1893 lines
76 KiB
C++
1893 lines
76 KiB
C++
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the primary stateless implementation of the
|
|
// Alias Analysis interface that implements identities (two different
|
|
// globals cannot alias, etc), but does no stateful analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/PhiValues.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "basicaa"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Enable analysis of recursive PHI nodes.
|
|
static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
|
|
cl::init(true));
|
|
|
|
/// By default, even on 32-bit architectures we use 64-bit integers for
|
|
/// calculations. This will allow us to more-aggressively decompose indexing
|
|
/// expressions calculated using i64 values (e.g., long long in C) which is
|
|
/// common enough to worry about.
|
|
static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
|
|
cl::Hidden, cl::init(true));
|
|
static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
|
|
cl::Hidden, cl::init(false));
|
|
|
|
/// SearchLimitReached / SearchTimes shows how often the limit of
|
|
/// to decompose GEPs is reached. It will affect the precision
|
|
/// of basic alias analysis.
|
|
STATISTIC(SearchLimitReached, "Number of times the limit to "
|
|
"decompose GEPs is reached");
|
|
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
|
|
|
|
/// Cutoff after which to stop analysing a set of phi nodes potentially involved
|
|
/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
|
|
/// careful with value equivalence. We use reachability to make sure a value
|
|
/// cannot be involved in a cycle.
|
|
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
|
|
|
|
// The max limit of the search depth in DecomposeGEPExpression() and
|
|
// getUnderlyingObject(), both functions need to use the same search
|
|
// depth otherwise the algorithm in aliasGEP will assert.
|
|
static const unsigned MaxLookupSearchDepth = 6;
|
|
|
|
bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv) {
|
|
// We don't care if this analysis itself is preserved, it has no state. But
|
|
// we need to check that the analyses it depends on have been. Note that we
|
|
// may be created without handles to some analyses and in that case don't
|
|
// depend on them.
|
|
if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
|
|
(DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
|
|
(LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
|
|
(PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
|
|
return true;
|
|
|
|
// Otherwise this analysis result remains valid.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Useful predicates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if the pointer is one which would have been considered an
|
|
/// escape by isNonEscapingLocalObject.
|
|
static bool isEscapeSource(const Value *V) {
|
|
if (isa<CallBase>(V))
|
|
return true;
|
|
|
|
if (isa<Argument>(V))
|
|
return true;
|
|
|
|
// The load case works because isNonEscapingLocalObject considers all
|
|
// stores to be escapes (it passes true for the StoreCaptures argument
|
|
// to PointerMayBeCaptured).
|
|
if (isa<LoadInst>(V))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns the size of the object specified by V or UnknownSize if unknown.
|
|
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
|
|
const TargetLibraryInfo &TLI,
|
|
bool NullIsValidLoc,
|
|
bool RoundToAlign = false) {
|
|
uint64_t Size;
|
|
ObjectSizeOpts Opts;
|
|
Opts.RoundToAlign = RoundToAlign;
|
|
Opts.NullIsUnknownSize = NullIsValidLoc;
|
|
if (getObjectSize(V, Size, DL, &TLI, Opts))
|
|
return Size;
|
|
return MemoryLocation::UnknownSize;
|
|
}
|
|
|
|
/// Returns true if we can prove that the object specified by V is smaller than
|
|
/// Size.
|
|
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo &TLI,
|
|
bool NullIsValidLoc) {
|
|
// Note that the meanings of the "object" are slightly different in the
|
|
// following contexts:
|
|
// c1: llvm::getObjectSize()
|
|
// c2: llvm.objectsize() intrinsic
|
|
// c3: isObjectSmallerThan()
|
|
// c1 and c2 share the same meaning; however, the meaning of "object" in c3
|
|
// refers to the "entire object".
|
|
//
|
|
// Consider this example:
|
|
// char *p = (char*)malloc(100)
|
|
// char *q = p+80;
|
|
//
|
|
// In the context of c1 and c2, the "object" pointed by q refers to the
|
|
// stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
|
|
//
|
|
// However, in the context of c3, the "object" refers to the chunk of memory
|
|
// being allocated. So, the "object" has 100 bytes, and q points to the middle
|
|
// the "object". In case q is passed to isObjectSmallerThan() as the 1st
|
|
// parameter, before the llvm::getObjectSize() is called to get the size of
|
|
// entire object, we should:
|
|
// - either rewind the pointer q to the base-address of the object in
|
|
// question (in this case rewind to p), or
|
|
// - just give up. It is up to caller to make sure the pointer is pointing
|
|
// to the base address the object.
|
|
//
|
|
// We go for 2nd option for simplicity.
|
|
if (!isIdentifiedObject(V))
|
|
return false;
|
|
|
|
// This function needs to use the aligned object size because we allow
|
|
// reads a bit past the end given sufficient alignment.
|
|
uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
|
|
/*RoundToAlign*/ true);
|
|
|
|
return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
|
|
}
|
|
|
|
/// Return the minimal extent from \p V to the end of the underlying object,
|
|
/// assuming the result is used in an aliasing query. E.g., we do use the query
|
|
/// location size and the fact that null pointers cannot alias here.
|
|
static uint64_t getMinimalExtentFrom(const Value &V,
|
|
const LocationSize &LocSize,
|
|
const DataLayout &DL,
|
|
bool NullIsValidLoc) {
|
|
// If we have dereferenceability information we know a lower bound for the
|
|
// extent as accesses for a lower offset would be valid. We need to exclude
|
|
// the "or null" part if null is a valid pointer.
|
|
bool CanBeNull;
|
|
uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
|
|
DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
|
|
// If queried with a precise location size, we assume that location size to be
|
|
// accessed, thus valid.
|
|
if (LocSize.isPrecise())
|
|
DerefBytes = std::max(DerefBytes, LocSize.getValue());
|
|
return DerefBytes;
|
|
}
|
|
|
|
/// Returns true if we can prove that the object specified by V has size Size.
|
|
static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
|
|
const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
|
|
uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
|
|
return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GetElementPtr Instruction Decomposition and Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Analyzes the specified value as a linear expression: "A*V + B", where A and
|
|
/// B are constant integers.
|
|
///
|
|
/// Returns the scale and offset values as APInts and return V as a Value*, and
|
|
/// return whether we looked through any sign or zero extends. The incoming
|
|
/// Value is known to have IntegerType, and it may already be sign or zero
|
|
/// extended.
|
|
///
|
|
/// Note that this looks through extends, so the high bits may not be
|
|
/// represented in the result.
|
|
/*static*/ const Value *BasicAAResult::GetLinearExpression(
|
|
const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
|
|
unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
|
|
AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
|
|
assert(V->getType()->isIntegerTy() && "Not an integer value");
|
|
|
|
// Limit our recursion depth.
|
|
if (Depth == 6) {
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return V;
|
|
}
|
|
|
|
if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
|
|
// If it's a constant, just convert it to an offset and remove the variable.
|
|
// If we've been called recursively, the Offset bit width will be greater
|
|
// than the constant's (the Offset's always as wide as the outermost call),
|
|
// so we'll zext here and process any extension in the isa<SExtInst> &
|
|
// isa<ZExtInst> cases below.
|
|
Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
|
|
assert(Scale == 0 && "Constant values don't have a scale");
|
|
return V;
|
|
}
|
|
|
|
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
|
|
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
|
|
// If we've been called recursively, then Offset and Scale will be wider
|
|
// than the BOp operands. We'll always zext it here as we'll process sign
|
|
// extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
|
|
APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
|
|
|
|
switch (BOp->getOpcode()) {
|
|
default:
|
|
// We don't understand this instruction, so we can't decompose it any
|
|
// further.
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return V;
|
|
case Instruction::Or:
|
|
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
|
|
// analyze it.
|
|
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
|
|
BOp, DT)) {
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return V;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::Add:
|
|
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
|
|
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
|
|
Offset += RHS;
|
|
break;
|
|
case Instruction::Sub:
|
|
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
|
|
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
|
|
Offset -= RHS;
|
|
break;
|
|
case Instruction::Mul:
|
|
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
|
|
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
|
|
Offset *= RHS;
|
|
Scale *= RHS;
|
|
break;
|
|
case Instruction::Shl:
|
|
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
|
|
SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
|
|
|
|
// We're trying to linearize an expression of the kind:
|
|
// shl i8 -128, 36
|
|
// where the shift count exceeds the bitwidth of the type.
|
|
// We can't decompose this further (the expression would return
|
|
// a poison value).
|
|
if (Offset.getBitWidth() < RHS.getLimitedValue() ||
|
|
Scale.getBitWidth() < RHS.getLimitedValue()) {
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return V;
|
|
}
|
|
|
|
Offset <<= RHS.getLimitedValue();
|
|
Scale <<= RHS.getLimitedValue();
|
|
// the semantics of nsw and nuw for left shifts don't match those of
|
|
// multiplications, so we won't propagate them.
|
|
NSW = NUW = false;
|
|
return V;
|
|
}
|
|
|
|
if (isa<OverflowingBinaryOperator>(BOp)) {
|
|
NUW &= BOp->hasNoUnsignedWrap();
|
|
NSW &= BOp->hasNoSignedWrap();
|
|
}
|
|
return V;
|
|
}
|
|
}
|
|
|
|
// Since GEP indices are sign extended anyway, we don't care about the high
|
|
// bits of a sign or zero extended value - just scales and offsets. The
|
|
// extensions have to be consistent though.
|
|
if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
|
|
Value *CastOp = cast<CastInst>(V)->getOperand(0);
|
|
unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
|
|
unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
|
|
unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
|
|
const Value *Result =
|
|
GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
|
|
Depth + 1, AC, DT, NSW, NUW);
|
|
|
|
// zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
|
|
// by just incrementing the number of bits we've extended by.
|
|
unsigned ExtendedBy = NewWidth - SmallWidth;
|
|
|
|
if (isa<SExtInst>(V) && ZExtBits == 0) {
|
|
// sext(sext(%x, a), b) == sext(%x, a + b)
|
|
|
|
if (NSW) {
|
|
// We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
|
|
// into sext(%x) + sext(c). We'll sext the Offset ourselves:
|
|
unsigned OldWidth = Offset.getBitWidth();
|
|
Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
|
|
} else {
|
|
// We may have signed-wrapped, so don't decompose sext(%x + c) into
|
|
// sext(%x) + sext(c)
|
|
Scale = 1;
|
|
Offset = 0;
|
|
Result = CastOp;
|
|
ZExtBits = OldZExtBits;
|
|
SExtBits = OldSExtBits;
|
|
}
|
|
SExtBits += ExtendedBy;
|
|
} else {
|
|
// sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
|
|
|
|
if (!NUW) {
|
|
// We may have unsigned-wrapped, so don't decompose zext(%x + c) into
|
|
// zext(%x) + zext(c)
|
|
Scale = 1;
|
|
Offset = 0;
|
|
Result = CastOp;
|
|
ZExtBits = OldZExtBits;
|
|
SExtBits = OldSExtBits;
|
|
}
|
|
ZExtBits += ExtendedBy;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return V;
|
|
}
|
|
|
|
/// To ensure a pointer offset fits in an integer of size PointerSize
|
|
/// (in bits) when that size is smaller than the maximum pointer size. This is
|
|
/// an issue, for example, in particular for 32b pointers with negative indices
|
|
/// that rely on two's complement wrap-arounds for precise alias information
|
|
/// where the maximum pointer size is 64b.
|
|
static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
|
|
assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
|
|
unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
|
|
return (Offset << ShiftBits).ashr(ShiftBits);
|
|
}
|
|
|
|
static unsigned getMaxPointerSize(const DataLayout &DL) {
|
|
unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
|
|
if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
|
|
if (DoubleCalcBits) MaxPointerSize *= 2;
|
|
|
|
return MaxPointerSize;
|
|
}
|
|
|
|
/// If V is a symbolic pointer expression, decompose it into a base pointer
|
|
/// with a constant offset and a number of scaled symbolic offsets.
|
|
///
|
|
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
|
|
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
|
|
/// specified amount, but which may have other unrepresented high bits. As
|
|
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
|
|
///
|
|
/// This function is capable of analyzing everything that getUnderlyingObject
|
|
/// can look through. To be able to do that getUnderlyingObject and
|
|
/// DecomposeGEPExpression must use the same search depth
|
|
/// (MaxLookupSearchDepth).
|
|
BasicAAResult::DecomposedGEP
|
|
BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
|
|
AssumptionCache *AC, DominatorTree *DT) {
|
|
// Limit recursion depth to limit compile time in crazy cases.
|
|
unsigned MaxLookup = MaxLookupSearchDepth;
|
|
SearchTimes++;
|
|
const Instruction *CxtI = dyn_cast<Instruction>(V);
|
|
|
|
unsigned MaxPointerSize = getMaxPointerSize(DL);
|
|
DecomposedGEP Decomposed;
|
|
Decomposed.Offset = APInt(MaxPointerSize, 0);
|
|
Decomposed.HasCompileTimeConstantScale = true;
|
|
do {
|
|
// See if this is a bitcast or GEP.
|
|
const Operator *Op = dyn_cast<Operator>(V);
|
|
if (!Op) {
|
|
// The only non-operator case we can handle are GlobalAliases.
|
|
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
|
|
if (!GA->isInterposable()) {
|
|
V = GA->getAliasee();
|
|
continue;
|
|
}
|
|
}
|
|
Decomposed.Base = V;
|
|
return Decomposed;
|
|
}
|
|
|
|
if (Op->getOpcode() == Instruction::BitCast ||
|
|
Op->getOpcode() == Instruction::AddrSpaceCast) {
|
|
V = Op->getOperand(0);
|
|
continue;
|
|
}
|
|
|
|
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
|
|
if (!GEPOp) {
|
|
if (const auto *PHI = dyn_cast<PHINode>(V)) {
|
|
// Look through single-arg phi nodes created by LCSSA.
|
|
if (PHI->getNumIncomingValues() == 1) {
|
|
V = PHI->getIncomingValue(0);
|
|
continue;
|
|
}
|
|
} else if (const auto *Call = dyn_cast<CallBase>(V)) {
|
|
// CaptureTracking can know about special capturing properties of some
|
|
// intrinsics like launder.invariant.group, that can't be expressed with
|
|
// the attributes, but have properties like returning aliasing pointer.
|
|
// Because some analysis may assume that nocaptured pointer is not
|
|
// returned from some special intrinsic (because function would have to
|
|
// be marked with returns attribute), it is crucial to use this function
|
|
// because it should be in sync with CaptureTracking. Not using it may
|
|
// cause weird miscompilations where 2 aliasing pointers are assumed to
|
|
// noalias.
|
|
if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
|
|
V = RP;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
Decomposed.Base = V;
|
|
return Decomposed;
|
|
}
|
|
|
|
// Don't attempt to analyze GEPs over unsized objects.
|
|
if (!GEPOp->getSourceElementType()->isSized()) {
|
|
Decomposed.Base = V;
|
|
return Decomposed;
|
|
}
|
|
|
|
// Don't attempt to analyze GEPs if index scale is not a compile-time
|
|
// constant.
|
|
if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
|
|
Decomposed.Base = V;
|
|
Decomposed.HasCompileTimeConstantScale = false;
|
|
return Decomposed;
|
|
}
|
|
|
|
unsigned AS = GEPOp->getPointerAddressSpace();
|
|
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
|
|
gep_type_iterator GTI = gep_type_begin(GEPOp);
|
|
unsigned PointerSize = DL.getPointerSizeInBits(AS);
|
|
// Assume all GEP operands are constants until proven otherwise.
|
|
bool GepHasConstantOffset = true;
|
|
for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
|
|
I != E; ++I, ++GTI) {
|
|
const Value *Index = *I;
|
|
// Compute the (potentially symbolic) offset in bytes for this index.
|
|
if (StructType *STy = GTI.getStructTypeOrNull()) {
|
|
// For a struct, add the member offset.
|
|
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
|
|
if (FieldNo == 0)
|
|
continue;
|
|
|
|
Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
|
|
continue;
|
|
}
|
|
|
|
// For an array/pointer, add the element offset, explicitly scaled.
|
|
if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
|
|
if (CIdx->isZero())
|
|
continue;
|
|
Decomposed.Offset +=
|
|
DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
|
|
CIdx->getValue().sextOrTrunc(MaxPointerSize);
|
|
continue;
|
|
}
|
|
|
|
GepHasConstantOffset = false;
|
|
|
|
APInt Scale(MaxPointerSize,
|
|
DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
|
|
unsigned ZExtBits = 0, SExtBits = 0;
|
|
|
|
// If the integer type is smaller than the pointer size, it is implicitly
|
|
// sign extended to pointer size.
|
|
unsigned Width = Index->getType()->getIntegerBitWidth();
|
|
if (PointerSize > Width)
|
|
SExtBits += PointerSize - Width;
|
|
|
|
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
|
|
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
|
|
bool NSW = true, NUW = true;
|
|
const Value *OrigIndex = Index;
|
|
Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
|
|
SExtBits, DL, 0, AC, DT, NSW, NUW);
|
|
|
|
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
|
|
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
|
|
|
|
// It can be the case that, even through C1*V+C2 does not overflow for
|
|
// relevant values of V, (C2*Scale) can overflow. In that case, we cannot
|
|
// decompose the expression in this way.
|
|
//
|
|
// FIXME: C1*Scale and the other operations in the decomposed
|
|
// (C1*Scale)*V+C2*Scale can also overflow. We should check for this
|
|
// possibility.
|
|
bool Overflow;
|
|
APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
|
|
.smul_ov(Scale, Overflow);
|
|
if (Overflow) {
|
|
Index = OrigIndex;
|
|
IndexScale = 1;
|
|
IndexOffset = 0;
|
|
|
|
ZExtBits = SExtBits = 0;
|
|
if (PointerSize > Width)
|
|
SExtBits += PointerSize - Width;
|
|
} else {
|
|
Decomposed.Offset += ScaledOffset;
|
|
Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
|
|
}
|
|
|
|
// If we already had an occurrence of this index variable, merge this
|
|
// scale into it. For example, we want to handle:
|
|
// A[x][x] -> x*16 + x*4 -> x*20
|
|
// This also ensures that 'x' only appears in the index list once.
|
|
for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
|
|
if (Decomposed.VarIndices[i].V == Index &&
|
|
Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
|
|
Decomposed.VarIndices[i].SExtBits == SExtBits) {
|
|
Scale += Decomposed.VarIndices[i].Scale;
|
|
Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Make sure that we have a scale that makes sense for this target's
|
|
// pointer size.
|
|
Scale = adjustToPointerSize(Scale, PointerSize);
|
|
|
|
if (!!Scale) {
|
|
VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
|
|
Decomposed.VarIndices.push_back(Entry);
|
|
}
|
|
}
|
|
|
|
// Take care of wrap-arounds
|
|
if (GepHasConstantOffset)
|
|
Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
|
|
|
|
// Analyze the base pointer next.
|
|
V = GEPOp->getOperand(0);
|
|
} while (--MaxLookup);
|
|
|
|
// If the chain of expressions is too deep, just return early.
|
|
Decomposed.Base = V;
|
|
SearchLimitReached++;
|
|
return Decomposed;
|
|
}
|
|
|
|
/// Returns whether the given pointer value points to memory that is local to
|
|
/// the function, with global constants being considered local to all
|
|
/// functions.
|
|
bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI, bool OrLocal) {
|
|
assert(Visited.empty() && "Visited must be cleared after use!");
|
|
|
|
unsigned MaxLookup = 8;
|
|
SmallVector<const Value *, 16> Worklist;
|
|
Worklist.push_back(Loc.Ptr);
|
|
do {
|
|
const Value *V = getUnderlyingObject(Worklist.pop_back_val());
|
|
if (!Visited.insert(V).second) {
|
|
Visited.clear();
|
|
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
|
|
}
|
|
|
|
// An alloca instruction defines local memory.
|
|
if (OrLocal && isa<AllocaInst>(V))
|
|
continue;
|
|
|
|
// A global constant counts as local memory for our purposes.
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
|
|
// Note: this doesn't require GV to be "ODR" because it isn't legal for a
|
|
// global to be marked constant in some modules and non-constant in
|
|
// others. GV may even be a declaration, not a definition.
|
|
if (!GV->isConstant()) {
|
|
Visited.clear();
|
|
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If both select values point to local memory, then so does the select.
|
|
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
|
|
Worklist.push_back(SI->getTrueValue());
|
|
Worklist.push_back(SI->getFalseValue());
|
|
continue;
|
|
}
|
|
|
|
// If all values incoming to a phi node point to local memory, then so does
|
|
// the phi.
|
|
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
// Don't bother inspecting phi nodes with many operands.
|
|
if (PN->getNumIncomingValues() > MaxLookup) {
|
|
Visited.clear();
|
|
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
|
|
}
|
|
append_range(Worklist, PN->incoming_values());
|
|
continue;
|
|
}
|
|
|
|
// Otherwise be conservative.
|
|
Visited.clear();
|
|
return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
|
|
} while (!Worklist.empty() && --MaxLookup);
|
|
|
|
Visited.clear();
|
|
return Worklist.empty();
|
|
}
|
|
|
|
/// Returns the behavior when calling the given call site.
|
|
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
|
|
if (Call->doesNotAccessMemory())
|
|
// Can't do better than this.
|
|
return FMRB_DoesNotAccessMemory;
|
|
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
// If the callsite knows it only reads memory, don't return worse
|
|
// than that.
|
|
if (Call->onlyReadsMemory())
|
|
Min = FMRB_OnlyReadsMemory;
|
|
else if (Call->doesNotReadMemory())
|
|
Min = FMRB_OnlyWritesMemory;
|
|
|
|
if (Call->onlyAccessesArgMemory())
|
|
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
|
|
else if (Call->onlyAccessesInaccessibleMemory())
|
|
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
|
|
else if (Call->onlyAccessesInaccessibleMemOrArgMem())
|
|
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
|
|
|
|
// If the call has operand bundles then aliasing attributes from the function
|
|
// it calls do not directly apply to the call. This can be made more precise
|
|
// in the future.
|
|
if (!Call->hasOperandBundles())
|
|
if (const Function *F = Call->getCalledFunction())
|
|
Min =
|
|
FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
|
|
|
|
return Min;
|
|
}
|
|
|
|
/// Returns the behavior when calling the given function. For use when the call
|
|
/// site is not known.
|
|
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
|
|
// If the function declares it doesn't access memory, we can't do better.
|
|
if (F->doesNotAccessMemory())
|
|
return FMRB_DoesNotAccessMemory;
|
|
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
// If the function declares it only reads memory, go with that.
|
|
if (F->onlyReadsMemory())
|
|
Min = FMRB_OnlyReadsMemory;
|
|
else if (F->doesNotReadMemory())
|
|
Min = FMRB_OnlyWritesMemory;
|
|
|
|
if (F->onlyAccessesArgMemory())
|
|
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
|
|
else if (F->onlyAccessesInaccessibleMemory())
|
|
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
|
|
else if (F->onlyAccessesInaccessibleMemOrArgMem())
|
|
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
|
|
|
|
return Min;
|
|
}
|
|
|
|
/// Returns true if this is a writeonly (i.e Mod only) parameter.
|
|
static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
|
|
const TargetLibraryInfo &TLI) {
|
|
if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
|
|
return true;
|
|
|
|
// We can bound the aliasing properties of memset_pattern16 just as we can
|
|
// for memcpy/memset. This is particularly important because the
|
|
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
|
|
// whenever possible.
|
|
// FIXME Consider handling this in InferFunctionAttr.cpp together with other
|
|
// attributes.
|
|
LibFunc F;
|
|
if (Call->getCalledFunction() &&
|
|
TLI.getLibFunc(*Call->getCalledFunction(), F) &&
|
|
F == LibFunc_memset_pattern16 && TLI.has(F))
|
|
if (ArgIdx == 0)
|
|
return true;
|
|
|
|
// TODO: memset_pattern4, memset_pattern8
|
|
// TODO: _chk variants
|
|
// TODO: strcmp, strcpy
|
|
|
|
return false;
|
|
}
|
|
|
|
ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
|
|
unsigned ArgIdx) {
|
|
// Checking for known builtin intrinsics and target library functions.
|
|
if (isWriteOnlyParam(Call, ArgIdx, TLI))
|
|
return ModRefInfo::Mod;
|
|
|
|
if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
|
|
return ModRefInfo::Ref;
|
|
|
|
if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
|
|
return ModRefInfo::NoModRef;
|
|
|
|
return AAResultBase::getArgModRefInfo(Call, ArgIdx);
|
|
}
|
|
|
|
static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
|
|
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
|
|
return II && II->getIntrinsicID() == IID;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static const Function *getParent(const Value *V) {
|
|
if (const Instruction *inst = dyn_cast<Instruction>(V)) {
|
|
if (!inst->getParent())
|
|
return nullptr;
|
|
return inst->getParent()->getParent();
|
|
}
|
|
|
|
if (const Argument *arg = dyn_cast<Argument>(V))
|
|
return arg->getParent();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool notDifferentParent(const Value *O1, const Value *O2) {
|
|
|
|
const Function *F1 = getParent(O1);
|
|
const Function *F2 = getParent(O2);
|
|
|
|
return !F1 || !F2 || F1 == F2;
|
|
}
|
|
#endif
|
|
|
|
AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI) {
|
|
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
|
|
"BasicAliasAnalysis doesn't support interprocedural queries.");
|
|
return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size,
|
|
LocB.AATags, AAQI);
|
|
}
|
|
|
|
/// Checks to see if the specified callsite can clobber the specified memory
|
|
/// object.
|
|
///
|
|
/// Since we only look at local properties of this function, we really can't
|
|
/// say much about this query. We do, however, use simple "address taken"
|
|
/// analysis on local objects.
|
|
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
|
|
const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) {
|
|
assert(notDifferentParent(Call, Loc.Ptr) &&
|
|
"AliasAnalysis query involving multiple functions!");
|
|
|
|
const Value *Object = getUnderlyingObject(Loc.Ptr);
|
|
|
|
// Calls marked 'tail' cannot read or write allocas from the current frame
|
|
// because the current frame might be destroyed by the time they run. However,
|
|
// a tail call may use an alloca with byval. Calling with byval copies the
|
|
// contents of the alloca into argument registers or stack slots, so there is
|
|
// no lifetime issue.
|
|
if (isa<AllocaInst>(Object))
|
|
if (const CallInst *CI = dyn_cast<CallInst>(Call))
|
|
if (CI->isTailCall() &&
|
|
!CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
|
|
return ModRefInfo::NoModRef;
|
|
|
|
// Stack restore is able to modify unescaped dynamic allocas. Assume it may
|
|
// modify them even though the alloca is not escaped.
|
|
if (auto *AI = dyn_cast<AllocaInst>(Object))
|
|
if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
|
|
return ModRefInfo::Mod;
|
|
|
|
// If the pointer is to a locally allocated object that does not escape,
|
|
// then the call can not mod/ref the pointer unless the call takes the pointer
|
|
// as an argument, and itself doesn't capture it.
|
|
if (!isa<Constant>(Object) && Call != Object &&
|
|
isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
|
|
|
|
// Optimistically assume that call doesn't touch Object and check this
|
|
// assumption in the following loop.
|
|
ModRefInfo Result = ModRefInfo::NoModRef;
|
|
bool IsMustAlias = true;
|
|
|
|
unsigned OperandNo = 0;
|
|
for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
|
|
CI != CE; ++CI, ++OperandNo) {
|
|
// Only look at the no-capture or byval pointer arguments. If this
|
|
// pointer were passed to arguments that were neither of these, then it
|
|
// couldn't be no-capture.
|
|
if (!(*CI)->getType()->isPointerTy() ||
|
|
(!Call->doesNotCapture(OperandNo) &&
|
|
OperandNo < Call->getNumArgOperands() &&
|
|
!Call->isByValArgument(OperandNo)))
|
|
continue;
|
|
|
|
// Call doesn't access memory through this operand, so we don't care
|
|
// if it aliases with Object.
|
|
if (Call->doesNotAccessMemory(OperandNo))
|
|
continue;
|
|
|
|
// If this is a no-capture pointer argument, see if we can tell that it
|
|
// is impossible to alias the pointer we're checking.
|
|
AliasResult AR = getBestAAResults().alias(
|
|
MemoryLocation::getBeforeOrAfter(*CI),
|
|
MemoryLocation::getBeforeOrAfter(Object), AAQI);
|
|
if (AR != MustAlias)
|
|
IsMustAlias = false;
|
|
// Operand doesn't alias 'Object', continue looking for other aliases
|
|
if (AR == NoAlias)
|
|
continue;
|
|
// Operand aliases 'Object', but call doesn't modify it. Strengthen
|
|
// initial assumption and keep looking in case if there are more aliases.
|
|
if (Call->onlyReadsMemory(OperandNo)) {
|
|
Result = setRef(Result);
|
|
continue;
|
|
}
|
|
// Operand aliases 'Object' but call only writes into it.
|
|
if (Call->doesNotReadMemory(OperandNo)) {
|
|
Result = setMod(Result);
|
|
continue;
|
|
}
|
|
// This operand aliases 'Object' and call reads and writes into it.
|
|
// Setting ModRef will not yield an early return below, MustAlias is not
|
|
// used further.
|
|
Result = ModRefInfo::ModRef;
|
|
break;
|
|
}
|
|
|
|
// No operand aliases, reset Must bit. Add below if at least one aliases
|
|
// and all aliases found are MustAlias.
|
|
if (isNoModRef(Result))
|
|
IsMustAlias = false;
|
|
|
|
// Early return if we improved mod ref information
|
|
if (!isModAndRefSet(Result)) {
|
|
if (isNoModRef(Result))
|
|
return ModRefInfo::NoModRef;
|
|
return IsMustAlias ? setMust(Result) : clearMust(Result);
|
|
}
|
|
}
|
|
|
|
// If the call is malloc/calloc like, we can assume that it doesn't
|
|
// modify any IR visible value. This is only valid because we assume these
|
|
// routines do not read values visible in the IR. TODO: Consider special
|
|
// casing realloc and strdup routines which access only their arguments as
|
|
// well. Or alternatively, replace all of this with inaccessiblememonly once
|
|
// that's implemented fully.
|
|
if (isMallocOrCallocLikeFn(Call, &TLI)) {
|
|
// Be conservative if the accessed pointer may alias the allocation -
|
|
// fallback to the generic handling below.
|
|
if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
|
|
Loc, AAQI) == NoAlias)
|
|
return ModRefInfo::NoModRef;
|
|
}
|
|
|
|
// The semantics of memcpy intrinsics either exactly overlap or do not
|
|
// overlap, i.e., source and destination of any given memcpy are either
|
|
// no-alias or must-alias.
|
|
if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
|
|
AliasResult SrcAA =
|
|
getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
|
|
AliasResult DestAA =
|
|
getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
|
|
// It's also possible for Loc to alias both src and dest, or neither.
|
|
ModRefInfo rv = ModRefInfo::NoModRef;
|
|
if (SrcAA != NoAlias)
|
|
rv = setRef(rv);
|
|
if (DestAA != NoAlias)
|
|
rv = setMod(rv);
|
|
return rv;
|
|
}
|
|
|
|
// While the assume intrinsic is marked as arbitrarily writing so that
|
|
// proper control dependencies will be maintained, it never aliases any
|
|
// particular memory location.
|
|
if (isIntrinsicCall(Call, Intrinsic::assume))
|
|
return ModRefInfo::NoModRef;
|
|
|
|
// Like assumes, guard intrinsics are also marked as arbitrarily writing so
|
|
// that proper control dependencies are maintained but they never mods any
|
|
// particular memory location.
|
|
//
|
|
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
|
|
// heap state at the point the guard is issued needs to be consistent in case
|
|
// the guard invokes the "deopt" continuation.
|
|
if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
|
|
return ModRefInfo::Ref;
|
|
// The same applies to deoptimize which is essentially a guard(false).
|
|
if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
|
|
return ModRefInfo::Ref;
|
|
|
|
// Like assumes, invariant.start intrinsics were also marked as arbitrarily
|
|
// writing so that proper control dependencies are maintained but they never
|
|
// mod any particular memory location visible to the IR.
|
|
// *Unlike* assumes (which are now modeled as NoModRef), invariant.start
|
|
// intrinsic is now modeled as reading memory. This prevents hoisting the
|
|
// invariant.start intrinsic over stores. Consider:
|
|
// *ptr = 40;
|
|
// *ptr = 50;
|
|
// invariant_start(ptr)
|
|
// int val = *ptr;
|
|
// print(val);
|
|
//
|
|
// This cannot be transformed to:
|
|
//
|
|
// *ptr = 40;
|
|
// invariant_start(ptr)
|
|
// *ptr = 50;
|
|
// int val = *ptr;
|
|
// print(val);
|
|
//
|
|
// The transformation will cause the second store to be ignored (based on
|
|
// rules of invariant.start) and print 40, while the first program always
|
|
// prints 50.
|
|
if (isIntrinsicCall(Call, Intrinsic::invariant_start))
|
|
return ModRefInfo::Ref;
|
|
|
|
// The AAResultBase base class has some smarts, lets use them.
|
|
return AAResultBase::getModRefInfo(Call, Loc, AAQI);
|
|
}
|
|
|
|
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
|
|
const CallBase *Call2,
|
|
AAQueryInfo &AAQI) {
|
|
// While the assume intrinsic is marked as arbitrarily writing so that
|
|
// proper control dependencies will be maintained, it never aliases any
|
|
// particular memory location.
|
|
if (isIntrinsicCall(Call1, Intrinsic::assume) ||
|
|
isIntrinsicCall(Call2, Intrinsic::assume))
|
|
return ModRefInfo::NoModRef;
|
|
|
|
// Like assumes, guard intrinsics are also marked as arbitrarily writing so
|
|
// that proper control dependencies are maintained but they never mod any
|
|
// particular memory location.
|
|
//
|
|
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
|
|
// heap state at the point the guard is issued needs to be consistent in case
|
|
// the guard invokes the "deopt" continuation.
|
|
|
|
// NB! This function is *not* commutative, so we special case two
|
|
// possibilities for guard intrinsics.
|
|
|
|
if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
|
|
return isModSet(createModRefInfo(getModRefBehavior(Call2)))
|
|
? ModRefInfo::Ref
|
|
: ModRefInfo::NoModRef;
|
|
|
|
if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
|
|
return isModSet(createModRefInfo(getModRefBehavior(Call1)))
|
|
? ModRefInfo::Mod
|
|
: ModRefInfo::NoModRef;
|
|
|
|
// The AAResultBase base class has some smarts, lets use them.
|
|
return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
|
|
}
|
|
|
|
// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
|
|
// beginning of the object the GEP points would have a negative offset with
|
|
// repsect to the alloca, that means the GEP can not alias pointer (b).
|
|
// Note that the pointer based on the alloca may not be a GEP. For
|
|
// example, it may be the alloca itself.
|
|
// The same applies if (b) is based on a GlobalVariable. Note that just being
|
|
// based on isIdentifiedObject() is not enough - we need an identified object
|
|
// that does not permit access to negative offsets. For example, a negative
|
|
// offset from a noalias argument or call can be inbounds w.r.t the actual
|
|
// underlying object.
|
|
//
|
|
// For example, consider:
|
|
//
|
|
// struct { int f0, int f1, ...} foo;
|
|
// foo alloca;
|
|
// foo* random = bar(alloca);
|
|
// int *f0 = &alloca.f0
|
|
// int *f1 = &random->f1;
|
|
//
|
|
// Which is lowered, approximately, to:
|
|
//
|
|
// %alloca = alloca %struct.foo
|
|
// %random = call %struct.foo* @random(%struct.foo* %alloca)
|
|
// %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
|
|
// %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
|
|
//
|
|
// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
|
|
// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
|
|
// point into the same object. But since %f0 points to the beginning of %alloca,
|
|
// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
|
|
// than (%alloca - 1), and so is not inbounds, a contradiction.
|
|
bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
|
|
const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
|
|
LocationSize MaybeObjectAccessSize) {
|
|
// If the object access size is unknown, or the GEP isn't inbounds, bail.
|
|
if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds())
|
|
return false;
|
|
|
|
const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
|
|
|
|
// We need the object to be an alloca or a globalvariable, and want to know
|
|
// the offset of the pointer from the object precisely, so no variable
|
|
// indices are allowed.
|
|
if (!(isa<AllocaInst>(DecompObject.Base) ||
|
|
isa<GlobalVariable>(DecompObject.Base)) ||
|
|
!DecompObject.VarIndices.empty())
|
|
return false;
|
|
|
|
// If the GEP has no variable indices, we know the precise offset
|
|
// from the base, then use it. If the GEP has variable indices,
|
|
// we can't get exact GEP offset to identify pointer alias. So return
|
|
// false in that case.
|
|
if (!DecompGEP.VarIndices.empty())
|
|
return false;
|
|
|
|
return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize);
|
|
}
|
|
|
|
/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
|
|
/// another pointer.
|
|
///
|
|
/// We know that V1 is a GEP, but we don't know anything about V2.
|
|
/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
|
|
/// V2.
|
|
AliasResult BasicAAResult::aliasGEP(
|
|
const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
|
|
const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
|
|
const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
|
|
DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
|
|
DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
|
|
|
|
// Don't attempt to analyze the decomposed GEP if index scale is not a
|
|
// compile-time constant.
|
|
if (!DecompGEP1.HasCompileTimeConstantScale ||
|
|
!DecompGEP2.HasCompileTimeConstantScale)
|
|
return MayAlias;
|
|
|
|
assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
|
|
"DecomposeGEPExpression returned a result different from "
|
|
"getUnderlyingObject");
|
|
|
|
// If the GEP's offset relative to its base is such that the base would
|
|
// fall below the start of the object underlying V2, then the GEP and V2
|
|
// cannot alias.
|
|
if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
|
|
return NoAlias;
|
|
// If we have two gep instructions with must-alias or not-alias'ing base
|
|
// pointers, figure out if the indexes to the GEP tell us anything about the
|
|
// derived pointer.
|
|
if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
|
|
// Check for the GEP base being at a negative offset, this time in the other
|
|
// direction.
|
|
if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
|
|
return NoAlias;
|
|
// Do the base pointers alias?
|
|
AliasResult BaseAlias = getBestAAResults().alias(
|
|
MemoryLocation::getBeforeOrAfter(UnderlyingV1),
|
|
MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
|
|
|
|
// For GEPs with identical offsets, we can preserve the size and AAInfo
|
|
// when performing the alias check on the underlying objects.
|
|
if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset &&
|
|
DecompGEP1.VarIndices == DecompGEP2.VarIndices) {
|
|
AliasResult PreciseBaseAlias = getBestAAResults().alias(
|
|
MemoryLocation(UnderlyingV1, V1Size, V1AAInfo),
|
|
MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI);
|
|
if (PreciseBaseAlias == NoAlias)
|
|
return NoAlias;
|
|
}
|
|
|
|
// If we get a No or May, then return it immediately, no amount of analysis
|
|
// will improve this situation.
|
|
if (BaseAlias != MustAlias) {
|
|
assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
|
|
return BaseAlias;
|
|
}
|
|
|
|
// Subtract the GEP2 pointer from the GEP1 pointer to find out their
|
|
// symbolic difference.
|
|
DecompGEP1.Offset -= DecompGEP2.Offset;
|
|
GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
|
|
|
|
} else {
|
|
// Check to see if these two pointers are related by the getelementptr
|
|
// instruction. If one pointer is a GEP with a non-zero index of the other
|
|
// pointer, we know they cannot alias.
|
|
|
|
// If both accesses are unknown size, we can't do anything useful here.
|
|
if (!V1Size.hasValue() && !V2Size.hasValue())
|
|
return MayAlias;
|
|
|
|
AliasResult R = getBestAAResults().alias(
|
|
MemoryLocation::getBeforeOrAfter(UnderlyingV1),
|
|
MemoryLocation(V2, V2Size, V2AAInfo), AAQI);
|
|
if (R != MustAlias) {
|
|
// If V2 may alias GEP base pointer, conservatively returns MayAlias.
|
|
// If V2 is known not to alias GEP base pointer, then the two values
|
|
// cannot alias per GEP semantics: "Any memory access must be done through
|
|
// a pointer value associated with an address range of the memory access,
|
|
// otherwise the behavior is undefined.".
|
|
assert(R == NoAlias || R == MayAlias);
|
|
return R;
|
|
}
|
|
}
|
|
|
|
// In the two GEP Case, if there is no difference in the offsets of the
|
|
// computed pointers, the resultant pointers are a must alias. This
|
|
// happens when we have two lexically identical GEP's (for example).
|
|
//
|
|
// In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
|
|
// must aliases the GEP, the end result is a must alias also.
|
|
if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
|
|
return MustAlias;
|
|
|
|
// If there is a constant difference between the pointers, but the difference
|
|
// is less than the size of the associated memory object, then we know
|
|
// that the objects are partially overlapping. If the difference is
|
|
// greater, we know they do not overlap.
|
|
if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
|
|
if (DecompGEP1.Offset.sge(0)) {
|
|
if (V2Size.hasValue()) {
|
|
if (DecompGEP1.Offset.ult(V2Size.getValue()))
|
|
return PartialAlias;
|
|
return NoAlias;
|
|
}
|
|
} else {
|
|
// We have the situation where:
|
|
// + +
|
|
// | BaseOffset |
|
|
// ---------------->|
|
|
// |-->V1Size |-------> V2Size
|
|
// GEP1 V2
|
|
if (V1Size.hasValue()) {
|
|
if ((-DecompGEP1.Offset).ult(V1Size.getValue()))
|
|
return PartialAlias;
|
|
return NoAlias;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!DecompGEP1.VarIndices.empty()) {
|
|
APInt GCD;
|
|
bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
|
|
bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
|
|
for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
|
|
const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
|
|
if (i == 0)
|
|
GCD = Scale.abs();
|
|
else
|
|
GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
|
|
|
|
if (AllNonNegative || AllNonPositive) {
|
|
// If the Value could change between cycles, then any reasoning about
|
|
// the Value this cycle may not hold in the next cycle. We'll just
|
|
// give up if we can't determine conditions that hold for every cycle:
|
|
const Value *V = DecompGEP1.VarIndices[i].V;
|
|
const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
|
|
|
|
KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
|
|
bool SignKnownZero = Known.isNonNegative();
|
|
bool SignKnownOne = Known.isNegative();
|
|
|
|
// Zero-extension widens the variable, and so forces the sign
|
|
// bit to zero.
|
|
bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
|
|
SignKnownZero |= IsZExt;
|
|
SignKnownOne &= !IsZExt;
|
|
|
|
AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
|
|
(SignKnownOne && Scale.isNonPositive());
|
|
AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
|
|
(SignKnownOne && Scale.isNonNegative());
|
|
}
|
|
}
|
|
|
|
// We now have accesses at two offsets from the same base:
|
|
// 1. (...)*GCD + DecompGEP1.Offset with size V1Size
|
|
// 2. 0 with size V2Size
|
|
// Using arithmetic modulo GCD, the accesses are at
|
|
// [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
|
|
// into the range [V2Size..GCD), then we know they cannot overlap.
|
|
APInt ModOffset = DecompGEP1.Offset.srem(GCD);
|
|
if (ModOffset.isNegative())
|
|
ModOffset += GCD; // We want mod, not rem.
|
|
if (V1Size.hasValue() && V2Size.hasValue() &&
|
|
ModOffset.uge(V2Size.getValue()) &&
|
|
(GCD - ModOffset).uge(V1Size.getValue()))
|
|
return NoAlias;
|
|
|
|
// If we know all the variables are non-negative, then the total offset is
|
|
// also non-negative and >= DecompGEP1.Offset. We have the following layout:
|
|
// [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
|
|
// If DecompGEP1.Offset >= V2Size, the accesses don't alias.
|
|
if (AllNonNegative && V2Size.hasValue() &&
|
|
DecompGEP1.Offset.uge(V2Size.getValue()))
|
|
return NoAlias;
|
|
// Similarly, if the variables are non-positive, then the total offset is
|
|
// also non-positive and <= DecompGEP1.Offset. We have the following layout:
|
|
// [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
|
|
// If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
|
|
if (AllNonPositive && V1Size.hasValue() &&
|
|
(-DecompGEP1.Offset).uge(V1Size.getValue()))
|
|
return NoAlias;
|
|
|
|
if (V1Size.hasValue() && V2Size.hasValue()) {
|
|
// Try to determine whether abs(VarIndex) > 0.
|
|
Optional<APInt> MinAbsVarIndex;
|
|
if (DecompGEP1.VarIndices.size() == 1) {
|
|
// VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
|
|
const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
|
|
if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
|
|
MinAbsVarIndex = Var.Scale.abs();
|
|
} else if (DecompGEP1.VarIndices.size() == 2) {
|
|
// VarIndex = Scale*V0 + (-Scale)*V1.
|
|
// If V0 != V1 then abs(VarIndex) >= abs(Scale).
|
|
// Check that VisitedPhiBBs is empty, to avoid reasoning about
|
|
// inequality of values across loop iterations.
|
|
const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
|
|
const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
|
|
if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
|
|
Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
|
|
isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
|
|
MinAbsVarIndex = Var0.Scale.abs();
|
|
}
|
|
|
|
if (MinAbsVarIndex) {
|
|
// The constant offset will have added at least +/-MinAbsVarIndex to it.
|
|
APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
|
|
APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
|
|
// Check that an access at OffsetLo or lower, and an access at OffsetHi
|
|
// or higher both do not alias.
|
|
if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
|
|
OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
|
|
return NoAlias;
|
|
}
|
|
}
|
|
|
|
if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
|
|
DecompGEP1.Offset, &AC, DT))
|
|
return NoAlias;
|
|
}
|
|
|
|
// Statically, we can see that the base objects are the same, but the
|
|
// pointers have dynamic offsets which we can't resolve. And none of our
|
|
// little tricks above worked.
|
|
return MayAlias;
|
|
}
|
|
|
|
static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
|
|
// If the results agree, take it.
|
|
if (A == B)
|
|
return A;
|
|
// A mix of PartialAlias and MustAlias is PartialAlias.
|
|
if ((A == PartialAlias && B == MustAlias) ||
|
|
(B == PartialAlias && A == MustAlias))
|
|
return PartialAlias;
|
|
// Otherwise, we don't know anything.
|
|
return MayAlias;
|
|
}
|
|
|
|
/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
|
|
/// against another.
|
|
AliasResult
|
|
BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
|
|
const AAMDNodes &SIAAInfo, const Value *V2,
|
|
LocationSize V2Size, const AAMDNodes &V2AAInfo,
|
|
AAQueryInfo &AAQI) {
|
|
// If the values are Selects with the same condition, we can do a more precise
|
|
// check: just check for aliases between the values on corresponding arms.
|
|
if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
|
|
if (SI->getCondition() == SI2->getCondition()) {
|
|
AliasResult Alias = getBestAAResults().alias(
|
|
MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo),
|
|
MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI);
|
|
if (Alias == MayAlias)
|
|
return MayAlias;
|
|
AliasResult ThisAlias = getBestAAResults().alias(
|
|
MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo),
|
|
MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI);
|
|
return MergeAliasResults(ThisAlias, Alias);
|
|
}
|
|
|
|
// If both arms of the Select node NoAlias or MustAlias V2, then returns
|
|
// NoAlias / MustAlias. Otherwise, returns MayAlias.
|
|
AliasResult Alias = getBestAAResults().alias(
|
|
MemoryLocation(V2, V2Size, V2AAInfo),
|
|
MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI);
|
|
if (Alias == MayAlias)
|
|
return MayAlias;
|
|
|
|
AliasResult ThisAlias = getBestAAResults().alias(
|
|
MemoryLocation(V2, V2Size, V2AAInfo),
|
|
MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI);
|
|
return MergeAliasResults(ThisAlias, Alias);
|
|
}
|
|
|
|
/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
|
|
/// another.
|
|
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
|
|
const AAMDNodes &PNAAInfo, const Value *V2,
|
|
LocationSize V2Size,
|
|
const AAMDNodes &V2AAInfo,
|
|
AAQueryInfo &AAQI) {
|
|
// If the values are PHIs in the same block, we can do a more precise
|
|
// as well as efficient check: just check for aliases between the values
|
|
// on corresponding edges.
|
|
if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
|
|
if (PN2->getParent() == PN->getParent()) {
|
|
Optional<AliasResult> Alias;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
AliasResult ThisAlias = getBestAAResults().alias(
|
|
MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo),
|
|
MemoryLocation(
|
|
PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size,
|
|
V2AAInfo),
|
|
AAQI);
|
|
if (Alias)
|
|
*Alias = MergeAliasResults(*Alias, ThisAlias);
|
|
else
|
|
Alias = ThisAlias;
|
|
if (*Alias == MayAlias)
|
|
break;
|
|
}
|
|
return *Alias;
|
|
}
|
|
|
|
SmallVector<Value *, 4> V1Srcs;
|
|
// If a phi operand recurses back to the phi, we can still determine NoAlias
|
|
// if we don't alias the underlying objects of the other phi operands, as we
|
|
// know that the recursive phi needs to be based on them in some way.
|
|
bool isRecursive = false;
|
|
auto CheckForRecPhi = [&](Value *PV) {
|
|
if (!EnableRecPhiAnalysis)
|
|
return false;
|
|
if (getUnderlyingObject(PV) == PN) {
|
|
isRecursive = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (PV) {
|
|
// If we have PhiValues then use it to get the underlying phi values.
|
|
const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
|
|
// If we have more phi values than the search depth then return MayAlias
|
|
// conservatively to avoid compile time explosion. The worst possible case
|
|
// is if both sides are PHI nodes. In which case, this is O(m x n) time
|
|
// where 'm' and 'n' are the number of PHI sources.
|
|
if (PhiValueSet.size() > MaxLookupSearchDepth)
|
|
return MayAlias;
|
|
// Add the values to V1Srcs
|
|
for (Value *PV1 : PhiValueSet) {
|
|
if (CheckForRecPhi(PV1))
|
|
continue;
|
|
V1Srcs.push_back(PV1);
|
|
}
|
|
} else {
|
|
// If we don't have PhiInfo then just look at the operands of the phi itself
|
|
// FIXME: Remove this once we can guarantee that we have PhiInfo always
|
|
SmallPtrSet<Value *, 4> UniqueSrc;
|
|
for (Value *PV1 : PN->incoming_values()) {
|
|
if (isa<PHINode>(PV1))
|
|
// If any of the source itself is a PHI, return MayAlias conservatively
|
|
// to avoid compile time explosion. The worst possible case is if both
|
|
// sides are PHI nodes. In which case, this is O(m x n) time where 'm'
|
|
// and 'n' are the number of PHI sources.
|
|
return MayAlias;
|
|
|
|
if (CheckForRecPhi(PV1))
|
|
continue;
|
|
|
|
if (UniqueSrc.insert(PV1).second)
|
|
V1Srcs.push_back(PV1);
|
|
}
|
|
}
|
|
|
|
// If V1Srcs is empty then that means that the phi has no underlying non-phi
|
|
// value. This should only be possible in blocks unreachable from the entry
|
|
// block, but return MayAlias just in case.
|
|
if (V1Srcs.empty())
|
|
return MayAlias;
|
|
|
|
// If this PHI node is recursive, indicate that the pointer may be moved
|
|
// across iterations. We can only prove NoAlias if different underlying
|
|
// objects are involved.
|
|
if (isRecursive)
|
|
PNSize = LocationSize::beforeOrAfterPointer();
|
|
|
|
// In the recursive alias queries below, we may compare values from two
|
|
// different loop iterations. Keep track of visited phi blocks, which will
|
|
// be used when determining value equivalence.
|
|
bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
|
|
auto _ = make_scope_exit([&]() {
|
|
if (BlockInserted)
|
|
VisitedPhiBBs.erase(PN->getParent());
|
|
});
|
|
|
|
// If we inserted a block into VisitedPhiBBs, alias analysis results that
|
|
// have been cached earlier may no longer be valid. Perform recursive queries
|
|
// with a new AAQueryInfo.
|
|
AAQueryInfo NewAAQI;
|
|
AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
|
|
|
|
AliasResult Alias = getBestAAResults().alias(
|
|
MemoryLocation(V2, V2Size, V2AAInfo),
|
|
MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI);
|
|
|
|
// Early exit if the check of the first PHI source against V2 is MayAlias.
|
|
// Other results are not possible.
|
|
if (Alias == MayAlias)
|
|
return MayAlias;
|
|
// With recursive phis we cannot guarantee that MustAlias/PartialAlias will
|
|
// remain valid to all elements and needs to conservatively return MayAlias.
|
|
if (isRecursive && Alias != NoAlias)
|
|
return MayAlias;
|
|
|
|
// If all sources of the PHI node NoAlias or MustAlias V2, then returns
|
|
// NoAlias / MustAlias. Otherwise, returns MayAlias.
|
|
for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
|
|
Value *V = V1Srcs[i];
|
|
|
|
AliasResult ThisAlias = getBestAAResults().alias(
|
|
MemoryLocation(V2, V2Size, V2AAInfo),
|
|
MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI);
|
|
Alias = MergeAliasResults(ThisAlias, Alias);
|
|
if (Alias == MayAlias)
|
|
break;
|
|
}
|
|
|
|
return Alias;
|
|
}
|
|
|
|
/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
|
|
/// array references.
|
|
AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
|
|
const AAMDNodes &V1AAInfo,
|
|
const Value *V2, LocationSize V2Size,
|
|
const AAMDNodes &V2AAInfo,
|
|
AAQueryInfo &AAQI) {
|
|
// If either of the memory references is empty, it doesn't matter what the
|
|
// pointer values are.
|
|
if (V1Size.isZero() || V2Size.isZero())
|
|
return NoAlias;
|
|
|
|
// Strip off any casts if they exist.
|
|
V1 = V1->stripPointerCastsAndInvariantGroups();
|
|
V2 = V2->stripPointerCastsAndInvariantGroups();
|
|
|
|
// If V1 or V2 is undef, the result is NoAlias because we can always pick a
|
|
// value for undef that aliases nothing in the program.
|
|
if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
|
|
return NoAlias;
|
|
|
|
// Are we checking for alias of the same value?
|
|
// Because we look 'through' phi nodes, we could look at "Value" pointers from
|
|
// different iterations. We must therefore make sure that this is not the
|
|
// case. The function isValueEqualInPotentialCycles ensures that this cannot
|
|
// happen by looking at the visited phi nodes and making sure they cannot
|
|
// reach the value.
|
|
if (isValueEqualInPotentialCycles(V1, V2))
|
|
return MustAlias;
|
|
|
|
if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
|
|
return NoAlias; // Scalars cannot alias each other
|
|
|
|
// Figure out what objects these things are pointing to if we can.
|
|
const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
|
|
const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
|
|
|
|
// Null values in the default address space don't point to any object, so they
|
|
// don't alias any other pointer.
|
|
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
|
|
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
|
|
return NoAlias;
|
|
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
|
|
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
|
|
return NoAlias;
|
|
|
|
if (O1 != O2) {
|
|
// If V1/V2 point to two different objects, we know that we have no alias.
|
|
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
|
|
return NoAlias;
|
|
|
|
// Constant pointers can't alias with non-const isIdentifiedObject objects.
|
|
if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
|
|
(isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
|
|
return NoAlias;
|
|
|
|
// Function arguments can't alias with things that are known to be
|
|
// unambigously identified at the function level.
|
|
if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
|
|
(isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
|
|
return NoAlias;
|
|
|
|
// If one pointer is the result of a call/invoke or load and the other is a
|
|
// non-escaping local object within the same function, then we know the
|
|
// object couldn't escape to a point where the call could return it.
|
|
//
|
|
// Note that if the pointers are in different functions, there are a
|
|
// variety of complications. A call with a nocapture argument may still
|
|
// temporary store the nocapture argument's value in a temporary memory
|
|
// location if that memory location doesn't escape. Or it may pass a
|
|
// nocapture value to other functions as long as they don't capture it.
|
|
if (isEscapeSource(O1) &&
|
|
isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
|
|
return NoAlias;
|
|
if (isEscapeSource(O2) &&
|
|
isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
|
|
return NoAlias;
|
|
}
|
|
|
|
// If the size of one access is larger than the entire object on the other
|
|
// side, then we know such behavior is undefined and can assume no alias.
|
|
bool NullIsValidLocation = NullPointerIsDefined(&F);
|
|
if ((isObjectSmallerThan(
|
|
O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
|
|
TLI, NullIsValidLocation)) ||
|
|
(isObjectSmallerThan(
|
|
O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
|
|
TLI, NullIsValidLocation)))
|
|
return NoAlias;
|
|
|
|
// If one the accesses may be before the accessed pointer, canonicalize this
|
|
// by using unknown after-pointer sizes for both accesses. This is
|
|
// equivalent, because regardless of which pointer is lower, one of them
|
|
// will always came after the other, as long as the underlying objects aren't
|
|
// disjoint. We do this so that the rest of BasicAA does not have to deal
|
|
// with accesses before the base pointer, and to improve cache utilization by
|
|
// merging equivalent states.
|
|
if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
|
|
V1Size = LocationSize::afterPointer();
|
|
V2Size = LocationSize::afterPointer();
|
|
}
|
|
|
|
// Check the cache before climbing up use-def chains. This also terminates
|
|
// otherwise infinitely recursive queries.
|
|
AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
|
|
MemoryLocation(V2, V2Size, V2AAInfo));
|
|
if (V1 > V2)
|
|
std::swap(Locs.first, Locs.second);
|
|
const auto &Pair = AAQI.AliasCache.try_emplace(
|
|
Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
|
|
if (!Pair.second) {
|
|
auto &Entry = Pair.first->second;
|
|
if (!Entry.isDefinitive()) {
|
|
// Remember that we used an assumption.
|
|
++Entry.NumAssumptionUses;
|
|
++AAQI.NumAssumptionUses;
|
|
}
|
|
return Entry.Result;
|
|
}
|
|
|
|
int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
|
|
unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
|
|
AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
|
|
V2AAInfo, AAQI, O1, O2);
|
|
|
|
auto It = AAQI.AliasCache.find(Locs);
|
|
assert(It != AAQI.AliasCache.end() && "Must be in cache");
|
|
auto &Entry = It->second;
|
|
|
|
// Check whether a NoAlias assumption has been used, but disproven.
|
|
bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
|
|
if (AssumptionDisproven)
|
|
Result = MayAlias;
|
|
|
|
// This is a definitive result now, when considered as a root query.
|
|
AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
|
|
Entry.Result = Result;
|
|
Entry.NumAssumptionUses = -1;
|
|
|
|
// If the assumption has been disproven, remove any results that may have
|
|
// been based on this assumption. Do this after the Entry updates above to
|
|
// avoid iterator invalidation.
|
|
if (AssumptionDisproven)
|
|
while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
|
|
AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
|
|
|
|
// The result may still be based on assumptions higher up in the chain.
|
|
// Remember it, so it can be purged from the cache later.
|
|
if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias)
|
|
AAQI.AssumptionBasedResults.push_back(Locs);
|
|
return Result;
|
|
}
|
|
|
|
AliasResult BasicAAResult::aliasCheckRecursive(
|
|
const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
|
|
const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
|
|
AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
|
|
if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
|
|
AliasResult Result =
|
|
aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
} else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
|
|
AliasResult Result =
|
|
aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
}
|
|
|
|
if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
|
|
AliasResult Result =
|
|
aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
} else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
|
|
AliasResult Result =
|
|
aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
}
|
|
|
|
if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
|
|
AliasResult Result =
|
|
aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
} else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
|
|
AliasResult Result =
|
|
aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
}
|
|
|
|
// If both pointers are pointing into the same object and one of them
|
|
// accesses the entire object, then the accesses must overlap in some way.
|
|
if (O1 == O2) {
|
|
bool NullIsValidLocation = NullPointerIsDefined(&F);
|
|
if (V1Size.isPrecise() && V2Size.isPrecise() &&
|
|
(isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
|
|
isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
|
|
return PartialAlias;
|
|
}
|
|
|
|
return MayAlias;
|
|
}
|
|
|
|
/// Check whether two Values can be considered equivalent.
|
|
///
|
|
/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
|
|
/// they can not be part of a cycle in the value graph by looking at all
|
|
/// visited phi nodes an making sure that the phis cannot reach the value. We
|
|
/// have to do this because we are looking through phi nodes (That is we say
|
|
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
|
|
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
|
|
const Value *V2) {
|
|
if (V != V2)
|
|
return false;
|
|
|
|
const Instruction *Inst = dyn_cast<Instruction>(V);
|
|
if (!Inst)
|
|
return true;
|
|
|
|
if (VisitedPhiBBs.empty())
|
|
return true;
|
|
|
|
if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
|
|
return false;
|
|
|
|
// Make sure that the visited phis cannot reach the Value. This ensures that
|
|
// the Values cannot come from different iterations of a potential cycle the
|
|
// phi nodes could be involved in.
|
|
for (auto *P : VisitedPhiBBs)
|
|
if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Computes the symbolic difference between two de-composed GEPs.
|
|
///
|
|
/// Dest and Src are the variable indices from two decomposed GetElementPtr
|
|
/// instructions GEP1 and GEP2 which have common base pointers.
|
|
void BasicAAResult::GetIndexDifference(
|
|
SmallVectorImpl<VariableGEPIndex> &Dest,
|
|
const SmallVectorImpl<VariableGEPIndex> &Src) {
|
|
if (Src.empty())
|
|
return;
|
|
|
|
for (unsigned i = 0, e = Src.size(); i != e; ++i) {
|
|
const Value *V = Src[i].V;
|
|
unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
|
|
APInt Scale = Src[i].Scale;
|
|
|
|
// Find V in Dest. This is N^2, but pointer indices almost never have more
|
|
// than a few variable indexes.
|
|
for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
|
|
if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
|
|
Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
|
|
continue;
|
|
|
|
// If we found it, subtract off Scale V's from the entry in Dest. If it
|
|
// goes to zero, remove the entry.
|
|
if (Dest[j].Scale != Scale)
|
|
Dest[j].Scale -= Scale;
|
|
else
|
|
Dest.erase(Dest.begin() + j);
|
|
Scale = 0;
|
|
break;
|
|
}
|
|
|
|
// If we didn't consume this entry, add it to the end of the Dest list.
|
|
if (!!Scale) {
|
|
VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
|
|
Dest.push_back(Entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BasicAAResult::constantOffsetHeuristic(
|
|
const SmallVectorImpl<VariableGEPIndex> &VarIndices,
|
|
LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
|
|
AssumptionCache *AC, DominatorTree *DT) {
|
|
if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
|
|
!MaybeV2Size.hasValue())
|
|
return false;
|
|
|
|
const uint64_t V1Size = MaybeV1Size.getValue();
|
|
const uint64_t V2Size = MaybeV2Size.getValue();
|
|
|
|
const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
|
|
|
|
if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
|
|
Var0.Scale != -Var1.Scale)
|
|
return false;
|
|
|
|
unsigned Width = Var1.V->getType()->getIntegerBitWidth();
|
|
|
|
// We'll strip off the Extensions of Var0 and Var1 and do another round
|
|
// of GetLinearExpression decomposition. In the example above, if Var0
|
|
// is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
|
|
|
|
APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
|
|
V1Offset(Width, 0);
|
|
bool NSW = true, NUW = true;
|
|
unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
|
|
const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
|
|
V0SExtBits, DL, 0, AC, DT, NSW, NUW);
|
|
NSW = true;
|
|
NUW = true;
|
|
const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
|
|
V1SExtBits, DL, 0, AC, DT, NSW, NUW);
|
|
|
|
if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
|
|
V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
|
|
return false;
|
|
|
|
// We have a hit - Var0 and Var1 only differ by a constant offset!
|
|
|
|
// If we've been sext'ed then zext'd the maximum difference between Var0 and
|
|
// Var1 is possible to calculate, but we're just interested in the absolute
|
|
// minimum difference between the two. The minimum distance may occur due to
|
|
// wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
|
|
// the minimum distance between %i and %i + 5 is 3.
|
|
APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
|
|
MinDiff = APIntOps::umin(MinDiff, Wrapped);
|
|
APInt MinDiffBytes =
|
|
MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
|
|
|
|
// We can't definitely say whether GEP1 is before or after V2 due to wrapping
|
|
// arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
|
|
// values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
|
|
// V2Size can fit in the MinDiffBytes gap.
|
|
return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
|
|
MinDiffBytes.uge(V2Size + BaseOffset.abs());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BasicAliasAnalysis Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AnalysisKey BasicAA::Key;
|
|
|
|
BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
|
|
auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
|
|
return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, LI, PV);
|
|
}
|
|
|
|
BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
|
|
initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
char BasicAAWrapperPass::ID = 0;
|
|
|
|
void BasicAAWrapperPass::anchor() {}
|
|
|
|
INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
|
|
"Basic Alias Analysis (stateless AA impl)", true, true)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
|
|
INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
|
|
"Basic Alias Analysis (stateless AA impl)", true, true)
|
|
|
|
FunctionPass *llvm::createBasicAAWrapperPass() {
|
|
return new BasicAAWrapperPass();
|
|
}
|
|
|
|
bool BasicAAWrapperPass::runOnFunction(Function &F) {
|
|
auto &ACT = getAnalysis<AssumptionCacheTracker>();
|
|
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
|
|
auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
|
|
|
|
Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
|
|
TLIWP.getTLI(F), ACT.getAssumptionCache(F),
|
|
&DTWP.getDomTree(),
|
|
LIWP ? &LIWP->getLoopInfo() : nullptr,
|
|
PVWP ? &PVWP->getResult() : nullptr));
|
|
|
|
return false;
|
|
}
|
|
|
|
void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<AssumptionCacheTracker>();
|
|
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
|
|
AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
|
|
AU.addUsedIfAvailable<PhiValuesWrapperPass>();
|
|
}
|
|
|
|
BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
|
|
return BasicAAResult(
|
|
F.getParent()->getDataLayout(), F,
|
|
P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
|
|
P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
|
|
}
|