llvm-for-llvmta/lib/Analysis/DivergenceAnalysis.cpp

393 lines
13 KiB
C++

//===---- DivergenceAnalysis.cpp --- Divergence Analysis Implementation ----==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
// Improving Performance of OpenCL on CPUs
// Ralf Karrenberg and Sebastian Hack
// CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis and/or by modelling non-escaping memory objects in SSA
// as done in RV.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "divergence-analysis"
// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
: F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
IsLCSSAForm(IsLCSSAForm) {}
bool DivergenceAnalysis::markDivergent(const Value &DivVal) {
if (isAlwaysUniform(DivVal))
return false;
assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
return DivergentValues.insert(&DivVal).second;
}
void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
UniformOverrides.insert(&UniVal);
}
bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const {
const auto *Inst = dyn_cast<const Instruction>(&Val);
if (!Inst)
return false;
// check whether any divergent loop carrying Val terminates before control
// proceeds to ObservingBlock
for (const auto *Loop = LI.getLoopFor(Inst->getParent());
Loop != RegionLoop && !Loop->contains(&ObservingBlock);
Loop = Loop->getParentLoop()) {
if (DivergentLoops.contains(Loop))
return true;
}
return false;
}
bool DivergenceAnalysis::inRegion(const Instruction &I) const {
return I.getParent() && inRegion(*I.getParent());
}
bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}
void DivergenceAnalysis::pushUsers(const Value &V) {
const auto *I = dyn_cast<const Instruction>(&V);
if (I && I->isTerminator()) {
analyzeControlDivergence(*I);
return;
}
for (const auto *User : V.users()) {
const auto *UserInst = dyn_cast<const Instruction>(User);
if (!UserInst)
continue;
// only compute divergent inside loop
if (!inRegion(*UserInst))
continue;
// All users of divergent values are immediate divergent
if (markDivergent(*UserInst))
Worklist.push_back(UserInst);
}
}
static const Instruction *getIfCarriedInstruction(const Use &U,
const Loop &DivLoop) {
const auto *I = dyn_cast<const Instruction>(&U);
if (!I)
return nullptr;
if (!DivLoop.contains(I))
return nullptr;
return I;
}
void DivergenceAnalysis::analyzeTemporalDivergence(const Instruction &I,
const Loop &OuterDivLoop) {
if (isAlwaysUniform(I))
return;
if (isDivergent(I))
return;
LLVM_DEBUG(dbgs() << "Analyze temporal divergence: " << I.getName() << "\n");
assert((isa<PHINode>(I) || !IsLCSSAForm) &&
"In LCSSA form all users of loop-exiting defs are Phi nodes.");
for (const Use &Op : I.operands()) {
const auto *OpInst = getIfCarriedInstruction(Op, OuterDivLoop);
if (!OpInst)
continue;
if (markDivergent(I))
pushUsers(I);
return;
}
}
// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::analyzeLoopExitDivergence(const BasicBlock &DivExit,
const Loop &OuterDivLoop) {
// All users are in immediate exit blocks
if (IsLCSSAForm) {
for (const auto &Phi : DivExit.phis()) {
analyzeTemporalDivergence(Phi, OuterDivLoop);
}
return;
}
// For non-LCSSA we have to follow all live out edges wherever they may lead.
const BasicBlock &LoopHeader = *OuterDivLoop.getHeader();
SmallVector<const BasicBlock *, 8> TaintStack;
TaintStack.push_back(&DivExit);
// Otherwise potential users of loop-carried values could be anywhere in the
// dominance region of DivLoop (including its fringes for phi nodes)
DenseSet<const BasicBlock *> Visited;
Visited.insert(&DivExit);
do {
auto *UserBlock = TaintStack.pop_back_val();
// don't spread divergence beyond the region
if (!inRegion(*UserBlock))
continue;
assert(!OuterDivLoop.contains(UserBlock) &&
"irreducible control flow detected");
// phi nodes at the fringes of the dominance region
if (!DT.dominates(&LoopHeader, UserBlock)) {
// all PHI nodes of UserBlock become divergent
for (auto &Phi : UserBlock->phis()) {
analyzeTemporalDivergence(Phi, OuterDivLoop);
}
continue;
}
// Taint outside users of values carried by OuterDivLoop.
for (auto &I : *UserBlock) {
analyzeTemporalDivergence(I, OuterDivLoop);
}
// visit all blocks in the dominance region
for (auto *SuccBlock : successors(UserBlock)) {
if (!Visited.insert(SuccBlock).second) {
continue;
}
TaintStack.push_back(SuccBlock);
}
} while (!TaintStack.empty());
}
void DivergenceAnalysis::propagateLoopExitDivergence(const BasicBlock &DivExit,
const Loop &InnerDivLoop) {
LLVM_DEBUG(dbgs() << "\tpropLoopExitDiv " << DivExit.getName() << "\n");
// Find outer-most loop that does not contain \p DivExit
const Loop *DivLoop = &InnerDivLoop;
const Loop *OuterDivLoop = DivLoop;
const Loop *ExitLevelLoop = LI.getLoopFor(&DivExit);
const unsigned LoopExitDepth =
ExitLevelLoop ? ExitLevelLoop->getLoopDepth() : 0;
while (DivLoop && DivLoop->getLoopDepth() > LoopExitDepth) {
DivergentLoops.insert(DivLoop); // all crossed loops are divergent
OuterDivLoop = DivLoop;
DivLoop = DivLoop->getParentLoop();
}
LLVM_DEBUG(dbgs() << "\tOuter-most left loop: " << OuterDivLoop->getName()
<< "\n");
analyzeLoopExitDivergence(DivExit, *OuterDivLoop);
}
// this is a divergent join point - mark all phi nodes as divergent and push
// them onto the stack.
void DivergenceAnalysis::taintAndPushPhiNodes(const BasicBlock &JoinBlock) {
LLVM_DEBUG(dbgs() << "taintAndPushPhiNodes in " << JoinBlock.getName()
<< "\n");
// ignore divergence outside the region
if (!inRegion(JoinBlock)) {
return;
}
// push non-divergent phi nodes in JoinBlock to the worklist
for (const auto &Phi : JoinBlock.phis()) {
if (isDivergent(Phi))
continue;
// FIXME Theoretically ,the 'undef' value could be replaced by any other
// value causing spurious divergence.
if (Phi.hasConstantOrUndefValue())
continue;
if (markDivergent(Phi))
Worklist.push_back(&Phi);
}
}
void DivergenceAnalysis::analyzeControlDivergence(const Instruction &Term) {
LLVM_DEBUG(dbgs() << "analyzeControlDiv " << Term.getParent()->getName()
<< "\n");
// Don't propagate divergence from unreachable blocks.
if (!DT.isReachableFromEntry(Term.getParent()))
return;
const auto *BranchLoop = LI.getLoopFor(Term.getParent());
const auto &DivDesc = SDA.getJoinBlocks(Term);
// Iterate over all blocks now reachable by a disjoint path join
for (const auto *JoinBlock : DivDesc.JoinDivBlocks) {
taintAndPushPhiNodes(*JoinBlock);
}
assert(DivDesc.LoopDivBlocks.empty() || BranchLoop);
for (const auto *DivExitBlock : DivDesc.LoopDivBlocks) {
propagateLoopExitDivergence(*DivExitBlock, *BranchLoop);
}
}
void DivergenceAnalysis::compute() {
// Initialize worklist.
auto DivValuesCopy = DivergentValues;
for (const auto *DivVal : DivValuesCopy) {
assert(isDivergent(*DivVal) && "Worklist invariant violated!");
pushUsers(*DivVal);
}
// All values on the Worklist are divergent.
// Their users may not have been updated yed.
while (!Worklist.empty()) {
const Instruction &I = *Worklist.back();
Worklist.pop_back();
// propagate value divergence to users
assert(isDivergent(I) && "Worklist invariant violated!");
pushUsers(I);
}
}
bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
return UniformOverrides.contains(&V);
}
bool DivergenceAnalysis::isDivergent(const Value &V) const {
return DivergentValues.contains(&V);
}
bool DivergenceAnalysis::isDivergentUse(const Use &U) const {
Value &V = *U.get();
Instruction &I = *cast<Instruction>(U.getUser());
return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
// iterate instructions using instructions() to ensure a deterministic order.
for (auto &I : instructions(F)) {
if (isDivergent(I))
OS << "DIVERGENT:" << I << '\n';
}
}
// class GPUDivergenceAnalysis
GPUDivergenceAnalysis::GPUDivergenceAnalysis(Function &F,
const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI,
const TargetTransformInfo &TTI)
: SDA(DT, PDT, LI), DA(F, nullptr, DT, LI, SDA, /* LCSSA */ false) {
for (auto &I : instructions(F)) {
if (TTI.isSourceOfDivergence(&I)) {
DA.markDivergent(I);
} else if (TTI.isAlwaysUniform(&I)) {
DA.addUniformOverride(I);
}
}
for (auto &Arg : F.args()) {
if (TTI.isSourceOfDivergence(&Arg)) {
DA.markDivergent(Arg);
}
}
DA.compute();
}
bool GPUDivergenceAnalysis::isDivergent(const Value &val) const {
return DA.isDivergent(val);
}
bool GPUDivergenceAnalysis::isDivergentUse(const Use &use) const {
return DA.isDivergentUse(use);
}
void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
DA.print(OS, mod);
OS << "}\n";
}