
|
Flags.setInReg();
|
|
if (AttrFn(Attribute::StructRet))
|
|
Flags.setSRet();
|
|
if (AttrFn(Attribute::Nest))
|
|
Flags.setNest();
|
|
if (AttrFn(Attribute::ByVal))
|
|
Flags.setByVal();
|
|
if (AttrFn(Attribute::Preallocated))
|
|
Flags.setPreallocated();
|
|
if (AttrFn(Attribute::InAlloca))
|
|
Flags.setInAlloca();
|
|
if (AttrFn(Attribute::Returned))
|
|
Flags.setReturned();
|
|
if (AttrFn(Attribute::SwiftSelf))
|
|
Flags.setSwiftSelf();
|
|
if (AttrFn(Attribute::SwiftError))
|
|
Flags.setSwiftError();
|
|
}
|
|
|
|
ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
|
|
unsigned ArgIdx) const {
|
|
ISD::ArgFlagsTy Flags;
|
|
addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
|
|
return Call.paramHasAttr(ArgIdx, Attr);
|
|
});
|
|
return Flags;
|
|
}
|
|
|
|
void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
|
|
const AttributeList &Attrs,
|
|
unsigned OpIdx) const {
|
|
addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
|
|
return Attrs.hasAttribute(OpIdx, Attr);
|
|
});
|
|
}
|
|
|
|
bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
|
|
ArrayRef<Register> ResRegs,
|
|
ArrayRef<ArrayRef<Register>> ArgRegs,
|
|
Register SwiftErrorVReg,
|
|
std::function<unsigned()> GetCalleeReg) const {
|
|
CallLoweringInfo Info;
|
|
const DataLayout &DL = MIRBuilder.getDataLayout();
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
bool CanBeTailCalled = CB.isTailCall() &&
|
|
isInTailCallPosition(CB, MF.getTarget()) &&
|
|
(MF.getFunction()
|
|
.getFnAttribute("disable-tail-calls")
|
|
.getValueAsString() != "true");
|
|
|
|
CallingConv::ID CallConv = CB.getCallingConv();
|
|
Type *RetTy = CB.getType();
|
|
bool IsVarArg = CB.getFunctionType()->isVarArg();
|
|
|
|
SmallVector<BaseArgInfo, 4> SplitArgs;
|
|
getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
|
|
Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
|
|
|
|
if (!Info.CanLowerReturn) {
|
|
// Callee requires sret demotion.
|
|
insertSRetOutgoingArgument(MIRBuilder, CB, Info);
|
|
|
|
// The sret demotion isn't compatible with tail-calls, since the sret
|
|
// argument points into the caller's stack frame.
|
|
CanBeTailCalled = false;
|
|
}
|
|
|
|
// First step is to marshall all the function's parameters into the correct
|
|
// physregs and memory locations. Gather the sequence of argument types that
|
|
// we'll pass to the assigner function.
|
|
unsigned i = 0;
|
|
unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
|
|
for (auto &Arg : CB.args()) {
|
|
ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i),
|
|
i < NumFixedArgs};
|
|
setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
|
|
|
|
// If we have an explicit sret argument that is an Instruction, (i.e., it
|
|
// might point to function-local memory), we can't meaningfully tail-call.
|
|
if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
|
|
CanBeTailCalled = false;
|
|
|
|
Info.OrigArgs.push_back(OrigArg);
|
|
++i;
|
|
}
|
|
|
|
// Try looking through a bitcast from one function type to another.
|
|
// Commonly happens with calls to objc_msgSend().
|
|
const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
|
|
if (const Function *F = dyn_cast<Function>(CalleeV))
|
|
Info.Callee = MachineOperand::CreateGA(F, 0);
|
|
else
|
|
Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
|
|
|
|
Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
|
|
if (!Info.OrigRet.Ty->isVoidTy())
|
|
setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
|
|
|
|
Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
|
|
Info.CallConv = CallConv;
|
|
Info.SwiftErrorVReg = SwiftErrorVReg;
|
|
Info.IsMustTailCall = CB.isMustTailCall();
|
|
Info.IsTailCall = CanBeTailCalled;
|
|
Info.IsVarArg = IsVarArg;
|
|
return lowerCall(MIRBuilder, Info);
|
|
}
|
|
|
|
template <typename FuncInfoTy>
|
|
void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
|
|
const DataLayout &DL,
|
|
const FuncInfoTy &FuncInfo) const {
|
|
auto &Flags = Arg.Flags[0];
|
|
const AttributeList &Attrs = FuncInfo.getAttributes();
|
|
addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
|
|
|
|
if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
|
|
Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
|
|
|
|
auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
|
|
Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
|
|
|
|
// For ByVal, alignment should be passed from FE. BE will guess if
|
|
// this info is not there but there are cases it cannot get right.
|
|
Align FrameAlign;
|
|
if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
|
|
FrameAlign = *ParamAlign;
|
|
else
|
|
FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
|
|
Flags.setByValAlign(FrameAlign);
|
|
}
|
|
Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
|
|
}
|
|
|
|
template void
|
|
CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
|
|
const DataLayout &DL,
|
|
const Function &FuncInfo) const;
|
|
|
|
template void
|
|
CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
|
|
const DataLayout &DL,
|
|
const CallBase &FuncInfo) const;
|
|
|
|
Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
assert(SrcRegs.size() > 1 && "Nothing to pack");
|
|
|
|
const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
|
|
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
|
|
|
|
LLT PackedLLT = getLLTForType(*PackedTy, DL);
|
|
|
|
SmallVector<LLT, 8> LLTs;
|
|
SmallVector<uint64_t, 8> Offsets;
|
|
computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
|
|
assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
|
|
|
|
Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
|
|
MIRBuilder.buildUndef(Dst);
|
|
for (unsigned i = 0; i < SrcRegs.size(); ++i) {
|
|
Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
|
|
MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
|
|
Dst = NewDst;
|
|
}
|
|
|
|
return Dst;
|
|
}
|
|
|
|
void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
|
|
Type *PackedTy,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
assert(DstRegs.size() > 1 && "Nothing to unpack");
|
|
|
|
const DataLayout &DL = MIRBuilder.getDataLayout();
|
|
|
|
SmallVector<LLT, 8> LLTs;
|
|
SmallVector<uint64_t, 8> Offsets;
|
|
computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
|
|
assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
|
|
|
|
for (unsigned i = 0; i < DstRegs.size(); ++i)
|
|
MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
|
|
}
|
|
|
|
bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
|
|
SmallVectorImpl<ArgInfo> &Args,
|
|
ValueHandler &Handler) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
const Function &F = MF.getFunction();
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
|
|
return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
|
|
}
|
|
|
|
bool CallLowering::handleAssignments(CCState &CCInfo,
|
|
SmallVectorImpl<CCValAssign> &ArgLocs,
|
|
MachineIRBuilder &MIRBuilder,
|
|
SmallVectorImpl<ArgInfo> &Args,
|
|
ValueHandler &Handler) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
const Function &F = MF.getFunction();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
unsigned NumArgs = Args.size();
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
EVT CurVT = EVT::getEVT(Args[i].Ty);
|
|
if (CurVT.isSimple() &&
|
|
!Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
|
|
CCValAssign::Full, Args[i], Args[i].Flags[0],
|
|
CCInfo))
|
|
continue;
|
|
|
|
MVT NewVT = TLI->getRegisterTypeForCallingConv(
|
|
F.getContext(), F.getCallingConv(), EVT(CurVT));
|
|
|
|
// If we need to split the type over multiple regs, check it's a scenario
|
|
// we currently support.
|
|
unsigned NumParts = TLI->getNumRegistersForCallingConv(
|
|
F.getContext(), F.getCallingConv(), CurVT);
|
|
|
|
if (NumParts == 1) {
|
|
// Try to use the register type if we couldn't assign the VT.
|
|
if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
|
|
Args[i].Flags[0], CCInfo))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
assert(NumParts > 1);
|
|
// For now only handle exact splits.
|
|
if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
|
|
return false;
|
|
|
|
// For incoming arguments (physregs to vregs), we could have values in
|
|
// physregs (or memlocs) which we want to extract and copy to vregs.
|
|
// During this, we might have to deal with the LLT being split across
|
|
// multiple regs, so we have to record this information for later.
|
|
//
|
|
// If we have outgoing args, then we have the opposite case. We have a
|
|
// vreg with an LLT which we want to assign to a physical location, and
|
|
// we might have to record that the value has to be split later.
|
|
if (Handler.isIncomingArgumentHandler()) {
|
|
// We're handling an incoming arg which is split over multiple regs.
|
|
// E.g. passing an s128 on AArch64.
|
|
ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
|
|
Args[i].OrigRegs.push_back(Args[i].Regs[0]);
|
|
Args[i].Regs.clear();
|
|
Args[i].Flags.clear();
|
|
LLT NewLLT = getLLTForMVT(NewVT);
|
|
// For each split register, create and assign a vreg that will store
|
|
// the incoming component of the larger value. These will later be
|
|
// merged to form the final vreg.
|
|
for (unsigned Part = 0; Part < NumParts; ++Part) {
|
|
Register Reg =
|
|
MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
|
|
ISD::ArgFlagsTy Flags = OrigFlags;
|
|
if (Part == 0) {
|
|
Flags.setSplit();
|
|
} else {
|
|
Flags.setOrigAlign(Align(1));
|
|
if (Part == NumParts - 1)
|
|
Flags.setSplitEnd();
|
|
}
|
|
Args[i].Regs.push_back(Reg);
|
|
Args[i].Flags.push_back(Flags);
|
|
if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
|
|
Args[i].Flags[Part], CCInfo)) {
|
|
// Still couldn't assign this smaller part type for some reason.
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
// This type is passed via multiple registers in the calling convention.
|
|
// We need to extract the individual parts.
|
|
Register LargeReg = Args[i].Regs[0];
|
|
LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
|
|
auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
|
|
assert(Unmerge->getNumOperands() == NumParts + 1);
|
|
ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
|
|
// We're going to replace the regs and flags with the split ones.
|
|
Args[i].Regs.clear();
|
|
Args[i].Flags.clear();
|
|
for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
|
|
ISD::ArgFlagsTy Flags = OrigFlags;
|
|
if (PartIdx == 0) {
|
|
Flags.setSplit();
|
|
} else {
|
|
Flags.setOrigAlign(Align(1));
|
|
if (PartIdx == NumParts - 1)
|
|
Flags.setSplitEnd();
|
|
}
|
|
Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
|
|
Args[i].Flags.push_back(Flags);
|
|
if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
|
|
Args[i], Args[i].Flags[PartIdx], CCInfo))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
|
|
assert(j < ArgLocs.size() && "Skipped too many arg locs");
|
|
|
|
CCValAssign &VA = ArgLocs[j];
|
|
assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
|
|
|
|
if (VA.needsCustom()) {
|
|
unsigned NumArgRegs =
|
|
Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
|
|
if (!NumArgRegs)
|
|
return false;
|
|
j += NumArgRegs;
|
|
continue;
|
|
}
|
|
|
|
// FIXME: Pack registers if we have more than one.
|
|
Register ArgReg = Args[i].Regs[0];
|
|
|
|
EVT OrigVT = EVT::getEVT(Args[i].Ty);
|
|
EVT VAVT = VA.getValVT();
|
|
const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
|
|
|
|
// Expected to be multiple regs for a single incoming arg.
|
|
// There should be Regs.size() ArgLocs per argument.
|
|
unsigned NumArgRegs = Args[i].Regs.size();
|
|
|
|
assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
|
|
"Too many regs for number of args");
|
|
for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
|
|
// There should be Regs.size() ArgLocs per argument.
|
|
VA = ArgLocs[j + Part];
|
|
if (VA.isMemLoc()) {
|
|
// Don't currently support loading/storing a type that needs to be split
|
|
// to the stack. Should be easy, just not implemented yet.
|
|
if (NumArgRegs > 1) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Load/store a split arg to/from the stack not implemented yet\n");
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Use correct address space for pointer size
|
|
EVT LocVT = VA.getValVT();
|
|
unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
|
|
: LocVT.getStoreSize();
|
|
unsigned Offset = VA.getLocMemOffset();
|
|
MachinePointerInfo MPO;
|
|
Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
|
|
Handler.assignValueToAddress(Args[i], StackAddr,
|
|
MemSize, MPO, VA);
|
|
continue;
|
|
}
|
|
|
|
assert(VA.isRegLoc() && "custom loc should have been handled already");
|
|
|
|
// GlobalISel does not currently work for scalable vectors.
|
|
if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() ||
|
|
!Handler.isIncomingArgumentHandler()) {
|
|
// This is an argument that might have been split. There should be
|
|
// Regs.size() ArgLocs per argument.
|
|
|
|
// Insert the argument copies. If VAVT < OrigVT, we'll insert the merge
|
|
// to the original register after handling all of the parts.
|
|
Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
|
|
continue;
|
|
}
|
|
|
|
// This ArgLoc covers multiple pieces, so we need to split it.
|
|
const LLT VATy(VAVT.getSimpleVT());
|
|
Register NewReg =
|
|
MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
|
|
Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
|
|
// If it's a vector type, we either need to truncate the elements
|
|
// or do an unmerge to get the lower block of elements.
|
|
if (VATy.isVector() &&
|
|
VATy.getNumElements() > OrigVT.getVectorNumElements()) {
|
|
// Just handle the case where the VA type is 2 * original type.
|
|
if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Incoming promoted vector arg has too many elts");
|
|
return false;
|
|
}
|
|
auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
|
|
MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
|
|
} else {
|
|
MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
|
|
}
|
|
}
|
|
|
|
// Now that all pieces have been handled, re-pack any arguments into any
|
|
// wider, original registers.
|
|
if (Handler.isIncomingArgumentHandler()) {
|
|
if (VAVT.getFixedSizeInBits() < OrigVT.getFixedSizeInBits()) {
|
|
assert(NumArgRegs >= 2);
|
|
|
|
// Merge the split registers into the expected larger result vreg
|
|
// of the original call.
|
|
MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
|
|
}
|
|
}
|
|
|
|
j += NumArgRegs - 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
|
|
ArrayRef<Register> VRegs, Register DemoteReg,
|
|
int FI) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const DataLayout &DL = MF.getDataLayout();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
|
|
|
|
assert(VRegs.size() == SplitVTs.size());
|
|
|
|
unsigned NumValues = SplitVTs.size();
|
|
Align BaseAlign = DL.getPrefTypeAlign(RetTy);
|
|
Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
|
|
LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
|
|
|
|
MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
|
|
|
|
for (unsigned I = 0; I < NumValues; ++I) {
|
|
Register Addr;
|
|
MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
|
|
auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
|
|
MRI.getType(VRegs[I]).getSizeInBytes(),
|
|
commonAlignment(BaseAlign, Offsets[I]));
|
|
MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
|
|
}
|
|
}
|
|
|
|
void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
|
|
ArrayRef<Register> VRegs,
|
|
Register DemoteReg) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const DataLayout &DL = MF.getDataLayout();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
SmallVector<uint64_t, 4> Offsets;
|
|
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
|
|
|
|
assert(VRegs.size() == SplitVTs.size());
|
|
|
|
unsigned NumValues = SplitVTs.size();
|
|
Align BaseAlign = DL.getPrefTypeAlign(RetTy);
|
|
unsigned AS = DL.getAllocaAddrSpace();
|
|
LLT OffsetLLTy =
|
|
getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
|
|
|
|
MachinePointerInfo PtrInfo(AS);
|
|
|
|
for (unsigned I = 0; I < NumValues; ++I) {
|
|
Register Addr;
|
|
MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
|
|
auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
|
|
MRI.getType(VRegs[I]).getSizeInBytes(),
|
|
commonAlignment(BaseAlign, Offsets[I]));
|
|
MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
|
|
}
|
|
}
|
|
|
|
void CallLowering::insertSRetIncomingArgument(
|
|
const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
|
|
MachineRegisterInfo &MRI, const DataLayout &DL) const {
|
|
unsigned AS = DL.getAllocaAddrSpace();
|
|
DemoteReg = MRI.createGenericVirtualRegister(
|
|
LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
|
|
|
|
Type *PtrTy = PointerType::get(F.getReturnType(), AS);
|
|
|
|
SmallVector<EVT, 1> ValueVTs;
|
|
ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
|
|
|
|
// NOTE: Assume that a pointer won't get split into more than one VT.
|
|
assert(ValueVTs.size() == 1);
|
|
|
|
ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
|
|
setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
|
|
DemoteArg.Flags[0].setSRet();
|
|
SplitArgs.insert(SplitArgs.begin(), DemoteArg);
|
|
}
|
|
|
|
void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
|
|
const CallBase &CB,
|
|
CallLoweringInfo &Info) const {
|
|
const DataLayout &DL = MIRBuilder.getDataLayout();
|
|
Type *RetTy = CB.getType();
|
|
unsigned AS = DL.getAllocaAddrSpace();
|
|
LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
|
|
|
|
int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
|
|
DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
|
|
|
|
Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
|
|
ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
|
|
setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
|
|
DemoteArg.Flags[0].setSRet();
|
|
|
|
Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
|
|
Info.DemoteStackIndex = FI;
|
|
Info.DemoteRegister = DemoteReg;
|
|
}
|
|
|
|
bool CallLowering::checkReturn(CCState &CCInfo,
|
|
SmallVectorImpl<BaseArgInfo> &Outs,
|
|
CCAssignFn *Fn) const {
|
|
for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
|
|
MVT VT = MVT::getVT(Outs[I].Ty);
|
|
if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
|
|
AttributeList Attrs,
|
|
SmallVectorImpl<BaseArgInfo> &Outs,
|
|
const DataLayout &DL) const {
|
|
LLVMContext &Context = RetTy->getContext();
|
|
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
|
|
addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
|
|
|
|
for (EVT VT : SplitVTs) {
|
|
unsigned NumParts =
|
|
TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
|
|
MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
|
|
Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
|
|
|
|
for (unsigned I = 0; I < NumParts; ++I) {
|
|
Outs.emplace_back(PartTy, Flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
|
|
const auto &F = MF.getFunction();
|
|
Type *ReturnType = F.getReturnType();
|
|
CallingConv::ID CallConv = F.getCallingConv();
|
|
|
|
SmallVector<BaseArgInfo, 4> SplitArgs;
|
|
getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
|
|
MF.getDataLayout());
|
|
return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
|
|
}
|
|
|
|
bool CallLowering::analyzeArgInfo(CCState &CCState,
|
|
SmallVectorImpl<ArgInfo> &Args,
|
|
CCAssignFn &AssignFnFixed,
|
|
CCAssignFn &AssignFnVarArg) const {
|
|
for (unsigned i = 0, e = Args.size(); i < e; ++i) {
|
|
MVT VT = MVT::getVT(Args[i].Ty);
|
|
CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
|
|
if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
|
|
// Bail out on anything we can't handle.
|
|
LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
|
|
<< " (arg number = " << i << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CallLowering::parametersInCSRMatch(
|
|
const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
|
|
const SmallVectorImpl<CCValAssign> &OutLocs,
|
|
const SmallVectorImpl<ArgInfo> &OutArgs) const {
|
|
for (unsigned i = 0; i < OutLocs.size(); ++i) {
|
|
auto &ArgLoc = OutLocs[i];
|
|
// If it's not a register, it's fine.
|
|
if (!ArgLoc.isRegLoc())
|
|
continue;
|
|
|
|
MCRegister PhysReg = ArgLoc.getLocReg();
|
|
|
|
// Only look at callee-saved registers.
|
|
if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
|
|
continue;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "... Call has an argument passed in a callee-saved register.\n");
|
|
|
|
// Check if it was copied from.
|
|
const ArgInfo &OutInfo = OutArgs[i];
|
|
|
|
if (OutInfo.Regs.size() > 1) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "... Cannot handle arguments in multiple registers.\n");
|
|
return false;
|
|
}
|
|
|
|
// Check if we copy the register, walking through copies from virtual
|
|
// registers. Note that getDefIgnoringCopies does not ignore copies from
|
|
// physical registers.
|
|
MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
|
|
if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "... Parameter was not copied into a VReg, cannot tail call.\n");
|
|
return false;
|
|
}
|
|
|
|
// Got a copy. Verify that it's the same as the register we want.
|
|
Register CopyRHS = RegDef->getOperand(1).getReg();
|
|
if (CopyRHS != PhysReg) {
|
|
LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
|
|
"VReg, cannot tail call.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
|
|
MachineFunction &MF,
|
|
SmallVectorImpl<ArgInfo> &InArgs,
|
|
CCAssignFn &CalleeAssignFnFixed,
|
|
CCAssignFn &CalleeAssignFnVarArg,
|
|
CCAssignFn &CallerAssignFnFixed,
|
|
CCAssignFn &CallerAssignFnVarArg) const {
|
|
const Function &F = MF.getFunction();
|
|
CallingConv::ID CalleeCC = Info.CallConv;
|
|
CallingConv::ID CallerCC = F.getCallingConv();
|
|
|
|
if (CallerCC == CalleeCC)
|
|
return true;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs1;
|
|
CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
|
|
if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
|
|
CalleeAssignFnVarArg))
|
|
return false;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs2;
|
|
CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
|
|
if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
|
|
CalleeAssignFnVarArg))
|
|
return false;
|
|
|
|
// We need the argument locations to match up exactly. If there's more in
|
|
// one than the other, then we are done.
|
|
if (ArgLocs1.size() != ArgLocs2.size())
|
|
return false;
|
|
|
|
// Make sure that each location is passed in exactly the same way.
|
|
for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
|
|
const CCValAssign &Loc1 = ArgLocs1[i];
|
|
const CCValAssign &Loc2 = ArgLocs2[i];
|
|
|
|
// We need both of them to be the same. So if one is a register and one
|
|
// isn't, we're done.
|
|
if (Loc1.isRegLoc() != Loc2.isRegLoc())
|
|
return false;
|
|
|
|
if (Loc1.isRegLoc()) {
|
|
// If they don't have the same register location, we're done.
|
|
if (Loc1.getLocReg() != Loc2.getLocReg())
|
|
return false;
|
|
|
|
// They matched, so we can move to the next ArgLoc.
|
|
continue;
|
|
}
|
|
|
|
// Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
|
|
if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Register CallLowering::ValueHandler::extendRegister(Register ValReg,
|
|
CCValAssign &VA,
|
|
unsigned MaxSizeBits) {
|
|
LLT LocTy{VA.getLocVT()};
|
|
LLT ValTy = MRI.getType(ValReg);
|
|
if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
|
|
return ValReg;
|
|
|
|
if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
|
|
if (MaxSizeBits <= ValTy.getSizeInBits())
|
|
return ValReg;
|
|
LocTy = LLT::scalar(MaxSizeBits);
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: break;
|
|
case CCValAssign::Full:
|
|
case CCValAssign::BCvt:
|
|
// FIXME: bitconverting between vector types may or may not be a
|
|
// nop in big-endian situations.
|
|
return ValReg;
|
|
case CCValAssign::AExt: {
|
|
auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
|
|
return MIB.getReg(0);
|
|
}
|
|
case CCValAssign::SExt: {
|
|
Register NewReg = MRI.createGenericVirtualRegister(LocTy);
|
|
MIRBuilder.buildSExt(NewReg, ValReg);
|
|
return NewReg;
|
|
}
|
|
case CCValAssign::ZExt: {
|
|
Register NewReg = MRI.createGenericVirtualRegister(LocTy);
|
|
MIRBuilder.buildZExt(NewReg, ValReg);
|
|
return NewReg;
|
|
}
|
|
}
|
|
llvm_unreachable("unable to extend register");
|
|
}
|
|
|
|
void CallLowering::ValueHandler::anchor() {}
|