3424 lines
131 KiB
C++
3424 lines
131 KiB
C++
//===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for writing dwarf debug info into asm files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DwarfDebug.h"
|
|
#include "ByteStreamer.h"
|
|
#include "DIEHash.h"
|
|
#include "DwarfCompileUnit.h"
|
|
#include "DwarfExpression.h"
|
|
#include "DwarfUnit.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/CodeGen/DIE.h"
|
|
#include "llvm/CodeGen/LexicalScopes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/MC/MachineLocation.h"
|
|
#include "llvm/MC/SectionKind.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dwarfdebug"
|
|
|
|
STATISTIC(NumCSParams, "Number of dbg call site params created");
|
|
|
|
static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
|
|
"use-dwarf-ranges-base-address-specifier", cl::Hidden,
|
|
cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
|
|
|
|
static cl::opt<bool> GenerateARangeSection("generate-arange-section",
|
|
cl::Hidden,
|
|
cl::desc("Generate dwarf aranges"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
|
|
cl::desc("Generate DWARF4 type units."),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> SplitDwarfCrossCuReferences(
|
|
"split-dwarf-cross-cu-references", cl::Hidden,
|
|
cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
|
|
|
|
enum DefaultOnOff { Default, Enable, Disable };
|
|
|
|
static cl::opt<DefaultOnOff> UnknownLocations(
|
|
"use-unknown-locations", cl::Hidden,
|
|
cl::desc("Make an absence of debug location information explicit."),
|
|
cl::values(clEnumVal(Default, "At top of block or after label"),
|
|
clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<AccelTableKind> AccelTables(
|
|
"accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
|
|
cl::values(clEnumValN(AccelTableKind::Default, "Default",
|
|
"Default for platform"),
|
|
clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
|
|
clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
|
|
clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
|
|
cl::init(AccelTableKind::Default));
|
|
|
|
static cl::opt<DefaultOnOff>
|
|
DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
|
|
cl::desc("Use inlined strings rather than string section."),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"),
|
|
clEnumVal(Disable, "Disabled")),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<bool>
|
|
NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
|
|
cl::desc("Disable emission .debug_ranges section."),
|
|
cl::init(false));
|
|
|
|
static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
|
|
"dwarf-sections-as-references", cl::Hidden,
|
|
cl::desc("Use sections+offset as references rather than labels."),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
|
|
cl::init(Default));
|
|
|
|
static cl::opt<bool>
|
|
UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
|
|
cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<DefaultOnOff> DwarfOpConvert(
|
|
"dwarf-op-convert", cl::Hidden,
|
|
cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
|
|
cl::values(clEnumVal(Default, "Default for platform"),
|
|
clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
|
|
cl::init(Default));
|
|
|
|
enum LinkageNameOption {
|
|
DefaultLinkageNames,
|
|
AllLinkageNames,
|
|
AbstractLinkageNames
|
|
};
|
|
|
|
static cl::opt<LinkageNameOption>
|
|
DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
|
|
cl::desc("Which DWARF linkage-name attributes to emit."),
|
|
cl::values(clEnumValN(DefaultLinkageNames, "Default",
|
|
"Default for platform"),
|
|
clEnumValN(AllLinkageNames, "All", "All"),
|
|
clEnumValN(AbstractLinkageNames, "Abstract",
|
|
"Abstract subprograms")),
|
|
cl::init(DefaultLinkageNames));
|
|
|
|
static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
|
|
"minimize-addr-in-v5", cl::Hidden,
|
|
cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
|
|
"address pool entry sharing to reduce relocations/object size"),
|
|
cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
|
|
"Default address minimization strategy"),
|
|
clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
|
|
"Use rnglists for contiguous ranges if that allows "
|
|
"using a pre-existing base address"),
|
|
clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
|
|
"Stuff")),
|
|
cl::init(DwarfDebug::MinimizeAddrInV5::Default));
|
|
|
|
static constexpr unsigned ULEB128PadSize = 4;
|
|
|
|
void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
|
|
getActiveStreamer().emitInt8(
|
|
Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
|
|
: dwarf::OperationEncodingString(Op));
|
|
}
|
|
|
|
void DebugLocDwarfExpression::emitSigned(int64_t Value) {
|
|
getActiveStreamer().emitSLEB128(Value, Twine(Value));
|
|
}
|
|
|
|
void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
|
|
getActiveStreamer().emitULEB128(Value, Twine(Value));
|
|
}
|
|
|
|
void DebugLocDwarfExpression::emitData1(uint8_t Value) {
|
|
getActiveStreamer().emitInt8(Value, Twine(Value));
|
|
}
|
|
|
|
void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
|
|
assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
|
|
getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
|
|
}
|
|
|
|
bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
|
|
llvm::Register MachineReg) {
|
|
// This information is not available while emitting .debug_loc entries.
|
|
return false;
|
|
}
|
|
|
|
void DebugLocDwarfExpression::enableTemporaryBuffer() {
|
|
assert(!IsBuffering && "Already buffering?");
|
|
if (!TmpBuf)
|
|
TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
|
|
IsBuffering = true;
|
|
}
|
|
|
|
void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
|
|
|
|
unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
|
|
return TmpBuf ? TmpBuf->Bytes.size() : 0;
|
|
}
|
|
|
|
void DebugLocDwarfExpression::commitTemporaryBuffer() {
|
|
if (!TmpBuf)
|
|
return;
|
|
for (auto Byte : enumerate(TmpBuf->Bytes)) {
|
|
const char *Comment = (Byte.index() < TmpBuf->Comments.size())
|
|
? TmpBuf->Comments[Byte.index()].c_str()
|
|
: "";
|
|
OutBS.emitInt8(Byte.value(), Comment);
|
|
}
|
|
TmpBuf->Bytes.clear();
|
|
TmpBuf->Comments.clear();
|
|
}
|
|
|
|
const DIType *DbgVariable::getType() const {
|
|
return getVariable()->getType();
|
|
}
|
|
|
|
/// Get .debug_loc entry for the instruction range starting at MI.
|
|
static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
|
|
const DIExpression *Expr = MI->getDebugExpression();
|
|
assert(MI->getNumOperands() == 4);
|
|
if (MI->getDebugOperand(0).isReg()) {
|
|
const auto &RegOp = MI->getDebugOperand(0);
|
|
const auto &Op1 = MI->getDebugOffset();
|
|
// If the second operand is an immediate, this is a
|
|
// register-indirect address.
|
|
assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
|
|
MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
|
|
return DbgValueLoc(Expr, MLoc);
|
|
}
|
|
if (MI->getDebugOperand(0).isTargetIndex()) {
|
|
const auto &Op = MI->getDebugOperand(0);
|
|
return DbgValueLoc(Expr,
|
|
TargetIndexLocation(Op.getIndex(), Op.getOffset()));
|
|
}
|
|
if (MI->getDebugOperand(0).isImm())
|
|
return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
|
|
if (MI->getDebugOperand(0).isFPImm())
|
|
return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
|
|
if (MI->getDebugOperand(0).isCImm())
|
|
return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
|
|
|
|
llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
|
|
}
|
|
|
|
void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
|
|
assert(FrameIndexExprs.empty() && "Already initialized?");
|
|
assert(!ValueLoc.get() && "Already initialized?");
|
|
|
|
assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
|
|
assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
|
|
"Wrong inlined-at");
|
|
|
|
ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
|
|
if (auto *E = DbgValue->getDebugExpression())
|
|
if (E->getNumElements())
|
|
FrameIndexExprs.push_back({0, E});
|
|
}
|
|
|
|
ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
|
|
if (FrameIndexExprs.size() == 1)
|
|
return FrameIndexExprs;
|
|
|
|
assert(llvm::all_of(FrameIndexExprs,
|
|
[](const FrameIndexExpr &A) {
|
|
return A.Expr->isFragment();
|
|
}) &&
|
|
"multiple FI expressions without DW_OP_LLVM_fragment");
|
|
llvm::sort(FrameIndexExprs,
|
|
[](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
|
|
return A.Expr->getFragmentInfo()->OffsetInBits <
|
|
B.Expr->getFragmentInfo()->OffsetInBits;
|
|
});
|
|
|
|
return FrameIndexExprs;
|
|
}
|
|
|
|
void DbgVariable::addMMIEntry(const DbgVariable &V) {
|
|
assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
|
|
assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
|
|
assert(V.getVariable() == getVariable() && "conflicting variable");
|
|
assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
|
|
|
|
assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
|
|
assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
|
|
|
|
// FIXME: This logic should not be necessary anymore, as we now have proper
|
|
// deduplication. However, without it, we currently run into the assertion
|
|
// below, which means that we are likely dealing with broken input, i.e. two
|
|
// non-fragment entries for the same variable at different frame indices.
|
|
if (FrameIndexExprs.size()) {
|
|
auto *Expr = FrameIndexExprs.back().Expr;
|
|
if (!Expr || !Expr->isFragment())
|
|
return;
|
|
}
|
|
|
|
for (const auto &FIE : V.FrameIndexExprs)
|
|
// Ignore duplicate entries.
|
|
if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
|
|
return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
|
|
}))
|
|
FrameIndexExprs.push_back(FIE);
|
|
|
|
assert((FrameIndexExprs.size() == 1 ||
|
|
llvm::all_of(FrameIndexExprs,
|
|
[](FrameIndexExpr &FIE) {
|
|
return FIE.Expr && FIE.Expr->isFragment();
|
|
})) &&
|
|
"conflicting locations for variable");
|
|
}
|
|
|
|
static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
|
|
bool GenerateTypeUnits,
|
|
DebuggerKind Tuning,
|
|
const Triple &TT) {
|
|
// Honor an explicit request.
|
|
if (AccelTables != AccelTableKind::Default)
|
|
return AccelTables;
|
|
|
|
// Accelerator tables with type units are currently not supported.
|
|
if (GenerateTypeUnits)
|
|
return AccelTableKind::None;
|
|
|
|
// Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
|
|
// always implies debug_names. For lower standard versions we use apple
|
|
// accelerator tables on apple platforms and debug_names elsewhere.
|
|
if (DwarfVersion >= 5)
|
|
return AccelTableKind::Dwarf;
|
|
if (Tuning == DebuggerKind::LLDB)
|
|
return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
|
|
: AccelTableKind::Dwarf;
|
|
return AccelTableKind::None;
|
|
}
|
|
|
|
DwarfDebug::DwarfDebug(AsmPrinter *A)
|
|
: DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
|
|
InfoHolder(A, "info_string", DIEValueAllocator),
|
|
SkeletonHolder(A, "skel_string", DIEValueAllocator),
|
|
IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
|
|
const Triple &TT = Asm->TM.getTargetTriple();
|
|
|
|
// Make sure we know our "debugger tuning". The target option takes
|
|
// precedence; fall back to triple-based defaults.
|
|
if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
|
|
DebuggerTuning = Asm->TM.Options.DebuggerTuning;
|
|
else if (IsDarwin)
|
|
DebuggerTuning = DebuggerKind::LLDB;
|
|
else if (TT.isPS4CPU())
|
|
DebuggerTuning = DebuggerKind::SCE;
|
|
else
|
|
DebuggerTuning = DebuggerKind::GDB;
|
|
|
|
if (DwarfInlinedStrings == Default)
|
|
UseInlineStrings = TT.isNVPTX();
|
|
else
|
|
UseInlineStrings = DwarfInlinedStrings == Enable;
|
|
|
|
UseLocSection = !TT.isNVPTX();
|
|
|
|
HasAppleExtensionAttributes = tuneForLLDB();
|
|
|
|
// Handle split DWARF.
|
|
HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
|
|
|
|
// SCE defaults to linkage names only for abstract subprograms.
|
|
if (DwarfLinkageNames == DefaultLinkageNames)
|
|
UseAllLinkageNames = !tuneForSCE();
|
|
else
|
|
UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
|
|
|
|
unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
|
|
unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
|
|
: MMI->getModule()->getDwarfVersion();
|
|
// Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
|
|
DwarfVersion =
|
|
TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
|
|
|
|
bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 &&
|
|
DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
|
|
TT.isArch64Bit() && // DWARF64 requires 64-bit relocations.
|
|
TT.isOSBinFormatELF(); // Support only ELF for now.
|
|
|
|
UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
|
|
|
|
// Use sections as references. Force for NVPTX.
|
|
if (DwarfSectionsAsReferences == Default)
|
|
UseSectionsAsReferences = TT.isNVPTX();
|
|
else
|
|
UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
|
|
|
|
// Don't generate type units for unsupported object file formats.
|
|
GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
|
|
A->TM.getTargetTriple().isOSBinFormatWasm()) &&
|
|
GenerateDwarfTypeUnits;
|
|
|
|
TheAccelTableKind = computeAccelTableKind(
|
|
DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
|
|
|
|
// Work around a GDB bug. GDB doesn't support the standard opcode;
|
|
// SCE doesn't support GNU's; LLDB prefers the standard opcode, which
|
|
// is defined as of DWARF 3.
|
|
// See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
|
|
// https://sourceware.org/bugzilla/show_bug.cgi?id=11616
|
|
UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
|
|
|
|
// GDB does not fully support the DWARF 4 representation for bitfields.
|
|
UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
|
|
|
|
// The DWARF v5 string offsets table has - possibly shared - contributions
|
|
// from each compile and type unit each preceded by a header. The string
|
|
// offsets table used by the pre-DWARF v5 split-DWARF implementation uses
|
|
// a monolithic string offsets table without any header.
|
|
UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
|
|
|
|
// Emit call-site-param debug info for GDB and LLDB, if the target supports
|
|
// the debug entry values feature. It can also be enabled explicitly.
|
|
EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
|
|
|
|
// It is unclear if the GCC .debug_macro extension is well-specified
|
|
// for split DWARF. For now, do not allow LLVM to emit it.
|
|
UseDebugMacroSection =
|
|
DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
|
|
if (DwarfOpConvert == Default)
|
|
EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
|
|
else
|
|
EnableOpConvert = (DwarfOpConvert == Enable);
|
|
|
|
// Split DWARF would benefit object size significantly by trading reductions
|
|
// in address pool usage for slightly increased range list encodings.
|
|
if (DwarfVersion >= 5) {
|
|
MinimizeAddr = MinimizeAddrInV5Option;
|
|
// FIXME: In the future, enable this by default for Split DWARF where the
|
|
// tradeoff is more pronounced due to being able to offload the range
|
|
// lists to the dwo file and shrink object files/reduce relocations there.
|
|
if (MinimizeAddr == MinimizeAddrInV5::Default)
|
|
MinimizeAddr = MinimizeAddrInV5::Disabled;
|
|
}
|
|
|
|
Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
|
|
Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
|
|
: dwarf::DWARF32);
|
|
}
|
|
|
|
// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
|
|
DwarfDebug::~DwarfDebug() = default;
|
|
|
|
static bool isObjCClass(StringRef Name) {
|
|
return Name.startswith("+") || Name.startswith("-");
|
|
}
|
|
|
|
static bool hasObjCCategory(StringRef Name) {
|
|
if (!isObjCClass(Name))
|
|
return false;
|
|
|
|
return Name.find(") ") != StringRef::npos;
|
|
}
|
|
|
|
static void getObjCClassCategory(StringRef In, StringRef &Class,
|
|
StringRef &Category) {
|
|
if (!hasObjCCategory(In)) {
|
|
Class = In.slice(In.find('[') + 1, In.find(' '));
|
|
Category = "";
|
|
return;
|
|
}
|
|
|
|
Class = In.slice(In.find('[') + 1, In.find('('));
|
|
Category = In.slice(In.find('[') + 1, In.find(' '));
|
|
}
|
|
|
|
static StringRef getObjCMethodName(StringRef In) {
|
|
return In.slice(In.find(' ') + 1, In.find(']'));
|
|
}
|
|
|
|
// Add the various names to the Dwarf accelerator table names.
|
|
void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
|
|
const DISubprogram *SP, DIE &Die) {
|
|
if (getAccelTableKind() != AccelTableKind::Apple &&
|
|
CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
|
|
return;
|
|
|
|
if (!SP->isDefinition())
|
|
return;
|
|
|
|
if (SP->getName() != "")
|
|
addAccelName(CU, SP->getName(), Die);
|
|
|
|
// If the linkage name is different than the name, go ahead and output that as
|
|
// well into the name table. Only do that if we are going to actually emit
|
|
// that name.
|
|
if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
|
|
(useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
|
|
addAccelName(CU, SP->getLinkageName(), Die);
|
|
|
|
// If this is an Objective-C selector name add it to the ObjC accelerator
|
|
// too.
|
|
if (isObjCClass(SP->getName())) {
|
|
StringRef Class, Category;
|
|
getObjCClassCategory(SP->getName(), Class, Category);
|
|
addAccelObjC(CU, Class, Die);
|
|
if (Category != "")
|
|
addAccelObjC(CU, Category, Die);
|
|
// Also add the base method name to the name table.
|
|
addAccelName(CU, getObjCMethodName(SP->getName()), Die);
|
|
}
|
|
}
|
|
|
|
/// Check whether we should create a DIE for the given Scope, return true
|
|
/// if we don't create a DIE (the corresponding DIE is null).
|
|
bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
|
|
if (Scope->isAbstractScope())
|
|
return false;
|
|
|
|
// We don't create a DIE if there is no Range.
|
|
const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
|
|
if (Ranges.empty())
|
|
return true;
|
|
|
|
if (Ranges.size() > 1)
|
|
return false;
|
|
|
|
// We don't create a DIE if we have a single Range and the end label
|
|
// is null.
|
|
return !getLabelAfterInsn(Ranges.front().second);
|
|
}
|
|
|
|
template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
|
|
F(CU);
|
|
if (auto *SkelCU = CU.getSkeleton())
|
|
if (CU.getCUNode()->getSplitDebugInlining())
|
|
F(*SkelCU);
|
|
}
|
|
|
|
bool DwarfDebug::shareAcrossDWOCUs() const {
|
|
return SplitDwarfCrossCuReferences;
|
|
}
|
|
|
|
void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
|
|
LexicalScope *Scope) {
|
|
assert(Scope && Scope->getScopeNode());
|
|
assert(Scope->isAbstractScope());
|
|
assert(!Scope->getInlinedAt());
|
|
|
|
auto *SP = cast<DISubprogram>(Scope->getScopeNode());
|
|
|
|
// Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
|
|
// was inlined from another compile unit.
|
|
if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
|
|
// Avoid building the original CU if it won't be used
|
|
SrcCU.constructAbstractSubprogramScopeDIE(Scope);
|
|
else {
|
|
auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
|
|
if (auto *SkelCU = CU.getSkeleton()) {
|
|
(shareAcrossDWOCUs() ? CU : SrcCU)
|
|
.constructAbstractSubprogramScopeDIE(Scope);
|
|
if (CU.getCUNode()->getSplitDebugInlining())
|
|
SkelCU->constructAbstractSubprogramScopeDIE(Scope);
|
|
} else
|
|
CU.constructAbstractSubprogramScopeDIE(Scope);
|
|
}
|
|
}
|
|
|
|
DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
|
|
DICompileUnit *Unit = SP->getUnit();
|
|
assert(SP->isDefinition() && "Subprogram not a definition");
|
|
assert(Unit && "Subprogram definition without parent unit");
|
|
auto &CU = getOrCreateDwarfCompileUnit(Unit);
|
|
return *CU.getOrCreateSubprogramDIE(SP);
|
|
}
|
|
|
|
/// Represents a parameter whose call site value can be described by applying a
|
|
/// debug expression to a register in the forwarded register worklist.
|
|
struct FwdRegParamInfo {
|
|
/// The described parameter register.
|
|
unsigned ParamReg;
|
|
|
|
/// Debug expression that has been built up when walking through the
|
|
/// instruction chain that produces the parameter's value.
|
|
const DIExpression *Expr;
|
|
};
|
|
|
|
/// Register worklist for finding call site values.
|
|
using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
|
|
|
|
/// Append the expression \p Addition to \p Original and return the result.
|
|
static const DIExpression *combineDIExpressions(const DIExpression *Original,
|
|
const DIExpression *Addition) {
|
|
std::vector<uint64_t> Elts = Addition->getElements().vec();
|
|
// Avoid multiple DW_OP_stack_values.
|
|
if (Original->isImplicit() && Addition->isImplicit())
|
|
erase_value(Elts, dwarf::DW_OP_stack_value);
|
|
const DIExpression *CombinedExpr =
|
|
(Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
|
|
return CombinedExpr;
|
|
}
|
|
|
|
/// Emit call site parameter entries that are described by the given value and
|
|
/// debug expression.
|
|
template <typename ValT>
|
|
static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
|
|
ArrayRef<FwdRegParamInfo> DescribedParams,
|
|
ParamSet &Params) {
|
|
for (auto Param : DescribedParams) {
|
|
bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
|
|
|
|
// TODO: Entry value operations can currently not be combined with any
|
|
// other expressions, so we can't emit call site entries in those cases.
|
|
if (ShouldCombineExpressions && Expr->isEntryValue())
|
|
continue;
|
|
|
|
// If a parameter's call site value is produced by a chain of
|
|
// instructions we may have already created an expression for the
|
|
// parameter when walking through the instructions. Append that to the
|
|
// base expression.
|
|
const DIExpression *CombinedExpr =
|
|
ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
|
|
: Expr;
|
|
assert((!CombinedExpr || CombinedExpr->isValid()) &&
|
|
"Combined debug expression is invalid");
|
|
|
|
DbgValueLoc DbgLocVal(CombinedExpr, Val);
|
|
DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
|
|
Params.push_back(CSParm);
|
|
++NumCSParams;
|
|
}
|
|
}
|
|
|
|
/// Add \p Reg to the worklist, if it's not already present, and mark that the
|
|
/// given parameter registers' values can (potentially) be described using
|
|
/// that register and an debug expression.
|
|
static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
|
|
const DIExpression *Expr,
|
|
ArrayRef<FwdRegParamInfo> ParamsToAdd) {
|
|
auto I = Worklist.insert({Reg, {}});
|
|
auto &ParamsForFwdReg = I.first->second;
|
|
for (auto Param : ParamsToAdd) {
|
|
assert(none_of(ParamsForFwdReg,
|
|
[Param](const FwdRegParamInfo &D) {
|
|
return D.ParamReg == Param.ParamReg;
|
|
}) &&
|
|
"Same parameter described twice by forwarding reg");
|
|
|
|
// If a parameter's call site value is produced by a chain of
|
|
// instructions we may have already created an expression for the
|
|
// parameter when walking through the instructions. Append that to the
|
|
// new expression.
|
|
const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
|
|
ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
|
|
}
|
|
}
|
|
|
|
/// Interpret values loaded into registers by \p CurMI.
|
|
static void interpretValues(const MachineInstr *CurMI,
|
|
FwdRegWorklist &ForwardedRegWorklist,
|
|
ParamSet &Params) {
|
|
|
|
const MachineFunction *MF = CurMI->getMF();
|
|
const DIExpression *EmptyExpr =
|
|
DIExpression::get(MF->getFunction().getContext(), {});
|
|
const auto &TRI = *MF->getSubtarget().getRegisterInfo();
|
|
const auto &TII = *MF->getSubtarget().getInstrInfo();
|
|
const auto &TLI = *MF->getSubtarget().getTargetLowering();
|
|
|
|
// If an instruction defines more than one item in the worklist, we may run
|
|
// into situations where a worklist register's value is (potentially)
|
|
// described by the previous value of another register that is also defined
|
|
// by that instruction.
|
|
//
|
|
// This can for example occur in cases like this:
|
|
//
|
|
// $r1 = mov 123
|
|
// $r0, $r1 = mvrr $r1, 456
|
|
// call @foo, $r0, $r1
|
|
//
|
|
// When describing $r1's value for the mvrr instruction, we need to make sure
|
|
// that we don't finalize an entry value for $r0, as that is dependent on the
|
|
// previous value of $r1 (123 rather than 456).
|
|
//
|
|
// In order to not have to distinguish between those cases when finalizing
|
|
// entry values, we simply postpone adding new parameter registers to the
|
|
// worklist, by first keeping them in this temporary container until the
|
|
// instruction has been handled.
|
|
FwdRegWorklist TmpWorklistItems;
|
|
|
|
// If the MI is an instruction defining one or more parameters' forwarding
|
|
// registers, add those defines.
|
|
auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
|
|
SmallSetVector<unsigned, 4> &Defs) {
|
|
if (MI.isDebugInstr())
|
|
return;
|
|
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (MO.isReg() && MO.isDef() &&
|
|
Register::isPhysicalRegister(MO.getReg())) {
|
|
for (auto FwdReg : ForwardedRegWorklist)
|
|
if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
|
|
Defs.insert(FwdReg.first);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Set of worklist registers that are defined by this instruction.
|
|
SmallSetVector<unsigned, 4> FwdRegDefs;
|
|
|
|
getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
|
|
if (FwdRegDefs.empty())
|
|
return;
|
|
|
|
for (auto ParamFwdReg : FwdRegDefs) {
|
|
if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
|
|
if (ParamValue->first.isImm()) {
|
|
int64_t Val = ParamValue->first.getImm();
|
|
finishCallSiteParams(Val, ParamValue->second,
|
|
ForwardedRegWorklist[ParamFwdReg], Params);
|
|
} else if (ParamValue->first.isReg()) {
|
|
Register RegLoc = ParamValue->first.getReg();
|
|
Register SP = TLI.getStackPointerRegisterToSaveRestore();
|
|
Register FP = TRI.getFrameRegister(*MF);
|
|
bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
|
|
if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
|
|
MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
|
|
finishCallSiteParams(MLoc, ParamValue->second,
|
|
ForwardedRegWorklist[ParamFwdReg], Params);
|
|
} else {
|
|
// ParamFwdReg was described by the non-callee saved register
|
|
// RegLoc. Mark that the call site values for the parameters are
|
|
// dependent on that register instead of ParamFwdReg. Since RegLoc
|
|
// may be a register that will be handled in this iteration, we
|
|
// postpone adding the items to the worklist, and instead keep them
|
|
// in a temporary container.
|
|
addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
|
|
ForwardedRegWorklist[ParamFwdReg]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove all registers that this instruction defines from the worklist.
|
|
for (auto ParamFwdReg : FwdRegDefs)
|
|
ForwardedRegWorklist.erase(ParamFwdReg);
|
|
|
|
// Now that we are done handling this instruction, add items from the
|
|
// temporary worklist to the real one.
|
|
for (auto New : TmpWorklistItems)
|
|
addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
|
|
TmpWorklistItems.clear();
|
|
}
|
|
|
|
static bool interpretNextInstr(const MachineInstr *CurMI,
|
|
FwdRegWorklist &ForwardedRegWorklist,
|
|
ParamSet &Params) {
|
|
// Skip bundle headers.
|
|
if (CurMI->isBundle())
|
|
return true;
|
|
|
|
// If the next instruction is a call we can not interpret parameter's
|
|
// forwarding registers or we finished the interpretation of all
|
|
// parameters.
|
|
if (CurMI->isCall())
|
|
return false;
|
|
|
|
if (ForwardedRegWorklist.empty())
|
|
return false;
|
|
|
|
// Avoid NOP description.
|
|
if (CurMI->getNumOperands() == 0)
|
|
return true;
|
|
|
|
interpretValues(CurMI, ForwardedRegWorklist, Params);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Try to interpret values loaded into registers that forward parameters
|
|
/// for \p CallMI. Store parameters with interpreted value into \p Params.
|
|
static void collectCallSiteParameters(const MachineInstr *CallMI,
|
|
ParamSet &Params) {
|
|
const MachineFunction *MF = CallMI->getMF();
|
|
auto CalleesMap = MF->getCallSitesInfo();
|
|
auto CallFwdRegsInfo = CalleesMap.find(CallMI);
|
|
|
|
// There is no information for the call instruction.
|
|
if (CallFwdRegsInfo == CalleesMap.end())
|
|
return;
|
|
|
|
const MachineBasicBlock *MBB = CallMI->getParent();
|
|
|
|
// Skip the call instruction.
|
|
auto I = std::next(CallMI->getReverseIterator());
|
|
|
|
FwdRegWorklist ForwardedRegWorklist;
|
|
|
|
const DIExpression *EmptyExpr =
|
|
DIExpression::get(MF->getFunction().getContext(), {});
|
|
|
|
// Add all the forwarding registers into the ForwardedRegWorklist.
|
|
for (auto ArgReg : CallFwdRegsInfo->second) {
|
|
bool InsertedReg =
|
|
ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
|
|
.second;
|
|
assert(InsertedReg && "Single register used to forward two arguments?");
|
|
(void)InsertedReg;
|
|
}
|
|
|
|
// Do not emit CSInfo for undef forwarding registers.
|
|
for (auto &MO : CallMI->uses())
|
|
if (MO.isReg() && MO.isUndef())
|
|
ForwardedRegWorklist.erase(MO.getReg());
|
|
|
|
// We erase, from the ForwardedRegWorklist, those forwarding registers for
|
|
// which we successfully describe a loaded value (by using
|
|
// the describeLoadedValue()). For those remaining arguments in the working
|
|
// list, for which we do not describe a loaded value by
|
|
// the describeLoadedValue(), we try to generate an entry value expression
|
|
// for their call site value description, if the call is within the entry MBB.
|
|
// TODO: Handle situations when call site parameter value can be described
|
|
// as the entry value within basic blocks other than the first one.
|
|
bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
|
|
|
|
// Search for a loading value in forwarding registers inside call delay slot.
|
|
if (CallMI->hasDelaySlot()) {
|
|
auto Suc = std::next(CallMI->getIterator());
|
|
// Only one-instruction delay slot is supported.
|
|
auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
|
|
(void)BundleEnd;
|
|
assert(std::next(Suc) == BundleEnd &&
|
|
"More than one instruction in call delay slot");
|
|
// Try to interpret value loaded by instruction.
|
|
if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
|
|
return;
|
|
}
|
|
|
|
// Search for a loading value in forwarding registers.
|
|
for (; I != MBB->rend(); ++I) {
|
|
// Try to interpret values loaded by instruction.
|
|
if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
|
|
return;
|
|
}
|
|
|
|
// Emit the call site parameter's value as an entry value.
|
|
if (ShouldTryEmitEntryVals) {
|
|
// Create an expression where the register's entry value is used.
|
|
DIExpression *EntryExpr = DIExpression::get(
|
|
MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
|
|
for (auto RegEntry : ForwardedRegWorklist) {
|
|
MachineLocation MLoc(RegEntry.first);
|
|
finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
|
|
DwarfCompileUnit &CU, DIE &ScopeDIE,
|
|
const MachineFunction &MF) {
|
|
// Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
|
|
// the subprogram is required to have one.
|
|
if (!SP.areAllCallsDescribed() || !SP.isDefinition())
|
|
return;
|
|
|
|
// Use DW_AT_call_all_calls to express that call site entries are present
|
|
// for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
|
|
// because one of its requirements is not met: call site entries for
|
|
// optimized-out calls are elided.
|
|
CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
|
|
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
assert(TII && "TargetInstrInfo not found: cannot label tail calls");
|
|
|
|
// Delay slot support check.
|
|
auto delaySlotSupported = [&](const MachineInstr &MI) {
|
|
if (!MI.isBundledWithSucc())
|
|
return false;
|
|
auto Suc = std::next(MI.getIterator());
|
|
auto CallInstrBundle = getBundleStart(MI.getIterator());
|
|
(void)CallInstrBundle;
|
|
auto DelaySlotBundle = getBundleStart(Suc);
|
|
(void)DelaySlotBundle;
|
|
// Ensure that label after call is following delay slot instruction.
|
|
// Ex. CALL_INSTRUCTION {
|
|
// DELAY_SLOT_INSTRUCTION }
|
|
// LABEL_AFTER_CALL
|
|
assert(getLabelAfterInsn(&*CallInstrBundle) ==
|
|
getLabelAfterInsn(&*DelaySlotBundle) &&
|
|
"Call and its successor instruction don't have same label after.");
|
|
return true;
|
|
};
|
|
|
|
// Emit call site entries for each call or tail call in the function.
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB.instrs()) {
|
|
// Bundles with call in them will pass the isCall() test below but do not
|
|
// have callee operand information so skip them here. Iterator will
|
|
// eventually reach the call MI.
|
|
if (MI.isBundle())
|
|
continue;
|
|
|
|
// Skip instructions which aren't calls. Both calls and tail-calling jump
|
|
// instructions (e.g TAILJMPd64) are classified correctly here.
|
|
if (!MI.isCandidateForCallSiteEntry())
|
|
continue;
|
|
|
|
// Skip instructions marked as frame setup, as they are not interesting to
|
|
// the user.
|
|
if (MI.getFlag(MachineInstr::FrameSetup))
|
|
continue;
|
|
|
|
// Check if delay slot support is enabled.
|
|
if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
|
|
return;
|
|
|
|
// If this is a direct call, find the callee's subprogram.
|
|
// In the case of an indirect call find the register that holds
|
|
// the callee.
|
|
const MachineOperand &CalleeOp = MI.getOperand(0);
|
|
if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
|
|
continue;
|
|
|
|
unsigned CallReg = 0;
|
|
DIE *CalleeDIE = nullptr;
|
|
const Function *CalleeDecl = nullptr;
|
|
if (CalleeOp.isReg()) {
|
|
CallReg = CalleeOp.getReg();
|
|
if (!CallReg)
|
|
continue;
|
|
} else {
|
|
CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
|
|
if (!CalleeDecl || !CalleeDecl->getSubprogram())
|
|
continue;
|
|
const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
|
|
|
|
if (CalleeSP->isDefinition()) {
|
|
// Ensure that a subprogram DIE for the callee is available in the
|
|
// appropriate CU.
|
|
CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
|
|
} else {
|
|
// Create the declaration DIE if it is missing. This is required to
|
|
// support compilation of old bitcode with an incomplete list of
|
|
// retained metadata.
|
|
CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
|
|
}
|
|
assert(CalleeDIE && "Must have a DIE for the callee");
|
|
}
|
|
|
|
// TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
|
|
|
|
bool IsTail = TII->isTailCall(MI);
|
|
|
|
// If MI is in a bundle, the label was created after the bundle since
|
|
// EmitFunctionBody iterates over top-level MIs. Get that top-level MI
|
|
// to search for that label below.
|
|
const MachineInstr *TopLevelCallMI =
|
|
MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
|
|
|
|
// For non-tail calls, the return PC is needed to disambiguate paths in
|
|
// the call graph which could lead to some target function. For tail
|
|
// calls, no return PC information is needed, unless tuning for GDB in
|
|
// DWARF4 mode in which case we fake a return PC for compatibility.
|
|
const MCSymbol *PCAddr =
|
|
(!IsTail || CU.useGNUAnalogForDwarf5Feature())
|
|
? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
|
|
: nullptr;
|
|
|
|
// For tail calls, it's necessary to record the address of the branch
|
|
// instruction so that the debugger can show where the tail call occurred.
|
|
const MCSymbol *CallAddr =
|
|
IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
|
|
|
|
assert((IsTail || PCAddr) && "Non-tail call without return PC");
|
|
|
|
LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
|
|
<< (CalleeDecl ? CalleeDecl->getName()
|
|
: StringRef(MF.getSubtarget()
|
|
.getRegisterInfo()
|
|
->getName(CallReg)))
|
|
<< (IsTail ? " [IsTail]" : "") << "\n");
|
|
|
|
DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
|
|
ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
|
|
|
|
// Optionally emit call-site-param debug info.
|
|
if (emitDebugEntryValues()) {
|
|
ParamSet Params;
|
|
// Try to interpret values of call site parameters.
|
|
collectCallSiteParameters(&MI, Params);
|
|
CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
|
|
if (!U.hasDwarfPubSections())
|
|
return;
|
|
|
|
U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
|
|
}
|
|
|
|
void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
|
|
DwarfCompileUnit &NewCU) {
|
|
DIE &Die = NewCU.getUnitDie();
|
|
StringRef FN = DIUnit->getFilename();
|
|
|
|
StringRef Producer = DIUnit->getProducer();
|
|
StringRef Flags = DIUnit->getFlags();
|
|
if (!Flags.empty() && !useAppleExtensionAttributes()) {
|
|
std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
|
|
NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
|
|
} else
|
|
NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
|
|
|
|
NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
DIUnit->getSourceLanguage());
|
|
NewCU.addString(Die, dwarf::DW_AT_name, FN);
|
|
StringRef SysRoot = DIUnit->getSysRoot();
|
|
if (!SysRoot.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
|
|
StringRef SDK = DIUnit->getSDK();
|
|
if (!SDK.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
|
|
|
|
// Add DW_str_offsets_base to the unit DIE, except for split units.
|
|
if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
|
|
NewCU.addStringOffsetsStart();
|
|
|
|
if (!useSplitDwarf()) {
|
|
NewCU.initStmtList();
|
|
|
|
// If we're using split dwarf the compilation dir is going to be in the
|
|
// skeleton CU and so we don't need to duplicate it here.
|
|
if (!CompilationDir.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
addGnuPubAttributes(NewCU, Die);
|
|
}
|
|
|
|
if (useAppleExtensionAttributes()) {
|
|
if (DIUnit->isOptimized())
|
|
NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
|
|
|
|
StringRef Flags = DIUnit->getFlags();
|
|
if (!Flags.empty())
|
|
NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
|
|
|
|
if (unsigned RVer = DIUnit->getRuntimeVersion())
|
|
NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
|
|
dwarf::DW_FORM_data1, RVer);
|
|
}
|
|
|
|
if (DIUnit->getDWOId()) {
|
|
// This CU is either a clang module DWO or a skeleton CU.
|
|
NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
|
|
DIUnit->getDWOId());
|
|
if (!DIUnit->getSplitDebugFilename().empty()) {
|
|
// This is a prefabricated skeleton CU.
|
|
dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
|
|
? dwarf::DW_AT_dwo_name
|
|
: dwarf::DW_AT_GNU_dwo_name;
|
|
NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
|
|
}
|
|
}
|
|
}
|
|
// Create new DwarfCompileUnit for the given metadata node with tag
|
|
// DW_TAG_compile_unit.
|
|
DwarfCompileUnit &
|
|
DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
|
|
if (auto *CU = CUMap.lookup(DIUnit))
|
|
return *CU;
|
|
|
|
CompilationDir = DIUnit->getDirectory();
|
|
|
|
auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
|
|
InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
InfoHolder.addUnit(std::move(OwnedUnit));
|
|
|
|
for (auto *IE : DIUnit->getImportedEntities())
|
|
NewCU.addImportedEntity(IE);
|
|
|
|
// LTO with assembly output shares a single line table amongst multiple CUs.
|
|
// To avoid the compilation directory being ambiguous, let the line table
|
|
// explicitly describe the directory of all files, never relying on the
|
|
// compilation directory.
|
|
if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
|
|
Asm->OutStreamer->emitDwarfFile0Directive(
|
|
CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
|
|
DIUnit->getSource(), NewCU.getUniqueID());
|
|
|
|
if (useSplitDwarf()) {
|
|
NewCU.setSkeleton(constructSkeletonCU(NewCU));
|
|
NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
|
|
} else {
|
|
finishUnitAttributes(DIUnit, NewCU);
|
|
NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
|
|
}
|
|
|
|
CUMap.insert({DIUnit, &NewCU});
|
|
CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
|
|
return NewCU;
|
|
}
|
|
|
|
void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
|
|
const DIImportedEntity *N) {
|
|
if (isa<DILocalScope>(N->getScope()))
|
|
return;
|
|
if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
|
|
D->addChild(TheCU.constructImportedEntityDIE(N));
|
|
}
|
|
|
|
/// Sort and unique GVEs by comparing their fragment offset.
|
|
static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
|
|
sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
|
|
llvm::sort(
|
|
GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
|
|
// Sort order: first null exprs, then exprs without fragment
|
|
// info, then sort by fragment offset in bits.
|
|
// FIXME: Come up with a more comprehensive comparator so
|
|
// the sorting isn't non-deterministic, and so the following
|
|
// std::unique call works correctly.
|
|
if (!A.Expr || !B.Expr)
|
|
return !!B.Expr;
|
|
auto FragmentA = A.Expr->getFragmentInfo();
|
|
auto FragmentB = B.Expr->getFragmentInfo();
|
|
if (!FragmentA || !FragmentB)
|
|
return !!FragmentB;
|
|
return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
|
|
});
|
|
GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
|
|
[](DwarfCompileUnit::GlobalExpr A,
|
|
DwarfCompileUnit::GlobalExpr B) {
|
|
return A.Expr == B.Expr;
|
|
}),
|
|
GVEs.end());
|
|
return GVEs;
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come prior to the content. Create
|
|
// global DIEs and emit initial debug info sections. This is invoked by
|
|
// the target AsmPrinter.
|
|
void DwarfDebug::beginModule(Module *M) {
|
|
DebugHandlerBase::beginModule(M);
|
|
|
|
if (!Asm || !MMI->hasDebugInfo())
|
|
return;
|
|
|
|
unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
|
|
M->debug_compile_units_end());
|
|
assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
|
|
assert(MMI->hasDebugInfo() &&
|
|
"DebugInfoAvailabilty unexpectedly not initialized");
|
|
SingleCU = NumDebugCUs == 1;
|
|
DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
|
|
GVMap;
|
|
for (const GlobalVariable &Global : M->globals()) {
|
|
SmallVector<DIGlobalVariableExpression *, 1> GVs;
|
|
Global.getDebugInfo(GVs);
|
|
for (auto *GVE : GVs)
|
|
GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
|
|
}
|
|
|
|
// Create the symbol that designates the start of the unit's contribution
|
|
// to the string offsets table. In a split DWARF scenario, only the skeleton
|
|
// unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
|
|
if (useSegmentedStringOffsetsTable())
|
|
(useSplitDwarf() ? SkeletonHolder : InfoHolder)
|
|
.setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
|
|
|
|
|
|
// Create the symbols that designates the start of the DWARF v5 range list
|
|
// and locations list tables. They are located past the table headers.
|
|
if (getDwarfVersion() >= 5) {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.setRnglistsTableBaseSym(
|
|
Asm->createTempSymbol("rnglists_table_base"));
|
|
|
|
if (useSplitDwarf())
|
|
InfoHolder.setRnglistsTableBaseSym(
|
|
Asm->createTempSymbol("rnglists_dwo_table_base"));
|
|
}
|
|
|
|
// Create the symbol that points to the first entry following the debug
|
|
// address table (.debug_addr) header.
|
|
AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
|
|
DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
|
|
|
|
for (DICompileUnit *CUNode : M->debug_compile_units()) {
|
|
// FIXME: Move local imported entities into a list attached to the
|
|
// subprogram, then this search won't be needed and a
|
|
// getImportedEntities().empty() test should go below with the rest.
|
|
bool HasNonLocalImportedEntities = llvm::any_of(
|
|
CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
|
|
return !isa<DILocalScope>(IE->getScope());
|
|
});
|
|
|
|
if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
|
|
CUNode->getRetainedTypes().empty() &&
|
|
CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
|
|
continue;
|
|
|
|
DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
|
|
|
|
// Global Variables.
|
|
for (auto *GVE : CUNode->getGlobalVariables()) {
|
|
// Don't bother adding DIGlobalVariableExpressions listed in the CU if we
|
|
// already know about the variable and it isn't adding a constant
|
|
// expression.
|
|
auto &GVMapEntry = GVMap[GVE->getVariable()];
|
|
auto *Expr = GVE->getExpression();
|
|
if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
|
|
GVMapEntry.push_back({nullptr, Expr});
|
|
}
|
|
DenseSet<DIGlobalVariable *> Processed;
|
|
for (auto *GVE : CUNode->getGlobalVariables()) {
|
|
DIGlobalVariable *GV = GVE->getVariable();
|
|
if (Processed.insert(GV).second)
|
|
CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
|
|
}
|
|
|
|
for (auto *Ty : CUNode->getEnumTypes()) {
|
|
// The enum types array by design contains pointers to
|
|
// MDNodes rather than DIRefs. Unique them here.
|
|
CU.getOrCreateTypeDIE(cast<DIType>(Ty));
|
|
}
|
|
for (auto *Ty : CUNode->getRetainedTypes()) {
|
|
// The retained types array by design contains pointers to
|
|
// MDNodes rather than DIRefs. Unique them here.
|
|
if (DIType *RT = dyn_cast<DIType>(Ty))
|
|
// There is no point in force-emitting a forward declaration.
|
|
CU.getOrCreateTypeDIE(RT);
|
|
}
|
|
// Emit imported_modules last so that the relevant context is already
|
|
// available.
|
|
for (auto *IE : CUNode->getImportedEntities())
|
|
constructAndAddImportedEntityDIE(CU, IE);
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finishEntityDefinitions() {
|
|
for (const auto &Entity : ConcreteEntities) {
|
|
DIE *Die = Entity->getDIE();
|
|
assert(Die);
|
|
// FIXME: Consider the time-space tradeoff of just storing the unit pointer
|
|
// in the ConcreteEntities list, rather than looking it up again here.
|
|
// DIE::getUnit isn't simple - it walks parent pointers, etc.
|
|
DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
|
|
assert(Unit);
|
|
Unit->finishEntityDefinition(Entity.get());
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finishSubprogramDefinitions() {
|
|
for (const DISubprogram *SP : ProcessedSPNodes) {
|
|
assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
|
|
forBothCUs(
|
|
getOrCreateDwarfCompileUnit(SP->getUnit()),
|
|
[&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::finalizeModuleInfo() {
|
|
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
|
|
|
|
finishSubprogramDefinitions();
|
|
|
|
finishEntityDefinitions();
|
|
|
|
// Include the DWO file name in the hash if there's more than one CU.
|
|
// This handles ThinLTO's situation where imported CUs may very easily be
|
|
// duplicate with the same CU partially imported into another ThinLTO unit.
|
|
StringRef DWOName;
|
|
if (CUMap.size() > 1)
|
|
DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
|
|
|
|
// Handle anything that needs to be done on a per-unit basis after
|
|
// all other generation.
|
|
for (const auto &P : CUMap) {
|
|
auto &TheCU = *P.second;
|
|
if (TheCU.getCUNode()->isDebugDirectivesOnly())
|
|
continue;
|
|
// Emit DW_AT_containing_type attribute to connect types with their
|
|
// vtable holding type.
|
|
TheCU.constructContainingTypeDIEs();
|
|
|
|
// Add CU specific attributes if we need to add any.
|
|
// If we're splitting the dwarf out now that we've got the entire
|
|
// CU then add the dwo id to it.
|
|
auto *SkCU = TheCU.getSkeleton();
|
|
|
|
bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
|
|
|
|
if (HasSplitUnit) {
|
|
dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
|
|
? dwarf::DW_AT_dwo_name
|
|
: dwarf::DW_AT_GNU_dwo_name;
|
|
finishUnitAttributes(TheCU.getCUNode(), TheCU);
|
|
TheCU.addString(TheCU.getUnitDie(), attrDWOName,
|
|
Asm->TM.Options.MCOptions.SplitDwarfFile);
|
|
SkCU->addString(SkCU->getUnitDie(), attrDWOName,
|
|
Asm->TM.Options.MCOptions.SplitDwarfFile);
|
|
// Emit a unique identifier for this CU.
|
|
uint64_t ID =
|
|
DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
|
|
if (getDwarfVersion() >= 5) {
|
|
TheCU.setDWOId(ID);
|
|
SkCU->setDWOId(ID);
|
|
} else {
|
|
TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
|
|
dwarf::DW_FORM_data8, ID);
|
|
}
|
|
|
|
if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
|
|
const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
|
|
SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
|
|
Sym, Sym);
|
|
}
|
|
} else if (SkCU) {
|
|
finishUnitAttributes(SkCU->getCUNode(), *SkCU);
|
|
}
|
|
|
|
// If we have code split among multiple sections or non-contiguous
|
|
// ranges of code then emit a DW_AT_ranges attribute on the unit that will
|
|
// remain in the .o file, otherwise add a DW_AT_low_pc.
|
|
// FIXME: We should use ranges allow reordering of code ala
|
|
// .subsections_via_symbols in mach-o. This would mean turning on
|
|
// ranges for all subprogram DIEs for mach-o.
|
|
DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
|
|
|
|
if (unsigned NumRanges = TheCU.getRanges().size()) {
|
|
if (NumRanges > 1 && useRangesSection())
|
|
// A DW_AT_low_pc attribute may also be specified in combination with
|
|
// DW_AT_ranges to specify the default base address for use in
|
|
// location lists (see Section 2.6.2) and range lists (see Section
|
|
// 2.17.3).
|
|
U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
|
|
else
|
|
U.setBaseAddress(TheCU.getRanges().front().Begin);
|
|
U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
|
|
}
|
|
|
|
// We don't keep track of which addresses are used in which CU so this
|
|
// is a bit pessimistic under LTO.
|
|
if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
|
|
U.addAddrTableBase();
|
|
|
|
if (getDwarfVersion() >= 5) {
|
|
if (U.hasRangeLists())
|
|
U.addRnglistsBase();
|
|
|
|
if (!DebugLocs.getLists().empty()) {
|
|
if (!useSplitDwarf())
|
|
U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
|
|
DebugLocs.getSym(),
|
|
TLOF.getDwarfLoclistsSection()->getBeginSymbol());
|
|
}
|
|
}
|
|
|
|
auto *CUNode = cast<DICompileUnit>(P.first);
|
|
// If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
|
|
// attribute.
|
|
if (CUNode->getMacros()) {
|
|
if (UseDebugMacroSection) {
|
|
if (useSplitDwarf())
|
|
TheCU.addSectionDelta(
|
|
TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
|
|
TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
|
|
else {
|
|
dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
|
|
? dwarf::DW_AT_macros
|
|
: dwarf::DW_AT_GNU_macros;
|
|
U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
|
|
TLOF.getDwarfMacroSection()->getBeginSymbol());
|
|
}
|
|
} else {
|
|
if (useSplitDwarf())
|
|
TheCU.addSectionDelta(
|
|
TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
|
|
U.getMacroLabelBegin(),
|
|
TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
|
|
else
|
|
U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
|
|
U.getMacroLabelBegin(),
|
|
TLOF.getDwarfMacinfoSection()->getBeginSymbol());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
|
|
for (auto *CUNode : MMI->getModule()->debug_compile_units())
|
|
if (CUNode->getDWOId())
|
|
getOrCreateDwarfCompileUnit(CUNode);
|
|
|
|
// Compute DIE offsets and sizes.
|
|
InfoHolder.computeSizeAndOffsets();
|
|
if (useSplitDwarf())
|
|
SkeletonHolder.computeSizeAndOffsets();
|
|
}
|
|
|
|
// Emit all Dwarf sections that should come after the content.
|
|
void DwarfDebug::endModule() {
|
|
assert(CurFn == nullptr);
|
|
assert(CurMI == nullptr);
|
|
|
|
for (const auto &P : CUMap) {
|
|
auto &CU = *P.second;
|
|
CU.createBaseTypeDIEs();
|
|
}
|
|
|
|
// If we aren't actually generating debug info (check beginModule -
|
|
// conditionalized on the presence of the llvm.dbg.cu metadata node)
|
|
if (!Asm || !MMI->hasDebugInfo())
|
|
return;
|
|
|
|
// Finalize the debug info for the module.
|
|
finalizeModuleInfo();
|
|
|
|
if (useSplitDwarf())
|
|
// Emit debug_loc.dwo/debug_loclists.dwo section.
|
|
emitDebugLocDWO();
|
|
else
|
|
// Emit debug_loc/debug_loclists section.
|
|
emitDebugLoc();
|
|
|
|
// Corresponding abbreviations into a abbrev section.
|
|
emitAbbreviations();
|
|
|
|
// Emit all the DIEs into a debug info section.
|
|
emitDebugInfo();
|
|
|
|
// Emit info into a debug aranges section.
|
|
if (GenerateARangeSection)
|
|
emitDebugARanges();
|
|
|
|
// Emit info into a debug ranges section.
|
|
emitDebugRanges();
|
|
|
|
if (useSplitDwarf())
|
|
// Emit info into a debug macinfo.dwo section.
|
|
emitDebugMacinfoDWO();
|
|
else
|
|
// Emit info into a debug macinfo/macro section.
|
|
emitDebugMacinfo();
|
|
|
|
emitDebugStr();
|
|
|
|
if (useSplitDwarf()) {
|
|
emitDebugStrDWO();
|
|
emitDebugInfoDWO();
|
|
emitDebugAbbrevDWO();
|
|
emitDebugLineDWO();
|
|
emitDebugRangesDWO();
|
|
}
|
|
|
|
emitDebugAddr();
|
|
|
|
// Emit info into the dwarf accelerator table sections.
|
|
switch (getAccelTableKind()) {
|
|
case AccelTableKind::Apple:
|
|
emitAccelNames();
|
|
emitAccelObjC();
|
|
emitAccelNamespaces();
|
|
emitAccelTypes();
|
|
break;
|
|
case AccelTableKind::Dwarf:
|
|
emitAccelDebugNames();
|
|
break;
|
|
case AccelTableKind::None:
|
|
break;
|
|
case AccelTableKind::Default:
|
|
llvm_unreachable("Default should have already been resolved.");
|
|
}
|
|
|
|
// Emit the pubnames and pubtypes sections if requested.
|
|
emitDebugPubSections();
|
|
|
|
// clean up.
|
|
// FIXME: AbstractVariables.clear();
|
|
}
|
|
|
|
void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
|
|
const DINode *Node,
|
|
const MDNode *ScopeNode) {
|
|
if (CU.getExistingAbstractEntity(Node))
|
|
return;
|
|
|
|
CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
|
|
cast<DILocalScope>(ScopeNode)));
|
|
}
|
|
|
|
void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
|
|
const DINode *Node, const MDNode *ScopeNode) {
|
|
if (CU.getExistingAbstractEntity(Node))
|
|
return;
|
|
|
|
if (LexicalScope *Scope =
|
|
LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
|
|
CU.createAbstractEntity(Node, Scope);
|
|
}
|
|
|
|
// Collect variable information from side table maintained by MF.
|
|
void DwarfDebug::collectVariableInfoFromMFTable(
|
|
DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
|
|
SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
|
|
LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
|
|
for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
|
|
if (!VI.Var)
|
|
continue;
|
|
assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
|
|
"Expected inlined-at fields to agree");
|
|
|
|
InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
|
|
Processed.insert(Var);
|
|
LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
|
|
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope) {
|
|
LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
|
|
<< ", no variable scope found\n");
|
|
continue;
|
|
}
|
|
|
|
ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
|
|
auto RegVar = std::make_unique<DbgVariable>(
|
|
cast<DILocalVariable>(Var.first), Var.second);
|
|
RegVar->initializeMMI(VI.Expr, VI.Slot);
|
|
LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
|
|
<< "\n");
|
|
if (DbgVariable *DbgVar = MFVars.lookup(Var))
|
|
DbgVar->addMMIEntry(*RegVar);
|
|
else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
|
|
MFVars.insert({Var, RegVar.get()});
|
|
ConcreteEntities.push_back(std::move(RegVar));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
|
|
/// enclosing lexical scope. The check ensures there are no other instructions
|
|
/// in the same lexical scope preceding the DBG_VALUE and that its range is
|
|
/// either open or otherwise rolls off the end of the scope.
|
|
static bool validThroughout(LexicalScopes &LScopes,
|
|
const MachineInstr *DbgValue,
|
|
const MachineInstr *RangeEnd,
|
|
const InstructionOrdering &Ordering) {
|
|
assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
|
|
auto MBB = DbgValue->getParent();
|
|
auto DL = DbgValue->getDebugLoc();
|
|
auto *LScope = LScopes.findLexicalScope(DL);
|
|
// Scope doesn't exist; this is a dead DBG_VALUE.
|
|
if (!LScope)
|
|
return false;
|
|
auto &LSRange = LScope->getRanges();
|
|
if (LSRange.size() == 0)
|
|
return false;
|
|
|
|
const MachineInstr *LScopeBegin = LSRange.front().first;
|
|
// If the scope starts before the DBG_VALUE then we may have a negative
|
|
// result. Otherwise the location is live coming into the scope and we
|
|
// can skip the following checks.
|
|
if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
|
|
// Exit if the lexical scope begins outside of the current block.
|
|
if (LScopeBegin->getParent() != MBB)
|
|
return false;
|
|
|
|
MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
|
|
for (++Pred; Pred != MBB->rend(); ++Pred) {
|
|
if (Pred->getFlag(MachineInstr::FrameSetup))
|
|
break;
|
|
auto PredDL = Pred->getDebugLoc();
|
|
if (!PredDL || Pred->isMetaInstruction())
|
|
continue;
|
|
// Check whether the instruction preceding the DBG_VALUE is in the same
|
|
// (sub)scope as the DBG_VALUE.
|
|
if (DL->getScope() == PredDL->getScope())
|
|
return false;
|
|
auto *PredScope = LScopes.findLexicalScope(PredDL);
|
|
if (!PredScope || LScope->dominates(PredScope))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the range of the DBG_VALUE is open-ended, report success.
|
|
if (!RangeEnd)
|
|
return true;
|
|
|
|
// Single, constant DBG_VALUEs in the prologue are promoted to be live
|
|
// throughout the function. This is a hack, presumably for DWARF v2 and not
|
|
// necessarily correct. It would be much better to use a dbg.declare instead
|
|
// if we know the constant is live throughout the scope.
|
|
if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
|
|
return true;
|
|
|
|
// Test if the location terminates before the end of the scope.
|
|
const MachineInstr *LScopeEnd = LSRange.back().second;
|
|
if (Ordering.isBefore(RangeEnd, LScopeEnd))
|
|
return false;
|
|
|
|
// There's a single location which starts at the scope start, and ends at or
|
|
// after the scope end.
|
|
return true;
|
|
}
|
|
|
|
/// Build the location list for all DBG_VALUEs in the function that
|
|
/// describe the same variable. The resulting DebugLocEntries will have
|
|
/// strict monotonically increasing begin addresses and will never
|
|
/// overlap. If the resulting list has only one entry that is valid
|
|
/// throughout variable's scope return true.
|
|
//
|
|
// See the definition of DbgValueHistoryMap::Entry for an explanation of the
|
|
// different kinds of history map entries. One thing to be aware of is that if
|
|
// a debug value is ended by another entry (rather than being valid until the
|
|
// end of the function), that entry's instruction may or may not be included in
|
|
// the range, depending on if the entry is a clobbering entry (it has an
|
|
// instruction that clobbers one or more preceding locations), or if it is an
|
|
// (overlapping) debug value entry. This distinction can be seen in the example
|
|
// below. The first debug value is ended by the clobbering entry 2, and the
|
|
// second and third debug values are ended by the overlapping debug value entry
|
|
// 4.
|
|
//
|
|
// Input:
|
|
//
|
|
// History map entries [type, end index, mi]
|
|
//
|
|
// 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
|
|
// 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
|
|
// 2 | | [Clobber, $reg0 = [...], -, -]
|
|
// 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
|
|
// 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
|
|
//
|
|
// Output [start, end) [Value...]:
|
|
//
|
|
// [0-1) [(reg0, fragment 0, 32)]
|
|
// [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
|
|
// [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
|
|
// [4-) [(@g, fragment 0, 96)]
|
|
bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
|
|
const DbgValueHistoryMap::Entries &Entries) {
|
|
using OpenRange =
|
|
std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
|
|
SmallVector<OpenRange, 4> OpenRanges;
|
|
bool isSafeForSingleLocation = true;
|
|
const MachineInstr *StartDebugMI = nullptr;
|
|
const MachineInstr *EndMI = nullptr;
|
|
|
|
for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
|
|
const MachineInstr *Instr = EI->getInstr();
|
|
|
|
// Remove all values that are no longer live.
|
|
size_t Index = std::distance(EB, EI);
|
|
erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
|
|
|
|
// If we are dealing with a clobbering entry, this iteration will result in
|
|
// a location list entry starting after the clobbering instruction.
|
|
const MCSymbol *StartLabel =
|
|
EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
|
|
assert(StartLabel &&
|
|
"Forgot label before/after instruction starting a range!");
|
|
|
|
const MCSymbol *EndLabel;
|
|
if (std::next(EI) == Entries.end()) {
|
|
const MachineBasicBlock &EndMBB = Asm->MF->back();
|
|
EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
|
|
if (EI->isClobber())
|
|
EndMI = EI->getInstr();
|
|
}
|
|
else if (std::next(EI)->isClobber())
|
|
EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
|
|
else
|
|
EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
|
|
assert(EndLabel && "Forgot label after instruction ending a range!");
|
|
|
|
if (EI->isDbgValue())
|
|
LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
|
|
|
|
// If this history map entry has a debug value, add that to the list of
|
|
// open ranges and check if its location is valid for a single value
|
|
// location.
|
|
if (EI->isDbgValue()) {
|
|
// Do not add undef debug values, as they are redundant information in
|
|
// the location list entries. An undef debug results in an empty location
|
|
// description. If there are any non-undef fragments then padding pieces
|
|
// with empty location descriptions will automatically be inserted, and if
|
|
// all fragments are undef then the whole location list entry is
|
|
// redundant.
|
|
if (!Instr->isUndefDebugValue()) {
|
|
auto Value = getDebugLocValue(Instr);
|
|
OpenRanges.emplace_back(EI->getEndIndex(), Value);
|
|
|
|
// TODO: Add support for single value fragment locations.
|
|
if (Instr->getDebugExpression()->isFragment())
|
|
isSafeForSingleLocation = false;
|
|
|
|
if (!StartDebugMI)
|
|
StartDebugMI = Instr;
|
|
} else {
|
|
isSafeForSingleLocation = false;
|
|
}
|
|
}
|
|
|
|
// Location list entries with empty location descriptions are redundant
|
|
// information in DWARF, so do not emit those.
|
|
if (OpenRanges.empty())
|
|
continue;
|
|
|
|
// Omit entries with empty ranges as they do not have any effect in DWARF.
|
|
if (StartLabel == EndLabel) {
|
|
LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
|
|
continue;
|
|
}
|
|
|
|
SmallVector<DbgValueLoc, 4> Values;
|
|
for (auto &R : OpenRanges)
|
|
Values.push_back(R.second);
|
|
DebugLoc.emplace_back(StartLabel, EndLabel, Values);
|
|
|
|
// Attempt to coalesce the ranges of two otherwise identical
|
|
// DebugLocEntries.
|
|
auto CurEntry = DebugLoc.rbegin();
|
|
LLVM_DEBUG({
|
|
dbgs() << CurEntry->getValues().size() << " Values:\n";
|
|
for (auto &Value : CurEntry->getValues())
|
|
Value.dump();
|
|
dbgs() << "-----\n";
|
|
});
|
|
|
|
auto PrevEntry = std::next(CurEntry);
|
|
if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
|
|
DebugLoc.pop_back();
|
|
}
|
|
|
|
return DebugLoc.size() == 1 && isSafeForSingleLocation &&
|
|
validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
|
|
}
|
|
|
|
DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
|
|
LexicalScope &Scope,
|
|
const DINode *Node,
|
|
const DILocation *Location,
|
|
const MCSymbol *Sym) {
|
|
ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
|
|
if (isa<const DILocalVariable>(Node)) {
|
|
ConcreteEntities.push_back(
|
|
std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
|
|
Location));
|
|
InfoHolder.addScopeVariable(&Scope,
|
|
cast<DbgVariable>(ConcreteEntities.back().get()));
|
|
} else if (isa<const DILabel>(Node)) {
|
|
ConcreteEntities.push_back(
|
|
std::make_unique<DbgLabel>(cast<const DILabel>(Node),
|
|
Location, Sym));
|
|
InfoHolder.addScopeLabel(&Scope,
|
|
cast<DbgLabel>(ConcreteEntities.back().get()));
|
|
}
|
|
return ConcreteEntities.back().get();
|
|
}
|
|
|
|
// Find variables for each lexical scope.
|
|
void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
|
|
const DISubprogram *SP,
|
|
DenseSet<InlinedEntity> &Processed) {
|
|
// Grab the variable info that was squirreled away in the MMI side-table.
|
|
collectVariableInfoFromMFTable(TheCU, Processed);
|
|
|
|
for (const auto &I : DbgValues) {
|
|
InlinedEntity IV = I.first;
|
|
if (Processed.count(IV))
|
|
continue;
|
|
|
|
// Instruction ranges, specifying where IV is accessible.
|
|
const auto &HistoryMapEntries = I.second;
|
|
if (HistoryMapEntries.empty())
|
|
continue;
|
|
|
|
LexicalScope *Scope = nullptr;
|
|
const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
|
|
if (const DILocation *IA = IV.second)
|
|
Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
|
|
else
|
|
Scope = LScopes.findLexicalScope(LocalVar->getScope());
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
Processed.insert(IV);
|
|
DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
|
|
*Scope, LocalVar, IV.second));
|
|
|
|
const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
|
|
assert(MInsn->isDebugValue() && "History must begin with debug value");
|
|
|
|
// Check if there is a single DBG_VALUE, valid throughout the var's scope.
|
|
// If the history map contains a single debug value, there may be an
|
|
// additional entry which clobbers the debug value.
|
|
size_t HistSize = HistoryMapEntries.size();
|
|
bool SingleValueWithClobber =
|
|
HistSize == 2 && HistoryMapEntries[1].isClobber();
|
|
if (HistSize == 1 || SingleValueWithClobber) {
|
|
const auto *End =
|
|
SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
|
|
if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
|
|
RegVar->initializeDbgValue(MInsn);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Do not emit location lists if .debug_loc secton is disabled.
|
|
if (!useLocSection())
|
|
continue;
|
|
|
|
// Handle multiple DBG_VALUE instructions describing one variable.
|
|
DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
|
|
|
|
// Build the location list for this variable.
|
|
SmallVector<DebugLocEntry, 8> Entries;
|
|
bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
|
|
|
|
// Check whether buildLocationList managed to merge all locations to one
|
|
// that is valid throughout the variable's scope. If so, produce single
|
|
// value location.
|
|
if (isValidSingleLocation) {
|
|
RegVar->initializeDbgValue(Entries[0].getValues()[0]);
|
|
continue;
|
|
}
|
|
|
|
// If the variable has a DIBasicType, extract it. Basic types cannot have
|
|
// unique identifiers, so don't bother resolving the type with the
|
|
// identifier map.
|
|
const DIBasicType *BT = dyn_cast<DIBasicType>(
|
|
static_cast<const Metadata *>(LocalVar->getType()));
|
|
|
|
// Finalize the entry by lowering it into a DWARF bytestream.
|
|
for (auto &Entry : Entries)
|
|
Entry.finalize(*Asm, List, BT, TheCU);
|
|
}
|
|
|
|
// For each InlinedEntity collected from DBG_LABEL instructions, convert to
|
|
// DWARF-related DbgLabel.
|
|
for (const auto &I : DbgLabels) {
|
|
InlinedEntity IL = I.first;
|
|
const MachineInstr *MI = I.second;
|
|
if (MI == nullptr)
|
|
continue;
|
|
|
|
LexicalScope *Scope = nullptr;
|
|
const DILabel *Label = cast<DILabel>(IL.first);
|
|
// The scope could have an extra lexical block file.
|
|
const DILocalScope *LocalScope =
|
|
Label->getScope()->getNonLexicalBlockFileScope();
|
|
// Get inlined DILocation if it is inlined label.
|
|
if (const DILocation *IA = IL.second)
|
|
Scope = LScopes.findInlinedScope(LocalScope, IA);
|
|
else
|
|
Scope = LScopes.findLexicalScope(LocalScope);
|
|
// If label scope is not found then skip this label.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
Processed.insert(IL);
|
|
/// At this point, the temporary label is created.
|
|
/// Save the temporary label to DbgLabel entity to get the
|
|
/// actually address when generating Dwarf DIE.
|
|
MCSymbol *Sym = getLabelBeforeInsn(MI);
|
|
createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
|
|
}
|
|
|
|
// Collect info for variables/labels that were optimized out.
|
|
for (const DINode *DN : SP->getRetainedNodes()) {
|
|
if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
|
|
continue;
|
|
LexicalScope *Scope = nullptr;
|
|
if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
|
|
Scope = LScopes.findLexicalScope(DV->getScope());
|
|
} else if (auto *DL = dyn_cast<DILabel>(DN)) {
|
|
Scope = LScopes.findLexicalScope(DL->getScope());
|
|
}
|
|
|
|
if (Scope)
|
|
createConcreteEntity(TheCU, *Scope, DN, nullptr);
|
|
}
|
|
}
|
|
|
|
// Process beginning of an instruction.
|
|
void DwarfDebug::beginInstruction(const MachineInstr *MI) {
|
|
const MachineFunction &MF = *MI->getMF();
|
|
const auto *SP = MF.getFunction().getSubprogram();
|
|
bool NoDebug =
|
|
!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
|
|
|
|
// Delay slot support check.
|
|
auto delaySlotSupported = [](const MachineInstr &MI) {
|
|
if (!MI.isBundledWithSucc())
|
|
return false;
|
|
auto Suc = std::next(MI.getIterator());
|
|
(void)Suc;
|
|
// Ensure that delay slot instruction is successor of the call instruction.
|
|
// Ex. CALL_INSTRUCTION {
|
|
// DELAY_SLOT_INSTRUCTION }
|
|
assert(Suc->isBundledWithPred() &&
|
|
"Call bundle instructions are out of order");
|
|
return true;
|
|
};
|
|
|
|
// When describing calls, we need a label for the call instruction.
|
|
if (!NoDebug && SP->areAllCallsDescribed() &&
|
|
MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
|
|
(!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
bool IsTail = TII->isTailCall(*MI);
|
|
// For tail calls, we need the address of the branch instruction for
|
|
// DW_AT_call_pc.
|
|
if (IsTail)
|
|
requestLabelBeforeInsn(MI);
|
|
// For non-tail calls, we need the return address for the call for
|
|
// DW_AT_call_return_pc. Under GDB tuning, this information is needed for
|
|
// tail calls as well.
|
|
requestLabelAfterInsn(MI);
|
|
}
|
|
|
|
DebugHandlerBase::beginInstruction(MI);
|
|
if (!CurMI)
|
|
return;
|
|
|
|
if (NoDebug)
|
|
return;
|
|
|
|
// Check if source location changes, but ignore DBG_VALUE and CFI locations.
|
|
// If the instruction is part of the function frame setup code, do not emit
|
|
// any line record, as there is no correspondence with any user code.
|
|
if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
|
|
return;
|
|
const DebugLoc &DL = MI->getDebugLoc();
|
|
// When we emit a line-0 record, we don't update PrevInstLoc; so look at
|
|
// the last line number actually emitted, to see if it was line 0.
|
|
unsigned LastAsmLine =
|
|
Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
|
|
|
|
if (DL == PrevInstLoc) {
|
|
// If we have an ongoing unspecified location, nothing to do here.
|
|
if (!DL)
|
|
return;
|
|
// We have an explicit location, same as the previous location.
|
|
// But we might be coming back to it after a line 0 record.
|
|
if (LastAsmLine == 0 && DL.getLine() != 0) {
|
|
// Reinstate the source location but not marked as a statement.
|
|
const MDNode *Scope = DL.getScope();
|
|
recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!DL) {
|
|
// We have an unspecified location, which might want to be line 0.
|
|
// If we have already emitted a line-0 record, don't repeat it.
|
|
if (LastAsmLine == 0)
|
|
return;
|
|
// If user said Don't Do That, don't do that.
|
|
if (UnknownLocations == Disable)
|
|
return;
|
|
// See if we have a reason to emit a line-0 record now.
|
|
// Reasons to emit a line-0 record include:
|
|
// - User asked for it (UnknownLocations).
|
|
// - Instruction has a label, so it's referenced from somewhere else,
|
|
// possibly debug information; we want it to have a source location.
|
|
// - Instruction is at the top of a block; we don't want to inherit the
|
|
// location from the physically previous (maybe unrelated) block.
|
|
if (UnknownLocations == Enable || PrevLabel ||
|
|
(PrevInstBB && PrevInstBB != MI->getParent())) {
|
|
// Preserve the file and column numbers, if we can, to save space in
|
|
// the encoded line table.
|
|
// Do not update PrevInstLoc, it remembers the last non-0 line.
|
|
const MDNode *Scope = nullptr;
|
|
unsigned Column = 0;
|
|
if (PrevInstLoc) {
|
|
Scope = PrevInstLoc.getScope();
|
|
Column = PrevInstLoc.getCol();
|
|
}
|
|
recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We have an explicit location, different from the previous location.
|
|
// Don't repeat a line-0 record, but otherwise emit the new location.
|
|
// (The new location might be an explicit line 0, which we do emit.)
|
|
if (DL.getLine() == 0 && LastAsmLine == 0)
|
|
return;
|
|
unsigned Flags = 0;
|
|
if (DL == PrologEndLoc) {
|
|
Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
|
|
PrologEndLoc = DebugLoc();
|
|
}
|
|
// If the line changed, we call that a new statement; unless we went to
|
|
// line 0 and came back, in which case it is not a new statement.
|
|
unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
|
|
if (DL.getLine() && DL.getLine() != OldLine)
|
|
Flags |= DWARF2_FLAG_IS_STMT;
|
|
|
|
const MDNode *Scope = DL.getScope();
|
|
recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
|
|
|
|
// If we're not at line 0, remember this location.
|
|
if (DL.getLine())
|
|
PrevInstLoc = DL;
|
|
}
|
|
|
|
static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
|
|
// First known non-DBG_VALUE and non-frame setup location marks
|
|
// the beginning of the function body.
|
|
for (const auto &MBB : *MF)
|
|
for (const auto &MI : MBB)
|
|
if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
|
|
MI.getDebugLoc())
|
|
return MI.getDebugLoc();
|
|
return DebugLoc();
|
|
}
|
|
|
|
/// Register a source line with debug info. Returns the unique label that was
|
|
/// emitted and which provides correspondence to the source line list.
|
|
static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
|
|
const MDNode *S, unsigned Flags, unsigned CUID,
|
|
uint16_t DwarfVersion,
|
|
ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
|
|
StringRef Fn;
|
|
unsigned FileNo = 1;
|
|
unsigned Discriminator = 0;
|
|
if (auto *Scope = cast_or_null<DIScope>(S)) {
|
|
Fn = Scope->getFilename();
|
|
if (Line != 0 && DwarfVersion >= 4)
|
|
if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
|
|
Discriminator = LBF->getDiscriminator();
|
|
|
|
FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
|
|
.getOrCreateSourceID(Scope->getFile());
|
|
}
|
|
Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
|
|
Discriminator, Fn);
|
|
}
|
|
|
|
DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
|
|
unsigned CUID) {
|
|
// Get beginning of function.
|
|
if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
|
|
// Ensure the compile unit is created if the function is called before
|
|
// beginFunction().
|
|
(void)getOrCreateDwarfCompileUnit(
|
|
MF.getFunction().getSubprogram()->getUnit());
|
|
// We'd like to list the prologue as "not statements" but GDB behaves
|
|
// poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
|
|
const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
|
|
::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
|
|
CUID, getDwarfVersion(), getUnits());
|
|
return PrologEndLoc;
|
|
}
|
|
return DebugLoc();
|
|
}
|
|
|
|
// Gather pre-function debug information. Assumes being called immediately
|
|
// after the function entry point has been emitted.
|
|
void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
|
|
CurFn = MF;
|
|
|
|
auto *SP = MF->getFunction().getSubprogram();
|
|
assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
|
|
if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
|
|
return;
|
|
|
|
DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
|
|
// belongs to so that we add to the correct per-cu line table in the
|
|
// non-asm case.
|
|
if (Asm->OutStreamer->hasRawTextSupport())
|
|
// Use a single line table if we are generating assembly.
|
|
Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
|
|
else
|
|
Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
|
|
|
|
// Record beginning of function.
|
|
PrologEndLoc = emitInitialLocDirective(
|
|
*MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
|
|
}
|
|
|
|
void DwarfDebug::skippedNonDebugFunction() {
|
|
// If we don't have a subprogram for this function then there will be a hole
|
|
// in the range information. Keep note of this by setting the previously used
|
|
// section to nullptr.
|
|
PrevCU = nullptr;
|
|
CurFn = nullptr;
|
|
}
|
|
|
|
// Gather and emit post-function debug information.
|
|
void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
|
|
const DISubprogram *SP = MF->getFunction().getSubprogram();
|
|
|
|
assert(CurFn == MF &&
|
|
"endFunction should be called with the same function as beginFunction");
|
|
|
|
// Set DwarfDwarfCompileUnitID in MCContext to default value.
|
|
Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
|
|
|
|
LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
|
|
assert(!FnScope || SP == FnScope->getScopeNode());
|
|
DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
|
|
if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
return;
|
|
}
|
|
|
|
DenseSet<InlinedEntity> Processed;
|
|
collectEntityInfo(TheCU, SP, Processed);
|
|
|
|
// Add the range of this function to the list of ranges for the CU.
|
|
// With basic block sections, add ranges for all basic block sections.
|
|
for (const auto &R : Asm->MBBSectionRanges)
|
|
TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
|
|
|
|
// Under -gmlt, skip building the subprogram if there are no inlined
|
|
// subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
|
|
// is still needed as we need its source location.
|
|
if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
|
|
TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
|
|
LScopes.getAbstractScopesList().empty() && !IsDarwin) {
|
|
assert(InfoHolder.getScopeVariables().empty());
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
|
|
#endif
|
|
// Construct abstract scopes.
|
|
for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
|
|
auto *SP = cast<DISubprogram>(AScope->getScopeNode());
|
|
for (const DINode *DN : SP->getRetainedNodes()) {
|
|
if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
|
|
continue;
|
|
|
|
const MDNode *Scope = nullptr;
|
|
if (auto *DV = dyn_cast<DILocalVariable>(DN))
|
|
Scope = DV->getScope();
|
|
else if (auto *DL = dyn_cast<DILabel>(DN))
|
|
Scope = DL->getScope();
|
|
else
|
|
llvm_unreachable("Unexpected DI type!");
|
|
|
|
// Collect info for variables/labels that were optimized out.
|
|
ensureAbstractEntityIsCreated(TheCU, DN, Scope);
|
|
assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
|
|
&& "ensureAbstractEntityIsCreated inserted abstract scopes");
|
|
}
|
|
constructAbstractSubprogramScopeDIE(TheCU, AScope);
|
|
}
|
|
|
|
ProcessedSPNodes.insert(SP);
|
|
DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
|
|
if (auto *SkelCU = TheCU.getSkeleton())
|
|
if (!LScopes.getAbstractScopesList().empty() &&
|
|
TheCU.getCUNode()->getSplitDebugInlining())
|
|
SkelCU->constructSubprogramScopeDIE(SP, FnScope);
|
|
|
|
// Construct call site entries.
|
|
constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
|
|
|
|
// Clear debug info
|
|
// Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
|
|
// DbgVariables except those that are also in AbstractVariables (since they
|
|
// can be used cross-function)
|
|
InfoHolder.getScopeVariables().clear();
|
|
InfoHolder.getScopeLabels().clear();
|
|
PrevLabel = nullptr;
|
|
CurFn = nullptr;
|
|
}
|
|
|
|
// Register a source line with debug info. Returns the unique label that was
|
|
// emitted and which provides correspondence to the source line list.
|
|
void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
|
|
unsigned Flags) {
|
|
::recordSourceLine(*Asm, Line, Col, S, Flags,
|
|
Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
|
|
getDwarfVersion(), getUnits());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Emit Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Emit the debug info section.
|
|
void DwarfDebug::emitDebugInfo() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.emitUnits(/* UseOffsets */ false);
|
|
}
|
|
|
|
// Emit the abbreviation section.
|
|
void DwarfDebug::emitAbbreviations() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
|
|
Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
|
|
}
|
|
|
|
void DwarfDebug::emitStringOffsetsTableHeader() {
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.getStringPool().emitStringOffsetsTableHeader(
|
|
*Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
|
|
Holder.getStringOffsetsStartSym());
|
|
}
|
|
|
|
template <typename AccelTableT>
|
|
void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
|
|
StringRef TableName) {
|
|
Asm->OutStreamer->SwitchSection(Section);
|
|
|
|
// Emit the full data.
|
|
emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
|
|
}
|
|
|
|
void DwarfDebug::emitAccelDebugNames() {
|
|
// Don't emit anything if we have no compilation units to index.
|
|
if (getUnits().empty())
|
|
return;
|
|
|
|
emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
|
|
}
|
|
|
|
// Emit visible names into a hashed accelerator table section.
|
|
void DwarfDebug::emitAccelNames() {
|
|
emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
|
|
"Names");
|
|
}
|
|
|
|
// Emit objective C classes and categories into a hashed accelerator table
|
|
// section.
|
|
void DwarfDebug::emitAccelObjC() {
|
|
emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
|
|
"ObjC");
|
|
}
|
|
|
|
// Emit namespace dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelNamespaces() {
|
|
emitAccel(AccelNamespace,
|
|
Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
|
|
"namespac");
|
|
}
|
|
|
|
// Emit type dies into a hashed accelerator table.
|
|
void DwarfDebug::emitAccelTypes() {
|
|
emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
|
|
"types");
|
|
}
|
|
|
|
// Public name handling.
|
|
// The format for the various pubnames:
|
|
//
|
|
// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
|
|
// for the DIE that is named.
|
|
//
|
|
// gnu pubnames - offset/index value/name tuples where the offset is the offset
|
|
// into the CU and the index value is computed according to the type of value
|
|
// for the DIE that is named.
|
|
//
|
|
// For type units the offset is the offset of the skeleton DIE. For split dwarf
|
|
// it's the offset within the debug_info/debug_types dwo section, however, the
|
|
// reference in the pubname header doesn't change.
|
|
|
|
/// computeIndexValue - Compute the gdb index value for the DIE and CU.
|
|
static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
|
|
const DIE *Die) {
|
|
// Entities that ended up only in a Type Unit reference the CU instead (since
|
|
// the pub entry has offsets within the CU there's no real offset that can be
|
|
// provided anyway). As it happens all such entities (namespaces and types,
|
|
// types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
|
|
// not to be true it would be necessary to persist this information from the
|
|
// point at which the entry is added to the index data structure - since by
|
|
// the time the index is built from that, the original type/namespace DIE in a
|
|
// type unit has already been destroyed so it can't be queried for properties
|
|
// like tag, etc.
|
|
if (Die->getTag() == dwarf::DW_TAG_compile_unit)
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
|
|
dwarf::GIEL_EXTERNAL);
|
|
dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
|
|
|
|
// We could have a specification DIE that has our most of our knowledge,
|
|
// look for that now.
|
|
if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
|
|
DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
|
|
if (SpecDIE.findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
} else if (Die->findAttribute(dwarf::DW_AT_external))
|
|
Linkage = dwarf::GIEL_EXTERNAL;
|
|
|
|
switch (Die->getTag()) {
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
return dwarf::PubIndexEntryDescriptor(
|
|
dwarf::GIEK_TYPE,
|
|
dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
|
|
? dwarf::GIEL_EXTERNAL
|
|
: dwarf::GIEL_STATIC);
|
|
case dwarf::DW_TAG_typedef:
|
|
case dwarf::DW_TAG_base_type:
|
|
case dwarf::DW_TAG_subrange_type:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
|
|
case dwarf::DW_TAG_namespace:
|
|
return dwarf::GIEK_TYPE;
|
|
case dwarf::DW_TAG_subprogram:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
|
|
case dwarf::DW_TAG_variable:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
|
|
case dwarf::DW_TAG_enumerator:
|
|
return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
|
|
dwarf::GIEL_STATIC);
|
|
default:
|
|
return dwarf::GIEK_NONE;
|
|
}
|
|
}
|
|
|
|
/// emitDebugPubSections - Emit visible names and types into debug pubnames and
|
|
/// pubtypes sections.
|
|
void DwarfDebug::emitDebugPubSections() {
|
|
for (const auto &NU : CUMap) {
|
|
DwarfCompileUnit *TheU = NU.second;
|
|
if (!TheU->hasDwarfPubSections())
|
|
continue;
|
|
|
|
bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
|
|
DICompileUnit::DebugNameTableKind::GNU;
|
|
|
|
Asm->OutStreamer->SwitchSection(
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubNamesSection());
|
|
emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
|
|
|
|
Asm->OutStreamer->SwitchSection(
|
|
GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
|
|
: Asm->getObjFileLowering().getDwarfPubTypesSection());
|
|
emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
|
|
if (useSectionsAsReferences())
|
|
Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
|
|
CU.getDebugSectionOffset());
|
|
else
|
|
Asm->emitDwarfSymbolReference(CU.getLabelBegin());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
|
|
DwarfCompileUnit *TheU,
|
|
const StringMap<const DIE *> &Globals) {
|
|
if (auto *Skeleton = TheU->getSkeleton())
|
|
TheU = Skeleton;
|
|
|
|
// Emit the header.
|
|
MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
|
|
MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
|
|
Asm->emitDwarfUnitLength(EndLabel, BeginLabel,
|
|
"Length of Public " + Name + " Info");
|
|
|
|
Asm->OutStreamer->emitLabel(BeginLabel);
|
|
|
|
Asm->OutStreamer->AddComment("DWARF Version");
|
|
Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
|
|
|
|
Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
|
|
emitSectionReference(*TheU);
|
|
|
|
Asm->OutStreamer->AddComment("Compilation Unit Length");
|
|
Asm->emitDwarfLengthOrOffset(TheU->getLength());
|
|
|
|
// Emit the pubnames for this compilation unit.
|
|
for (const auto &GI : Globals) {
|
|
const char *Name = GI.getKeyData();
|
|
const DIE *Entity = GI.second;
|
|
|
|
Asm->OutStreamer->AddComment("DIE offset");
|
|
Asm->emitDwarfLengthOrOffset(Entity->getOffset());
|
|
|
|
if (GnuStyle) {
|
|
dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
|
|
Asm->OutStreamer->AddComment(
|
|
Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
|
|
", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
|
|
Asm->emitInt8(Desc.toBits());
|
|
}
|
|
|
|
Asm->OutStreamer->AddComment("External Name");
|
|
Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
|
|
}
|
|
|
|
Asm->OutStreamer->AddComment("End Mark");
|
|
Asm->emitDwarfLengthOrOffset(0);
|
|
Asm->OutStreamer->emitLabel(EndLabel);
|
|
}
|
|
|
|
/// Emit null-terminated strings into a debug str section.
|
|
void DwarfDebug::emitDebugStr() {
|
|
MCSection *StringOffsetsSection = nullptr;
|
|
if (useSegmentedStringOffsetsTable()) {
|
|
emitStringOffsetsTableHeader();
|
|
StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
|
|
}
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
|
|
StringOffsetsSection, /* UseRelativeOffsets = */ true);
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
|
|
const DebugLocStream::Entry &Entry,
|
|
const DwarfCompileUnit *CU) {
|
|
auto &&Comments = DebugLocs.getComments(Entry);
|
|
auto Comment = Comments.begin();
|
|
auto End = Comments.end();
|
|
|
|
// The expressions are inserted into a byte stream rather early (see
|
|
// DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
|
|
// need to reference a base_type DIE the offset of that DIE is not yet known.
|
|
// To deal with this we instead insert a placeholder early and then extract
|
|
// it here and replace it with the real reference.
|
|
unsigned PtrSize = Asm->MAI->getCodePointerSize();
|
|
DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
|
|
DebugLocs.getBytes(Entry).size()),
|
|
Asm->getDataLayout().isLittleEndian(), PtrSize);
|
|
DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
|
|
|
|
using Encoding = DWARFExpression::Operation::Encoding;
|
|
uint64_t Offset = 0;
|
|
for (auto &Op : Expr) {
|
|
assert(Op.getCode() != dwarf::DW_OP_const_type &&
|
|
"3 operand ops not yet supported");
|
|
Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
|
|
Offset++;
|
|
for (unsigned I = 0; I < 2; ++I) {
|
|
if (Op.getDescription().Op[I] == Encoding::SizeNA)
|
|
continue;
|
|
if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
|
|
uint64_t Offset =
|
|
CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
|
|
assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
|
|
Streamer.emitULEB128(Offset, "", ULEB128PadSize);
|
|
// Make sure comments stay aligned.
|
|
for (unsigned J = 0; J < ULEB128PadSize; ++J)
|
|
if (Comment != End)
|
|
Comment++;
|
|
} else {
|
|
for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
|
|
Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
|
|
}
|
|
Offset = Op.getOperandEndOffset(I);
|
|
}
|
|
assert(Offset == Op.getEndOffset());
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
|
|
const DbgValueLoc &Value,
|
|
DwarfExpression &DwarfExpr) {
|
|
auto *DIExpr = Value.getExpression();
|
|
DIExpressionCursor ExprCursor(DIExpr);
|
|
DwarfExpr.addFragmentOffset(DIExpr);
|
|
// Regular entry.
|
|
if (Value.isInt()) {
|
|
if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
|
|
BT->getEncoding() == dwarf::DW_ATE_signed_char))
|
|
DwarfExpr.addSignedConstant(Value.getInt());
|
|
else
|
|
DwarfExpr.addUnsignedConstant(Value.getInt());
|
|
} else if (Value.isLocation()) {
|
|
MachineLocation Location = Value.getLoc();
|
|
DwarfExpr.setLocation(Location, DIExpr);
|
|
DIExpressionCursor Cursor(DIExpr);
|
|
|
|
if (DIExpr->isEntryValue())
|
|
DwarfExpr.beginEntryValueExpression(Cursor);
|
|
|
|
const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
|
|
if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
|
|
return;
|
|
return DwarfExpr.addExpression(std::move(Cursor));
|
|
} else if (Value.isTargetIndexLocation()) {
|
|
TargetIndexLocation Loc = Value.getTargetIndexLocation();
|
|
// TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
|
|
// encoding is supported.
|
|
assert(AP.TM.getTargetTriple().isWasm());
|
|
DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
|
|
DwarfExpr.addExpression(std::move(ExprCursor));
|
|
return;
|
|
} else if (Value.isConstantFP()) {
|
|
if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
|
|
!ExprCursor) {
|
|
DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP);
|
|
return;
|
|
}
|
|
if (Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() <=
|
|
64 /*bits*/)
|
|
DwarfExpr.addUnsignedConstant(
|
|
Value.getConstantFP()->getValueAPF().bitcastToAPInt());
|
|
else
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Skipped DwarfExpression creation for ConstantFP of size"
|
|
<< Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth()
|
|
<< " bits\n");
|
|
}
|
|
DwarfExpr.addExpression(std::move(ExprCursor));
|
|
}
|
|
|
|
void DebugLocEntry::finalize(const AsmPrinter &AP,
|
|
DebugLocStream::ListBuilder &List,
|
|
const DIBasicType *BT,
|
|
DwarfCompileUnit &TheCU) {
|
|
assert(!Values.empty() &&
|
|
"location list entries without values are redundant");
|
|
assert(Begin != End && "unexpected location list entry with empty range");
|
|
DebugLocStream::EntryBuilder Entry(List, Begin, End);
|
|
BufferByteStreamer Streamer = Entry.getStreamer();
|
|
DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
|
|
const DbgValueLoc &Value = Values[0];
|
|
if (Value.isFragment()) {
|
|
// Emit all fragments that belong to the same variable and range.
|
|
assert(llvm::all_of(Values, [](DbgValueLoc P) {
|
|
return P.isFragment();
|
|
}) && "all values are expected to be fragments");
|
|
assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
|
|
|
|
for (const auto &Fragment : Values)
|
|
DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
|
|
|
|
} else {
|
|
assert(Values.size() == 1 && "only fragments may have >1 value");
|
|
DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
|
|
}
|
|
DwarfExpr.finalize();
|
|
if (DwarfExpr.TagOffset)
|
|
List.setTagOffset(*DwarfExpr.TagOffset);
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
|
|
const DwarfCompileUnit *CU) {
|
|
// Emit the size.
|
|
Asm->OutStreamer->AddComment("Loc expr size");
|
|
if (getDwarfVersion() >= 5)
|
|
Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
|
|
else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
|
|
Asm->emitInt16(DebugLocs.getBytes(Entry).size());
|
|
else {
|
|
// The entry is too big to fit into 16 bit, drop it as there is nothing we
|
|
// can do.
|
|
Asm->emitInt16(0);
|
|
return;
|
|
}
|
|
// Emit the entry.
|
|
APByteStreamer Streamer(*Asm);
|
|
emitDebugLocEntry(Streamer, Entry, CU);
|
|
}
|
|
|
|
// Emit the header of a DWARF 5 range list table list table. Returns the symbol
|
|
// that designates the end of the table for the caller to emit when the table is
|
|
// complete.
|
|
static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
|
|
const DwarfFile &Holder) {
|
|
MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
|
|
|
|
Asm->OutStreamer->AddComment("Offset entry count");
|
|
Asm->emitInt32(Holder.getRangeLists().size());
|
|
Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
|
|
|
|
for (const RangeSpanList &List : Holder.getRangeLists())
|
|
Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
|
|
Asm->getDwarfOffsetByteSize());
|
|
|
|
return TableEnd;
|
|
}
|
|
|
|
// Emit the header of a DWARF 5 locations list table. Returns the symbol that
|
|
// designates the end of the table for the caller to emit when the table is
|
|
// complete.
|
|
static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
|
|
const DwarfDebug &DD) {
|
|
MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
|
|
|
|
const auto &DebugLocs = DD.getDebugLocs();
|
|
|
|
Asm->OutStreamer->AddComment("Offset entry count");
|
|
Asm->emitInt32(DebugLocs.getLists().size());
|
|
Asm->OutStreamer->emitLabel(DebugLocs.getSym());
|
|
|
|
for (const auto &List : DebugLocs.getLists())
|
|
Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
|
|
Asm->getDwarfOffsetByteSize());
|
|
|
|
return TableEnd;
|
|
}
|
|
|
|
template <typename Ranges, typename PayloadEmitter>
|
|
static void emitRangeList(
|
|
DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
|
|
const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
|
|
unsigned StartxLength, unsigned EndOfList,
|
|
StringRef (*StringifyEnum)(unsigned),
|
|
bool ShouldUseBaseAddress,
|
|
PayloadEmitter EmitPayload) {
|
|
|
|
auto Size = Asm->MAI->getCodePointerSize();
|
|
bool UseDwarf5 = DD.getDwarfVersion() >= 5;
|
|
|
|
// Emit our symbol so we can find the beginning of the range.
|
|
Asm->OutStreamer->emitLabel(Sym);
|
|
|
|
// Gather all the ranges that apply to the same section so they can share
|
|
// a base address entry.
|
|
MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
|
|
|
|
for (const auto &Range : R)
|
|
SectionRanges[&Range.Begin->getSection()].push_back(&Range);
|
|
|
|
const MCSymbol *CUBase = CU.getBaseAddress();
|
|
bool BaseIsSet = false;
|
|
for (const auto &P : SectionRanges) {
|
|
auto *Base = CUBase;
|
|
if (!Base && ShouldUseBaseAddress) {
|
|
const MCSymbol *Begin = P.second.front()->Begin;
|
|
const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
|
|
if (!UseDwarf5) {
|
|
Base = NewBase;
|
|
BaseIsSet = true;
|
|
Asm->OutStreamer->emitIntValue(-1, Size);
|
|
Asm->OutStreamer->AddComment(" base address");
|
|
Asm->OutStreamer->emitSymbolValue(Base, Size);
|
|
} else if (NewBase != Begin || P.second.size() > 1) {
|
|
// Only use a base address if
|
|
// * the existing pool address doesn't match (NewBase != Begin)
|
|
// * or, there's more than one entry to share the base address
|
|
Base = NewBase;
|
|
BaseIsSet = true;
|
|
Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
|
|
Asm->emitInt8(BaseAddressx);
|
|
Asm->OutStreamer->AddComment(" base address index");
|
|
Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
|
|
}
|
|
} else if (BaseIsSet && !UseDwarf5) {
|
|
BaseIsSet = false;
|
|
assert(!Base);
|
|
Asm->OutStreamer->emitIntValue(-1, Size);
|
|
Asm->OutStreamer->emitIntValue(0, Size);
|
|
}
|
|
|
|
for (const auto *RS : P.second) {
|
|
const MCSymbol *Begin = RS->Begin;
|
|
const MCSymbol *End = RS->End;
|
|
assert(Begin && "Range without a begin symbol?");
|
|
assert(End && "Range without an end symbol?");
|
|
if (Base) {
|
|
if (UseDwarf5) {
|
|
// Emit offset_pair when we have a base.
|
|
Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
|
|
Asm->emitInt8(OffsetPair);
|
|
Asm->OutStreamer->AddComment(" starting offset");
|
|
Asm->emitLabelDifferenceAsULEB128(Begin, Base);
|
|
Asm->OutStreamer->AddComment(" ending offset");
|
|
Asm->emitLabelDifferenceAsULEB128(End, Base);
|
|
} else {
|
|
Asm->emitLabelDifference(Begin, Base, Size);
|
|
Asm->emitLabelDifference(End, Base, Size);
|
|
}
|
|
} else if (UseDwarf5) {
|
|
Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
|
|
Asm->emitInt8(StartxLength);
|
|
Asm->OutStreamer->AddComment(" start index");
|
|
Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
|
|
Asm->OutStreamer->AddComment(" length");
|
|
Asm->emitLabelDifferenceAsULEB128(End, Begin);
|
|
} else {
|
|
Asm->OutStreamer->emitSymbolValue(Begin, Size);
|
|
Asm->OutStreamer->emitSymbolValue(End, Size);
|
|
}
|
|
EmitPayload(*RS);
|
|
}
|
|
}
|
|
|
|
if (UseDwarf5) {
|
|
Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
|
|
Asm->emitInt8(EndOfList);
|
|
} else {
|
|
// Terminate the list with two 0 values.
|
|
Asm->OutStreamer->emitIntValue(0, Size);
|
|
Asm->OutStreamer->emitIntValue(0, Size);
|
|
}
|
|
}
|
|
|
|
// Handles emission of both debug_loclist / debug_loclist.dwo
|
|
static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
|
|
emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
|
|
*List.CU, dwarf::DW_LLE_base_addressx,
|
|
dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
|
|
dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
|
|
/* ShouldUseBaseAddress */ true,
|
|
[&](const DebugLocStream::Entry &E) {
|
|
DD.emitDebugLocEntryLocation(E, List.CU);
|
|
});
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
|
|
if (DebugLocs.getLists().empty())
|
|
return;
|
|
|
|
Asm->OutStreamer->SwitchSection(Sec);
|
|
|
|
MCSymbol *TableEnd = nullptr;
|
|
if (getDwarfVersion() >= 5)
|
|
TableEnd = emitLoclistsTableHeader(Asm, *this);
|
|
|
|
for (const auto &List : DebugLocs.getLists())
|
|
emitLocList(*this, Asm, List);
|
|
|
|
if (TableEnd)
|
|
Asm->OutStreamer->emitLabel(TableEnd);
|
|
}
|
|
|
|
// Emit locations into the .debug_loc/.debug_loclists section.
|
|
void DwarfDebug::emitDebugLoc() {
|
|
emitDebugLocImpl(
|
|
getDwarfVersion() >= 5
|
|
? Asm->getObjFileLowering().getDwarfLoclistsSection()
|
|
: Asm->getObjFileLowering().getDwarfLocSection());
|
|
}
|
|
|
|
// Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
|
|
void DwarfDebug::emitDebugLocDWO() {
|
|
if (getDwarfVersion() >= 5) {
|
|
emitDebugLocImpl(
|
|
Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
|
|
|
|
return;
|
|
}
|
|
|
|
for (const auto &List : DebugLocs.getLists()) {
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfLocDWOSection());
|
|
Asm->OutStreamer->emitLabel(List.Label);
|
|
|
|
for (const auto &Entry : DebugLocs.getEntries(List)) {
|
|
// GDB only supports startx_length in pre-standard split-DWARF.
|
|
// (in v5 standard loclists, it currently* /only/ supports base_address +
|
|
// offset_pair, so the implementations can't really share much since they
|
|
// need to use different representations)
|
|
// * as of October 2018, at least
|
|
//
|
|
// In v5 (see emitLocList), this uses SectionLabels to reuse existing
|
|
// addresses in the address pool to minimize object size/relocations.
|
|
Asm->emitInt8(dwarf::DW_LLE_startx_length);
|
|
unsigned idx = AddrPool.getIndex(Entry.Begin);
|
|
Asm->emitULEB128(idx);
|
|
// Also the pre-standard encoding is slightly different, emitting this as
|
|
// an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
|
|
Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
|
|
emitDebugLocEntryLocation(Entry, List.CU);
|
|
}
|
|
Asm->emitInt8(dwarf::DW_LLE_end_of_list);
|
|
}
|
|
}
|
|
|
|
struct ArangeSpan {
|
|
const MCSymbol *Start, *End;
|
|
};
|
|
|
|
// Emit a debug aranges section, containing a CU lookup for any
|
|
// address we can tie back to a CU.
|
|
void DwarfDebug::emitDebugARanges() {
|
|
// Provides a unique id per text section.
|
|
MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
|
|
|
|
// Filter labels by section.
|
|
for (const SymbolCU &SCU : ArangeLabels) {
|
|
if (SCU.Sym->isInSection()) {
|
|
// Make a note of this symbol and it's section.
|
|
MCSection *Section = &SCU.Sym->getSection();
|
|
if (!Section->getKind().isMetadata())
|
|
SectionMap[Section].push_back(SCU);
|
|
} else {
|
|
// Some symbols (e.g. common/bss on mach-o) can have no section but still
|
|
// appear in the output. This sucks as we rely on sections to build
|
|
// arange spans. We can do it without, but it's icky.
|
|
SectionMap[nullptr].push_back(SCU);
|
|
}
|
|
}
|
|
|
|
DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
|
|
|
|
for (auto &I : SectionMap) {
|
|
MCSection *Section = I.first;
|
|
SmallVector<SymbolCU, 8> &List = I.second;
|
|
if (List.size() < 1)
|
|
continue;
|
|
|
|
// If we have no section (e.g. common), just write out
|
|
// individual spans for each symbol.
|
|
if (!Section) {
|
|
for (const SymbolCU &Cur : List) {
|
|
ArangeSpan Span;
|
|
Span.Start = Cur.Sym;
|
|
Span.End = nullptr;
|
|
assert(Cur.CU);
|
|
Spans[Cur.CU].push_back(Span);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Sort the symbols by offset within the section.
|
|
llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
|
|
unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
|
|
unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
|
|
|
|
// Symbols with no order assigned should be placed at the end.
|
|
// (e.g. section end labels)
|
|
if (IA == 0)
|
|
return false;
|
|
if (IB == 0)
|
|
return true;
|
|
return IA < IB;
|
|
});
|
|
|
|
// Insert a final terminator.
|
|
List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
|
|
|
|
// Build spans between each label.
|
|
const MCSymbol *StartSym = List[0].Sym;
|
|
for (size_t n = 1, e = List.size(); n < e; n++) {
|
|
const SymbolCU &Prev = List[n - 1];
|
|
const SymbolCU &Cur = List[n];
|
|
|
|
// Try and build the longest span we can within the same CU.
|
|
if (Cur.CU != Prev.CU) {
|
|
ArangeSpan Span;
|
|
Span.Start = StartSym;
|
|
Span.End = Cur.Sym;
|
|
assert(Prev.CU);
|
|
Spans[Prev.CU].push_back(Span);
|
|
StartSym = Cur.Sym;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Start the dwarf aranges section.
|
|
Asm->OutStreamer->SwitchSection(
|
|
Asm->getObjFileLowering().getDwarfARangesSection());
|
|
|
|
unsigned PtrSize = Asm->MAI->getCodePointerSize();
|
|
|
|
// Build a list of CUs used.
|
|
std::vector<DwarfCompileUnit *> CUs;
|
|
for (const auto &it : Spans) {
|
|
DwarfCompileUnit *CU = it.first;
|
|
CUs.push_back(CU);
|
|
}
|
|
|
|
// Sort the CU list (again, to ensure consistent output order).
|
|
llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
|
|
return A->getUniqueID() < B->getUniqueID();
|
|
});
|
|
|
|
// Emit an arange table for each CU we used.
|
|
for (DwarfCompileUnit *CU : CUs) {
|
|
std::vector<ArangeSpan> &List = Spans[CU];
|
|
|
|
// Describe the skeleton CU's offset and length, not the dwo file's.
|
|
if (auto *Skel = CU->getSkeleton())
|
|
CU = Skel;
|
|
|
|
// Emit size of content not including length itself.
|
|
unsigned ContentSize =
|
|
sizeof(int16_t) + // DWARF ARange version number
|
|
Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
|
|
// section
|
|
sizeof(int8_t) + // Pointer Size (in bytes)
|
|
sizeof(int8_t); // Segment Size (in bytes)
|
|
|
|
unsigned TupleSize = PtrSize * 2;
|
|
|
|
// 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
|
|
unsigned Padding = offsetToAlignment(
|
|
Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
|
|
|
|
ContentSize += Padding;
|
|
ContentSize += (List.size() + 1) * TupleSize;
|
|
|
|
// For each compile unit, write the list of spans it covers.
|
|
Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
|
|
Asm->OutStreamer->AddComment("DWARF Arange version number");
|
|
Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
|
|
Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
|
|
emitSectionReference(*CU);
|
|
Asm->OutStreamer->AddComment("Address Size (in bytes)");
|
|
Asm->emitInt8(PtrSize);
|
|
Asm->OutStreamer->AddComment("Segment Size (in bytes)");
|
|
Asm->emitInt8(0);
|
|
|
|
Asm->OutStreamer->emitFill(Padding, 0xff);
|
|
|
|
for (const ArangeSpan &Span : List) {
|
|
Asm->emitLabelReference(Span.Start, PtrSize);
|
|
|
|
// Calculate the size as being from the span start to it's end.
|
|
if (Span.End) {
|
|
Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
|
|
} else {
|
|
// For symbols without an end marker (e.g. common), we
|
|
// write a single arange entry containing just that one symbol.
|
|
uint64_t Size = SymSize[Span.Start];
|
|
if (Size == 0)
|
|
Size = 1;
|
|
|
|
Asm->OutStreamer->emitIntValue(Size, PtrSize);
|
|
}
|
|
}
|
|
|
|
Asm->OutStreamer->AddComment("ARange terminator");
|
|
Asm->OutStreamer->emitIntValue(0, PtrSize);
|
|
Asm->OutStreamer->emitIntValue(0, PtrSize);
|
|
}
|
|
}
|
|
|
|
/// Emit a single range list. We handle both DWARF v5 and earlier.
|
|
static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
|
|
const RangeSpanList &List) {
|
|
emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
|
|
dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
|
|
dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
|
|
llvm::dwarf::RangeListEncodingString,
|
|
List.CU->getCUNode()->getRangesBaseAddress() ||
|
|
DD.getDwarfVersion() >= 5,
|
|
[](auto) {});
|
|
}
|
|
|
|
void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
|
|
if (Holder.getRangeLists().empty())
|
|
return;
|
|
|
|
assert(useRangesSection());
|
|
assert(!CUMap.empty());
|
|
assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
|
|
return !Pair.second->getCUNode()->isDebugDirectivesOnly();
|
|
}));
|
|
|
|
Asm->OutStreamer->SwitchSection(Section);
|
|
|
|
MCSymbol *TableEnd = nullptr;
|
|
if (getDwarfVersion() >= 5)
|
|
TableEnd = emitRnglistsTableHeader(Asm, Holder);
|
|
|
|
for (const RangeSpanList &List : Holder.getRangeLists())
|
|
emitRangeList(*this, Asm, List);
|
|
|
|
if (TableEnd)
|
|
Asm->OutStreamer->emitLabel(TableEnd);
|
|
}
|
|
|
|
/// Emit address ranges into the .debug_ranges section or into the DWARF v5
|
|
/// .debug_rnglists section.
|
|
void DwarfDebug::emitDebugRanges() {
|
|
const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
|
|
emitDebugRangesImpl(Holder,
|
|
getDwarfVersion() >= 5
|
|
? Asm->getObjFileLowering().getDwarfRnglistsSection()
|
|
: Asm->getObjFileLowering().getDwarfRangesSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugRangesDWO() {
|
|
emitDebugRangesImpl(InfoHolder,
|
|
Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
|
|
}
|
|
|
|
/// Emit the header of a DWARF 5 macro section, or the GNU extension for
|
|
/// DWARF 4.
|
|
static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
|
|
const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
|
|
enum HeaderFlagMask {
|
|
#define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
|
|
#include "llvm/BinaryFormat/Dwarf.def"
|
|
};
|
|
Asm->OutStreamer->AddComment("Macro information version");
|
|
Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
|
|
// We emit the line offset flag unconditionally here, since line offset should
|
|
// be mostly present.
|
|
if (Asm->isDwarf64()) {
|
|
Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
|
|
Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
|
|
} else {
|
|
Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
|
|
Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
|
|
}
|
|
Asm->OutStreamer->AddComment("debug_line_offset");
|
|
if (DD.useSplitDwarf())
|
|
Asm->emitDwarfLengthOrOffset(0);
|
|
else
|
|
Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
|
|
}
|
|
|
|
void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
|
|
for (auto *MN : Nodes) {
|
|
if (auto *M = dyn_cast<DIMacro>(MN))
|
|
emitMacro(*M);
|
|
else if (auto *F = dyn_cast<DIMacroFile>(MN))
|
|
emitMacroFile(*F, U);
|
|
else
|
|
llvm_unreachable("Unexpected DI type!");
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitMacro(DIMacro &M) {
|
|
StringRef Name = M.getName();
|
|
StringRef Value = M.getValue();
|
|
|
|
// There should be one space between the macro name and the macro value in
|
|
// define entries. In undef entries, only the macro name is emitted.
|
|
std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
|
|
|
|
if (UseDebugMacroSection) {
|
|
if (getDwarfVersion() >= 5) {
|
|
unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
|
|
? dwarf::DW_MACRO_define_strx
|
|
: dwarf::DW_MACRO_undef_strx;
|
|
Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
|
|
Asm->emitULEB128(Type);
|
|
Asm->OutStreamer->AddComment("Line Number");
|
|
Asm->emitULEB128(M.getLine());
|
|
Asm->OutStreamer->AddComment("Macro String");
|
|
Asm->emitULEB128(
|
|
InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
|
|
} else {
|
|
unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
|
|
? dwarf::DW_MACRO_GNU_define_indirect
|
|
: dwarf::DW_MACRO_GNU_undef_indirect;
|
|
Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
|
|
Asm->emitULEB128(Type);
|
|
Asm->OutStreamer->AddComment("Line Number");
|
|
Asm->emitULEB128(M.getLine());
|
|
Asm->OutStreamer->AddComment("Macro String");
|
|
Asm->emitDwarfSymbolReference(
|
|
InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
|
|
}
|
|
} else {
|
|
Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
|
|
Asm->emitULEB128(M.getMacinfoType());
|
|
Asm->OutStreamer->AddComment("Line Number");
|
|
Asm->emitULEB128(M.getLine());
|
|
Asm->OutStreamer->AddComment("Macro String");
|
|
Asm->OutStreamer->emitBytes(Str);
|
|
Asm->emitInt8('\0');
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::emitMacroFileImpl(
|
|
DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
|
|
StringRef (*MacroFormToString)(unsigned Form)) {
|
|
|
|
Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
|
|
Asm->emitULEB128(StartFile);
|
|
Asm->OutStreamer->AddComment("Line Number");
|
|
Asm->emitULEB128(MF.getLine());
|
|
Asm->OutStreamer->AddComment("File Number");
|
|
DIFile &F = *MF.getFile();
|
|
if (useSplitDwarf())
|
|
Asm->emitULEB128(getDwoLineTable(U)->getFile(
|
|
F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
|
|
Asm->OutContext.getDwarfVersion(), F.getSource()));
|
|
else
|
|
Asm->emitULEB128(U.getOrCreateSourceID(&F));
|
|
handleMacroNodes(MF.getElements(), U);
|
|
Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
|
|
Asm->emitULEB128(EndFile);
|
|
}
|
|
|
|
void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
|
|
// DWARFv5 macro and DWARFv4 macinfo share some common encodings,
|
|
// so for readibility/uniformity, We are explicitly emitting those.
|
|
assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
|
|
if (UseDebugMacroSection)
|
|
emitMacroFileImpl(
|
|
F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
|
|
(getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
|
|
else
|
|
emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
|
|
dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
|
|
}
|
|
|
|
void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
|
|
for (const auto &P : CUMap) {
|
|
auto &TheCU = *P.second;
|
|
auto *SkCU = TheCU.getSkeleton();
|
|
DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
|
|
auto *CUNode = cast<DICompileUnit>(P.first);
|
|
DIMacroNodeArray Macros = CUNode->getMacros();
|
|
if (Macros.empty())
|
|
continue;
|
|
Asm->OutStreamer->SwitchSection(Section);
|
|
Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
|
|
if (UseDebugMacroSection)
|
|
emitMacroHeader(Asm, *this, U, getDwarfVersion());
|
|
handleMacroNodes(Macros, U);
|
|
Asm->OutStreamer->AddComment("End Of Macro List Mark");
|
|
Asm->emitInt8(0);
|
|
}
|
|
}
|
|
|
|
/// Emit macros into a debug macinfo/macro section.
|
|
void DwarfDebug::emitDebugMacinfo() {
|
|
auto &ObjLower = Asm->getObjFileLowering();
|
|
emitDebugMacinfoImpl(UseDebugMacroSection
|
|
? ObjLower.getDwarfMacroSection()
|
|
: ObjLower.getDwarfMacinfoSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugMacinfoDWO() {
|
|
auto &ObjLower = Asm->getObjFileLowering();
|
|
emitDebugMacinfoImpl(UseDebugMacroSection
|
|
? ObjLower.getDwarfMacroDWOSection()
|
|
: ObjLower.getDwarfMacinfoDWOSection());
|
|
}
|
|
|
|
// DWARF5 Experimental Separate Dwarf emitters.
|
|
|
|
void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
|
|
std::unique_ptr<DwarfCompileUnit> NewU) {
|
|
|
|
if (!CompilationDir.empty())
|
|
NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
|
|
addGnuPubAttributes(*NewU, Die);
|
|
|
|
SkeletonHolder.addUnit(std::move(NewU));
|
|
}
|
|
|
|
DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
|
|
|
|
auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
|
|
CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
|
|
UnitKind::Skeleton);
|
|
DwarfCompileUnit &NewCU = *OwnedUnit;
|
|
NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
|
|
|
|
NewCU.initStmtList();
|
|
|
|
if (useSegmentedStringOffsetsTable())
|
|
NewCU.addStringOffsetsStart();
|
|
|
|
initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
|
|
|
|
return NewCU;
|
|
}
|
|
|
|
// Emit the .debug_info.dwo section for separated dwarf. This contains the
|
|
// compile units that would normally be in debug_info.
|
|
void DwarfDebug::emitDebugInfoDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf debug info?");
|
|
// Don't emit relocations into the dwo file.
|
|
InfoHolder.emitUnits(/* UseOffsets */ true);
|
|
}
|
|
|
|
// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
|
|
// abbreviations for the .debug_info.dwo section.
|
|
void DwarfDebug::emitDebugAbbrevDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
|
|
}
|
|
|
|
void DwarfDebug::emitDebugLineDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
SplitTypeUnitFileTable.Emit(
|
|
*Asm->OutStreamer, MCDwarfLineTableParams(),
|
|
Asm->getObjFileLowering().getDwarfLineDWOSection());
|
|
}
|
|
|
|
void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
InfoHolder.getStringPool().emitStringOffsetsTableHeader(
|
|
*Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
|
|
InfoHolder.getStringOffsetsStartSym());
|
|
}
|
|
|
|
// Emit the .debug_str.dwo section for separated dwarf. This contains the
|
|
// string section and is identical in format to traditional .debug_str
|
|
// sections.
|
|
void DwarfDebug::emitDebugStrDWO() {
|
|
if (useSegmentedStringOffsetsTable())
|
|
emitStringOffsetsTableHeaderDWO();
|
|
assert(useSplitDwarf() && "No split dwarf?");
|
|
MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
|
|
InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
|
|
OffSec, /* UseRelativeOffsets = */ false);
|
|
}
|
|
|
|
// Emit address pool.
|
|
void DwarfDebug::emitDebugAddr() {
|
|
AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
|
|
}
|
|
|
|
MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
|
|
if (!useSplitDwarf())
|
|
return nullptr;
|
|
const DICompileUnit *DIUnit = CU.getCUNode();
|
|
SplitTypeUnitFileTable.maybeSetRootFile(
|
|
DIUnit->getDirectory(), DIUnit->getFilename(),
|
|
getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
|
|
return &SplitTypeUnitFileTable;
|
|
}
|
|
|
|
uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
|
|
MD5 Hash;
|
|
Hash.update(Identifier);
|
|
// ... take the least significant 8 bytes and return those. Our MD5
|
|
// implementation always returns its results in little endian, so we actually
|
|
// need the "high" word.
|
|
MD5::MD5Result Result;
|
|
Hash.final(Result);
|
|
return Result.high();
|
|
}
|
|
|
|
void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
|
|
StringRef Identifier, DIE &RefDie,
|
|
const DICompositeType *CTy) {
|
|
// Fast path if we're building some type units and one has already used the
|
|
// address pool we know we're going to throw away all this work anyway, so
|
|
// don't bother building dependent types.
|
|
if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
|
|
return;
|
|
|
|
auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
|
|
if (!Ins.second) {
|
|
CU.addDIETypeSignature(RefDie, Ins.first->second);
|
|
return;
|
|
}
|
|
|
|
bool TopLevelType = TypeUnitsUnderConstruction.empty();
|
|
AddrPool.resetUsedFlag();
|
|
|
|
auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
|
|
getDwoLineTable(CU));
|
|
DwarfTypeUnit &NewTU = *OwnedUnit;
|
|
DIE &UnitDie = NewTU.getUnitDie();
|
|
TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
|
|
|
|
NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
|
|
CU.getLanguage());
|
|
|
|
uint64_t Signature = makeTypeSignature(Identifier);
|
|
NewTU.setTypeSignature(Signature);
|
|
Ins.first->second = Signature;
|
|
|
|
if (useSplitDwarf()) {
|
|
MCSection *Section =
|
|
getDwarfVersion() <= 4
|
|
? Asm->getObjFileLowering().getDwarfTypesDWOSection()
|
|
: Asm->getObjFileLowering().getDwarfInfoDWOSection();
|
|
NewTU.setSection(Section);
|
|
} else {
|
|
MCSection *Section =
|
|
getDwarfVersion() <= 4
|
|
? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
|
|
: Asm->getObjFileLowering().getDwarfInfoSection(Signature);
|
|
NewTU.setSection(Section);
|
|
// Non-split type units reuse the compile unit's line table.
|
|
CU.applyStmtList(UnitDie);
|
|
}
|
|
|
|
// Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
|
|
// units.
|
|
if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
|
|
NewTU.addStringOffsetsStart();
|
|
|
|
NewTU.setType(NewTU.createTypeDIE(CTy));
|
|
|
|
if (TopLevelType) {
|
|
auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
|
|
TypeUnitsUnderConstruction.clear();
|
|
|
|
// Types referencing entries in the address table cannot be placed in type
|
|
// units.
|
|
if (AddrPool.hasBeenUsed()) {
|
|
|
|
// Remove all the types built while building this type.
|
|
// This is pessimistic as some of these types might not be dependent on
|
|
// the type that used an address.
|
|
for (const auto &TU : TypeUnitsToAdd)
|
|
TypeSignatures.erase(TU.second);
|
|
|
|
// Construct this type in the CU directly.
|
|
// This is inefficient because all the dependent types will be rebuilt
|
|
// from scratch, including building them in type units, discovering that
|
|
// they depend on addresses, throwing them out and rebuilding them.
|
|
CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
|
|
return;
|
|
}
|
|
|
|
// If the type wasn't dependent on fission addresses, finish adding the type
|
|
// and all its dependent types.
|
|
for (auto &TU : TypeUnitsToAdd) {
|
|
InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
|
|
InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
|
|
}
|
|
}
|
|
CU.addDIETypeSignature(RefDie, Signature);
|
|
}
|
|
|
|
DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
|
|
: DD(DD),
|
|
TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
|
|
DD->TypeUnitsUnderConstruction.clear();
|
|
DD->AddrPool.resetUsedFlag();
|
|
}
|
|
|
|
DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
|
|
DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
|
|
DD->AddrPool.resetUsedFlag(AddrPoolUsed);
|
|
}
|
|
|
|
DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
|
|
return NonTypeUnitContext(this);
|
|
}
|
|
|
|
// Add the Name along with its companion DIE to the appropriate accelerator
|
|
// table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
|
|
// AccelTableKind::Apple, we use the table we got as an argument). If
|
|
// accelerator tables are disabled, this function does nothing.
|
|
template <typename DataT>
|
|
void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
|
|
AccelTable<DataT> &AppleAccel, StringRef Name,
|
|
const DIE &Die) {
|
|
if (getAccelTableKind() == AccelTableKind::None)
|
|
return;
|
|
|
|
if (getAccelTableKind() != AccelTableKind::Apple &&
|
|
CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
|
|
return;
|
|
|
|
DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
|
|
DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
|
|
|
|
switch (getAccelTableKind()) {
|
|
case AccelTableKind::Apple:
|
|
AppleAccel.addName(Ref, Die);
|
|
break;
|
|
case AccelTableKind::Dwarf:
|
|
AccelDebugNames.addName(Ref, Die);
|
|
break;
|
|
case AccelTableKind::Default:
|
|
llvm_unreachable("Default should have already been resolved.");
|
|
case AccelTableKind::None:
|
|
llvm_unreachable("None handled above");
|
|
}
|
|
}
|
|
|
|
void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
|
|
const DIE &Die) {
|
|
addAccelNameImpl(CU, AccelNames, Name, Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
|
|
const DIE &Die) {
|
|
// ObjC names go only into the Apple accelerator tables.
|
|
if (getAccelTableKind() == AccelTableKind::Apple)
|
|
addAccelNameImpl(CU, AccelObjC, Name, Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
|
|
const DIE &Die) {
|
|
addAccelNameImpl(CU, AccelNamespace, Name, Die);
|
|
}
|
|
|
|
void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
|
|
const DIE &Die, char Flags) {
|
|
addAccelNameImpl(CU, AccelTypes, Name, Die);
|
|
}
|
|
|
|
uint16_t DwarfDebug::getDwarfVersion() const {
|
|
return Asm->OutStreamer->getContext().getDwarfVersion();
|
|
}
|
|
|
|
dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
|
|
if (Asm->getDwarfVersion() >= 4)
|
|
return dwarf::Form::DW_FORM_sec_offset;
|
|
assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
|
|
"DWARF64 is not defined prior DWARFv3");
|
|
return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
|
|
: dwarf::Form::DW_FORM_data4;
|
|
}
|
|
|
|
const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
|
|
return SectionLabels.find(S)->second;
|
|
}
|
|
void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
|
|
if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
|
|
if (useSplitDwarf() || getDwarfVersion() >= 5)
|
|
AddrPool.getIndex(S);
|
|
}
|
|
|
|
Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
|
|
assert(File);
|
|
if (getDwarfVersion() < 5)
|
|
return None;
|
|
Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
|
|
if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
|
|
return None;
|
|
|
|
// Convert the string checksum to an MD5Result for the streamer.
|
|
// The verifier validates the checksum so we assume it's okay.
|
|
// An MD5 checksum is 16 bytes.
|
|
std::string ChecksumString = fromHex(Checksum->Value);
|
|
MD5::MD5Result CKMem;
|
|
std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
|
|
return CKMem;
|
|
}
|