llvm-for-llvmta/include/llvm/Target/TargetSelectionDAG.td

1649 lines
69 KiB
TableGen

//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces used by SelectionDAG
// instruction selection generators.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Selection DAG Type Constraint definitions.
//
// Note that the semantics of these constraints are hard coded into tblgen. To
// modify or add constraints, you have to hack tblgen.
//
class SDTypeConstraint<int opnum> {
int OperandNum = opnum;
}
// SDTCisVT - The specified operand has exactly this VT.
class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> {
ValueType VT = vt;
}
class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisInt - The specified operand has integer type.
class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisFP - The specified operand has floating-point type.
class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisVec - The specified operand has a vector type.
class SDTCisVec<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisSameAs - The two specified operands have identical types.
class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
// SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is
// smaller than the 'Other' operand.
class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{
int BigOperandNum = BigOp;
}
/// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same
/// type as the element type of OtherOp, which is a vector type.
class SDTCisEltOfVec<int ThisOp, int OtherOp>
: SDTypeConstraint<ThisOp> {
int OtherOpNum = OtherOp;
}
/// SDTCisSubVecOfVec - This indicates that ThisOp is a vector type
/// with length less that of OtherOp, which is a vector type.
class SDTCisSubVecOfVec<int ThisOp, int OtherOp>
: SDTypeConstraint<ThisOp> {
int OtherOpNum = OtherOp;
}
// SDTCVecEltisVT - The specified operand is vector type with element type
// of VT.
class SDTCVecEltisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> {
ValueType VT = vt;
}
// SDTCisSameNumEltsAs - The two specified operands have identical number
// of elements.
class SDTCisSameNumEltsAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
// SDTCisSameSizeAs - The two specified operands have identical size.
class SDTCisSameSizeAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
//===----------------------------------------------------------------------===//
// Selection DAG Type Profile definitions.
//
// These use the constraints defined above to describe the type requirements of
// the various nodes. These are not hard coded into tblgen, allowing targets to
// add their own if needed.
//
// SDTypeProfile - This profile describes the type requirements of a Selection
// DAG node.
class SDTypeProfile<int numresults, int numoperands,
list<SDTypeConstraint> constraints> {
int NumResults = numresults;
int NumOperands = numoperands;
list<SDTypeConstraint> Constraints = constraints;
}
// Builtin profiles.
def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'.
def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'.
def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'.
def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'.
def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'.
def SDTUnaryOp : SDTypeProfile<1, 1, []>; // for bitconvert.
def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>
]>;
def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl
SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>
]>;
def SDTIntShiftDOp: SDTypeProfile<1, 3, [ // fshl, fshr
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3>
]>;
def SDTIntSatNoShOp : SDTypeProfile<1, 2, [ // ssat with no shift
SDTCisSameAs<0, 1>, SDTCisInt<2>
]>;
def SDTIntBinHiLoOp : SDTypeProfile<2, 2, [ // mulhi, mullo, sdivrem, udivrem
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,SDTCisInt<0>
]>;
def SDTIntScaledBinOp : SDTypeProfile<1, 3, [ // smulfix, sdivfix, etc
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3>
]>;
def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0>
]>;
def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign.
SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2>
]>;
def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0>
]>;
def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // bitreverse
SDTCisSameAs<0, 1>, SDTCisInt<0>
]>;
def SDTIntBitCountUnaryOp : SDTypeProfile<1, 1, [ // ctlz, cttz
SDTCisInt<0>, SDTCisInt<1>
]>;
def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext
SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc
SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc
SDTCisSameAs<0, 1>, SDTCisFP<0>
]>;
def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fround
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fextend
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp
SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int
SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTFPToIntSatOp : SDTypeProfile<1, 2, [ // fp_to_[su]int_sat
SDTCisInt<0>, SDTCisFP<1>, SDTCisInt<2>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg
SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>,
SDTCisVTSmallerThanOp<2, 1>
]>;
def SDTExtInvec : SDTypeProfile<1, 1, [ // sext_invec
SDTCisInt<0>, SDTCisVec<0>, SDTCisInt<1>, SDTCisVec<1>,
SDTCisOpSmallerThanOp<1, 0>
]>;
def SDTSetCC : SDTypeProfile<1, 3, [ // setcc
SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT>
]>;
def SDTSelect : SDTypeProfile<1, 3, [ // select
SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>
]>;
def SDTVSelect : SDTypeProfile<1, 3, [ // vselect
SDTCisVec<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisSameNumEltsAs<0, 1>
]>;
def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc
SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>,
SDTCisVT<5, OtherVT>
]>;
def SDTBr : SDTypeProfile<0, 1, [ // br
SDTCisVT<0, OtherVT>
]>;
def SDTBrCC : SDTypeProfile<0, 4, [ // brcc
SDTCisVT<0, OtherVT>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT>
]>;
def SDTBrcond : SDTypeProfile<0, 2, [ // brcond
SDTCisInt<0>, SDTCisVT<1, OtherVT>
]>;
def SDTBrind : SDTypeProfile<0, 1, [ // brind
SDTCisPtrTy<0>
]>;
def SDTCatchret : SDTypeProfile<0, 2, [ // catchret
SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT>
]>;
def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap
def SDTUBSANTrap : SDTypeProfile<0, 1, []>; // ubsantrap
def SDTLoad : SDTypeProfile<1, 1, [ // load
SDTCisPtrTy<1>
]>;
def SDTStore : SDTypeProfile<0, 2, [ // store
SDTCisPtrTy<1>
]>;
def SDTIStore : SDTypeProfile<1, 3, [ // indexed store
SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3>
]>;
def SDTMaskedStore: SDTypeProfile<0, 4, [ // masked store
SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameNumEltsAs<0, 3>
]>;
def SDTMaskedLoad: SDTypeProfile<1, 4, [ // masked load
SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVec<3>, SDTCisSameAs<0, 4>,
SDTCisSameNumEltsAs<0, 3>
]>;
def SDTVecShuffle : SDTypeProfile<1, 2, [
SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>
]>;
def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract
SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2>
]>;
def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert
SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3>
]>;
def SDTVecReduce : SDTypeProfile<1, 1, [ // vector reduction
SDTCisInt<0>, SDTCisVec<1>
]>;
def SDTFPVecReduce : SDTypeProfile<1, 1, [ // FP vector reduction
SDTCisFP<0>, SDTCisVec<1>
]>;
def SDTSubVecExtract : SDTypeProfile<1, 2, [// subvector extract
SDTCisSubVecOfVec<0,1>, SDTCisInt<2>
]>;
def SDTSubVecInsert : SDTypeProfile<1, 3, [ // subvector insert
SDTCisSubVecOfVec<2, 1>, SDTCisSameAs<0,1>, SDTCisInt<3>
]>;
def SDTPrefetch : SDTypeProfile<0, 4, [ // prefetch
SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, SDTCisInt<1>
]>;
def SDTMemBarrier : SDTypeProfile<0, 5, [ // memory barrier
SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>,
SDTCisInt<0>
]>;
def SDTAtomicFence : SDTypeProfile<0, 2, [
SDTCisSameAs<0,1>, SDTCisPtrTy<0>
]>;
def SDTAtomic3 : SDTypeProfile<1, 3, [
SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDTAtomic2 : SDTypeProfile<1, 2, [
SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDTFPAtomic2 : SDTypeProfile<1, 2, [
SDTCisSameAs<0,2>, SDTCisFP<0>, SDTCisPtrTy<1>
]>;
def SDTAtomicStore : SDTypeProfile<0, 2, [
SDTCisPtrTy<0>, SDTCisInt<1>
]>;
def SDTAtomicLoad : SDTypeProfile<1, 1, [
SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def SDTConvertOp : SDTypeProfile<1, 5, [ //cvtss, su, us, uu, ff, fs, fu, sf, su
SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>, SDTCisPtrTy<4>, SDTCisPtrTy<5>
]>;
class SDCallSeqStart<list<SDTypeConstraint> constraints> :
SDTypeProfile<0, 2, constraints>;
class SDCallSeqEnd<list<SDTypeConstraint> constraints> :
SDTypeProfile<0, 2, constraints>;
//===----------------------------------------------------------------------===//
// Selection DAG Node definitions.
//
class SDNode<string opcode, SDTypeProfile typeprof,
list<SDNodeProperty> props = [], string sdclass = "SDNode">
: SDPatternOperator {
string Opcode = opcode;
string SDClass = sdclass;
let Properties = props;
SDTypeProfile TypeProfile = typeprof;
}
// Special TableGen-recognized dag nodes
def set;
def implicit;
def node;
def srcvalue;
def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">;
def timm : SDNode<"ISD::TargetConstant",SDTIntLeaf, [], "ConstantSDNode">;
def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">;
def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">;
def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">;
def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">;
def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>;
def vscale : SDNode<"ISD::VSCALE" , SDTIntUnaryOp, []>;
def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [],
"ConstantPoolSDNode">;
def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [],
"ConstantPoolSDNode">;
def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [],
"JumpTableSDNode">;
def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [],
"JumpTableSDNode">;
def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [],
"FrameIndexSDNode">;
def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [],
"FrameIndexSDNode">;
def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [],
"ExternalSymbolSDNode">;
def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [],
"ExternalSymbolSDNode">;
def mcsym: SDNode<"ISD::MCSymbol", SDTPtrLeaf, [], "MCSymbolSDNode">;
def blockaddress : SDNode<"ISD::BlockAddress", SDTPtrLeaf, [],
"BlockAddressSDNode">;
def tblockaddress: SDNode<"ISD::TargetBlockAddress", SDTPtrLeaf, [],
"BlockAddressSDNode">;
def add : SDNode<"ISD::ADD" , SDTIntBinOp ,
[SDNPCommutative, SDNPAssociative]>;
def sub : SDNode<"ISD::SUB" , SDTIntBinOp>;
def mul : SDNode<"ISD::MUL" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>;
def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>;
def smullohi : SDNode<"ISD::SMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>;
def umullohi : SDNode<"ISD::UMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>;
def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>;
def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>;
def srem : SDNode<"ISD::SREM" , SDTIntBinOp>;
def urem : SDNode<"ISD::UREM" , SDTIntBinOp>;
def sdivrem : SDNode<"ISD::SDIVREM" , SDTIntBinHiLoOp>;
def udivrem : SDNode<"ISD::UDIVREM" , SDTIntBinHiLoOp>;
def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>;
def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>;
def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>;
def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>;
def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>;
def fshl : SDNode<"ISD::FSHL" , SDTIntShiftDOp>;
def fshr : SDNode<"ISD::FSHR" , SDTIntShiftDOp>;
def and : SDNode<"ISD::AND" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def or : SDNode<"ISD::OR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def xor : SDNode<"ISD::XOR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def addc : SDNode<"ISD::ADDC" , SDTIntBinOp,
[SDNPCommutative, SDNPOutGlue]>;
def adde : SDNode<"ISD::ADDE" , SDTIntBinOp,
[SDNPCommutative, SDNPOutGlue, SDNPInGlue]>;
def subc : SDNode<"ISD::SUBC" , SDTIntBinOp,
[SDNPOutGlue]>;
def sube : SDNode<"ISD::SUBE" , SDTIntBinOp,
[SDNPOutGlue, SDNPInGlue]>;
def smin : SDNode<"ISD::SMIN" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def smax : SDNode<"ISD::SMAX" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def umin : SDNode<"ISD::UMIN" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def umax : SDNode<"ISD::UMAX" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def saddsat : SDNode<"ISD::SADDSAT" , SDTIntBinOp, [SDNPCommutative]>;
def uaddsat : SDNode<"ISD::UADDSAT" , SDTIntBinOp, [SDNPCommutative]>;
def ssubsat : SDNode<"ISD::SSUBSAT" , SDTIntBinOp>;
def usubsat : SDNode<"ISD::USUBSAT" , SDTIntBinOp>;
def sshlsat : SDNode<"ISD::SSHLSAT" , SDTIntBinOp>;
def ushlsat : SDNode<"ISD::USHLSAT" , SDTIntBinOp>;
def smulfix : SDNode<"ISD::SMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>;
def smulfixsat : SDNode<"ISD::SMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>;
def umulfix : SDNode<"ISD::UMULFIX" , SDTIntScaledBinOp, [SDNPCommutative]>;
def umulfixsat : SDNode<"ISD::UMULFIXSAT", SDTIntScaledBinOp, [SDNPCommutative]>;
def sdivfix : SDNode<"ISD::SDIVFIX" , SDTIntScaledBinOp>;
def sdivfixsat : SDNode<"ISD::SDIVFIXSAT", SDTIntScaledBinOp>;
def udivfix : SDNode<"ISD::UDIVFIX" , SDTIntScaledBinOp>;
def udivfixsat : SDNode<"ISD::UDIVFIXSAT", SDTIntScaledBinOp>;
def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>;
def sext_invec : SDNode<"ISD::SIGN_EXTEND_VECTOR_INREG", SDTExtInvec>;
def zext_invec : SDNode<"ISD::ZERO_EXTEND_VECTOR_INREG", SDTExtInvec>;
def abs : SDNode<"ISD::ABS" , SDTIntUnaryOp>;
def bitreverse : SDNode<"ISD::BITREVERSE" , SDTIntUnaryOp>;
def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>;
def ctlz : SDNode<"ISD::CTLZ" , SDTIntBitCountUnaryOp>;
def cttz : SDNode<"ISD::CTTZ" , SDTIntBitCountUnaryOp>;
def ctpop : SDNode<"ISD::CTPOP" , SDTIntBitCountUnaryOp>;
def ctlz_zero_undef : SDNode<"ISD::CTLZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>;
def cttz_zero_undef : SDNode<"ISD::CTTZ_ZERO_UNDEF", SDTIntBitCountUnaryOp>;
def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>;
def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>;
def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>;
def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>;
def bitconvert : SDNode<"ISD::BITCAST" , SDTUnaryOp>;
def addrspacecast : SDNode<"ISD::ADDRSPACECAST", SDTUnaryOp>;
def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>;
def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>;
def vecreduce_add : SDNode<"ISD::VECREDUCE_ADD", SDTVecReduce>;
def vecreduce_smax : SDNode<"ISD::VECREDUCE_SMAX", SDTVecReduce>;
def vecreduce_umax : SDNode<"ISD::VECREDUCE_UMAX", SDTVecReduce>;
def vecreduce_smin : SDNode<"ISD::VECREDUCE_SMIN", SDTVecReduce>;
def vecreduce_umin : SDNode<"ISD::VECREDUCE_UMIN", SDTVecReduce>;
def vecreduce_fadd : SDNode<"ISD::VECREDUCE_FADD", SDTFPVecReduce>;
def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>;
def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>;
def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>;
def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>;
def frem : SDNode<"ISD::FREM" , SDTFPBinOp>;
def fma : SDNode<"ISD::FMA" , SDTFPTernaryOp, [SDNPCommutative]>;
def fmad : SDNode<"ISD::FMAD" , SDTFPTernaryOp, [SDNPCommutative]>;
def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>;
def fminnum : SDNode<"ISD::FMINNUM" , SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def fmaxnum : SDNode<"ISD::FMAXNUM" , SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def fminnum_ieee : SDNode<"ISD::FMINNUM_IEEE", SDTFPBinOp,
[SDNPCommutative]>;
def fmaxnum_ieee : SDNode<"ISD::FMAXNUM_IEEE", SDTFPBinOp,
[SDNPCommutative]>;
def fminimum : SDNode<"ISD::FMINIMUM" , SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def fmaximum : SDNode<"ISD::FMAXIMUM" , SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def fgetsign : SDNode<"ISD::FGETSIGN" , SDTFPToIntOp>;
def fcanonicalize : SDNode<"ISD::FCANONICALIZE", SDTFPUnaryOp>;
def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>;
def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>;
def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>;
def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>;
def fexp2 : SDNode<"ISD::FEXP2" , SDTFPUnaryOp>;
def fpow : SDNode<"ISD::FPOW" , SDTFPBinOp>;
def flog2 : SDNode<"ISD::FLOG2" , SDTFPUnaryOp>;
def frint : SDNode<"ISD::FRINT" , SDTFPUnaryOp>;
def ftrunc : SDNode<"ISD::FTRUNC" , SDTFPUnaryOp>;
def fceil : SDNode<"ISD::FCEIL" , SDTFPUnaryOp>;
def ffloor : SDNode<"ISD::FFLOOR" , SDTFPUnaryOp>;
def fnearbyint : SDNode<"ISD::FNEARBYINT" , SDTFPUnaryOp>;
def fround : SDNode<"ISD::FROUND" , SDTFPUnaryOp>;
def lround : SDNode<"ISD::LROUND" , SDTFPToIntOp>;
def llround : SDNode<"ISD::LLROUND" , SDTFPToIntOp>;
def lrint : SDNode<"ISD::LRINT" , SDTFPToIntOp>;
def llrint : SDNode<"ISD::LLRINT" , SDTFPToIntOp>;
def fpround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>;
def fpextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>;
def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>;
def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>;
def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>;
def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>;
def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>;
def fp_to_sint_sat : SDNode<"ISD::FP_TO_SINT_SAT" , SDTFPToIntSatOp>;
def fp_to_uint_sat : SDNode<"ISD::FP_TO_UINT_SAT" , SDTFPToIntSatOp>;
def f16_to_fp : SDNode<"ISD::FP16_TO_FP" , SDTIntToFPOp>;
def fp_to_f16 : SDNode<"ISD::FP_TO_FP16" , SDTFPToIntOp>;
def strict_fadd : SDNode<"ISD::STRICT_FADD",
SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>;
def strict_fsub : SDNode<"ISD::STRICT_FSUB",
SDTFPBinOp, [SDNPHasChain]>;
def strict_fmul : SDNode<"ISD::STRICT_FMUL",
SDTFPBinOp, [SDNPHasChain, SDNPCommutative]>;
def strict_fdiv : SDNode<"ISD::STRICT_FDIV",
SDTFPBinOp, [SDNPHasChain]>;
def strict_frem : SDNode<"ISD::STRICT_FREM",
SDTFPBinOp, [SDNPHasChain]>;
def strict_fma : SDNode<"ISD::STRICT_FMA",
SDTFPTernaryOp, [SDNPHasChain, SDNPCommutative]>;
def strict_fsqrt : SDNode<"ISD::STRICT_FSQRT",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_fsin : SDNode<"ISD::STRICT_FSIN",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_fcos : SDNode<"ISD::STRICT_FCOS",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_fexp2 : SDNode<"ISD::STRICT_FEXP2",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_fpow : SDNode<"ISD::STRICT_FPOW",
SDTFPBinOp, [SDNPHasChain]>;
def strict_flog2 : SDNode<"ISD::STRICT_FLOG2",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_frint : SDNode<"ISD::STRICT_FRINT",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_lrint : SDNode<"ISD::STRICT_LRINT",
SDTFPToIntOp, [SDNPHasChain]>;
def strict_llrint : SDNode<"ISD::STRICT_LLRINT",
SDTFPToIntOp, [SDNPHasChain]>;
def strict_fnearbyint : SDNode<"ISD::STRICT_FNEARBYINT",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_fceil : SDNode<"ISD::STRICT_FCEIL",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_ffloor : SDNode<"ISD::STRICT_FFLOOR",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_lround : SDNode<"ISD::STRICT_LROUND",
SDTFPToIntOp, [SDNPHasChain]>;
def strict_llround : SDNode<"ISD::STRICT_LLROUND",
SDTFPToIntOp, [SDNPHasChain]>;
def strict_fround : SDNode<"ISD::STRICT_FROUND",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_ftrunc : SDNode<"ISD::STRICT_FTRUNC",
SDTFPUnaryOp, [SDNPHasChain]>;
def strict_fminnum : SDNode<"ISD::STRICT_FMINNUM",
SDTFPBinOp, [SDNPHasChain,
SDNPCommutative, SDNPAssociative]>;
def strict_fmaxnum : SDNode<"ISD::STRICT_FMAXNUM",
SDTFPBinOp, [SDNPHasChain,
SDNPCommutative, SDNPAssociative]>;
def strict_fminimum : SDNode<"ISD::STRICT_FMINIMUM",
SDTFPBinOp, [SDNPHasChain,
SDNPCommutative, SDNPAssociative]>;
def strict_fmaximum : SDNode<"ISD::STRICT_FMAXIMUM",
SDTFPBinOp, [SDNPHasChain,
SDNPCommutative, SDNPAssociative]>;
def strict_fpround : SDNode<"ISD::STRICT_FP_ROUND",
SDTFPRoundOp, [SDNPHasChain]>;
def strict_fpextend : SDNode<"ISD::STRICT_FP_EXTEND",
SDTFPExtendOp, [SDNPHasChain]>;
def strict_fp_to_sint : SDNode<"ISD::STRICT_FP_TO_SINT",
SDTFPToIntOp, [SDNPHasChain]>;
def strict_fp_to_uint : SDNode<"ISD::STRICT_FP_TO_UINT",
SDTFPToIntOp, [SDNPHasChain]>;
def strict_sint_to_fp : SDNode<"ISD::STRICT_SINT_TO_FP",
SDTIntToFPOp, [SDNPHasChain]>;
def strict_uint_to_fp : SDNode<"ISD::STRICT_UINT_TO_FP",
SDTIntToFPOp, [SDNPHasChain]>;
def strict_fsetcc : SDNode<"ISD::STRICT_FSETCC", SDTSetCC, [SDNPHasChain]>;
def strict_fsetccs : SDNode<"ISD::STRICT_FSETCCS", SDTSetCC, [SDNPHasChain]>;
def setcc : SDNode<"ISD::SETCC" , SDTSetCC>;
def select : SDNode<"ISD::SELECT" , SDTSelect>;
def vselect : SDNode<"ISD::VSELECT" , SDTVSelect>;
def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>;
def brcc : SDNode<"ISD::BR_CC" , SDTBrCC, [SDNPHasChain]>;
def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>;
def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>;
def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>;
def catchret : SDNode<"ISD::CATCHRET" , SDTCatchret,
[SDNPHasChain, SDNPSideEffect]>;
def cleanupret : SDNode<"ISD::CLEANUPRET" , SDTNone, [SDNPHasChain]>;
def trap : SDNode<"ISD::TRAP" , SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
def debugtrap : SDNode<"ISD::DEBUGTRAP" , SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
def ubsantrap : SDNode<"ISD::UBSANTRAP" , SDTUBSANTrap,
[SDNPHasChain, SDNPSideEffect]>;
def prefetch : SDNode<"ISD::PREFETCH" , SDTPrefetch,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore,
SDNPMemOperand]>;
def readcyclecounter : SDNode<"ISD::READCYCLECOUNTER", SDTIntLeaf,
[SDNPHasChain, SDNPSideEffect]>;
def atomic_fence : SDNode<"ISD::ATOMIC_FENCE" , SDTAtomicFence,
[SDNPHasChain, SDNPSideEffect]>;
def atomic_cmp_swap : SDNode<"ISD::ATOMIC_CMP_SWAP" , SDTAtomic3,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_add : SDNode<"ISD::ATOMIC_LOAD_ADD" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_sub : SDNode<"ISD::ATOMIC_LOAD_SUB" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_and : SDNode<"ISD::ATOMIC_LOAD_AND" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_clr : SDNode<"ISD::ATOMIC_LOAD_CLR" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_or : SDNode<"ISD::ATOMIC_LOAD_OR" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_xor : SDNode<"ISD::ATOMIC_LOAD_XOR" , SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_nand: SDNode<"ISD::ATOMIC_LOAD_NAND", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_min : SDNode<"ISD::ATOMIC_LOAD_MIN", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_max : SDNode<"ISD::ATOMIC_LOAD_MAX", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_umin : SDNode<"ISD::ATOMIC_LOAD_UMIN", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_umax : SDNode<"ISD::ATOMIC_LOAD_UMAX", SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_fadd : SDNode<"ISD::ATOMIC_LOAD_FADD" , SDTFPAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load_fsub : SDNode<"ISD::ATOMIC_LOAD_FSUB" , SDTFPAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
def atomic_load : SDNode<"ISD::ATOMIC_LOAD", SDTAtomicLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def atomic_store : SDNode<"ISD::ATOMIC_STORE", SDTAtomicStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def masked_st : SDNode<"ISD::MSTORE", SDTMaskedStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def masked_ld : SDNode<"ISD::MLOAD", SDTMaskedLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
// Do not use ld, st directly. Use load, extload, sextload, zextload, store,
// and truncst (see below).
def ld : SDNode<"ISD::LOAD" , SDTLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def st : SDNode<"ISD::STORE" , SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def ist : SDNode<"ISD::STORE" , SDTIStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>;
def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, -1, []>, []>;
def splat_vector : SDNode<"ISD::SPLAT_VECTOR", SDTypeProfile<1, 1, []>, []>;
def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>,
[]>;
// vector_extract/vector_insert are deprecated. extractelt/insertelt
// are preferred.
def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT",
SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>;
def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT",
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>;
def concat_vectors : SDNode<"ISD::CONCAT_VECTORS",
SDTypeProfile<1, 2, [SDTCisSubVecOfVec<1, 0>, SDTCisSameAs<1, 2>]>,[]>;
// This operator does not do subvector type checking. The ARM
// backend, at least, needs it.
def vector_extract_subvec : SDNode<"ISD::EXTRACT_SUBVECTOR",
SDTypeProfile<1, 2, [SDTCisInt<2>, SDTCisVec<1>, SDTCisVec<0>]>,
[]>;
// This operator does subvector type checking.
def extract_subvector : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTSubVecExtract, []>;
def insert_subvector : SDNode<"ISD::INSERT_SUBVECTOR", SDTSubVecInsert, []>;
// Nodes for intrinsics, you should use the intrinsic itself and let tblgen use
// these internally. Don't reference these directly.
def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID",
SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
[SDNPHasChain]>;
def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN",
SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>,
[SDNPHasChain]>;
def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN",
SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>;
def SDT_assert : SDTypeProfile<1, 1,
[SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 0>]>;
def assertsext : SDNode<"ISD::AssertSext", SDT_assert>;
def assertzext : SDNode<"ISD::AssertZext", SDT_assert>;
def assertalign : SDNode<"ISD::AssertAlign", SDT_assert>;
//===----------------------------------------------------------------------===//
// Selection DAG Condition Codes
class CondCode<string fcmpName = "", string icmpName = ""> {
string ICmpPredicate = icmpName;
string FCmpPredicate = fcmpName;
}
// ISD::CondCode enums, and mapping to CmpInst::Predicate names
def SETOEQ : CondCode<"FCMP_OEQ">;
def SETOGT : CondCode<"FCMP_OGT">;
def SETOGE : CondCode<"FCMP_OGE">;
def SETOLT : CondCode<"FCMP_OLT">;
def SETOLE : CondCode<"FCMP_OLE">;
def SETONE : CondCode<"FCMP_ONE">;
def SETO : CondCode<"FCMP_ORD">;
def SETUO : CondCode<"FCMP_UNO">;
def SETUEQ : CondCode<"FCMP_UEQ">;
def SETUGT : CondCode<"FCMP_UGT", "ICMP_UGT">;
def SETUGE : CondCode<"FCMP_UGE", "ICMP_UGE">;
def SETULT : CondCode<"FCMP_ULT", "ICMP_ULT">;
def SETULE : CondCode<"FCMP_ULE", "ICMP_ULE">;
def SETUNE : CondCode<"FCMP_UNE">;
def SETEQ : CondCode<"", "ICMP_EQ">;
def SETGT : CondCode<"", "ICMP_SGT">;
def SETGE : CondCode<"", "ICMP_SGE">;
def SETLT : CondCode<"", "ICMP_SLT">;
def SETLE : CondCode<"", "ICMP_SLE">;
def SETNE : CondCode<"", "ICMP_NE">;
//===----------------------------------------------------------------------===//
// Selection DAG Node Transformation Functions.
//
// This mechanism allows targets to manipulate nodes in the output DAG once a
// match has been formed. This is typically used to manipulate immediate
// values.
//
class SDNodeXForm<SDNode opc, code xformFunction> {
SDNode Opcode = opc;
code XFormFunction = xformFunction;
}
def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>;
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Fragments.
//
// Pattern fragments are reusable chunks of dags that match specific things.
// They can take arguments and have C++ predicates that control whether they
// match. They are intended to make the patterns for common instructions more
// compact and readable.
//
/// PatFrags - Represents a set of pattern fragments. Each single fragment
/// can match something on the DAG, from a single node to multiple nested other
/// fragments. The whole set of fragments matches if any of the single
/// fragments match. This allows e.g. matching and "add with overflow" and
/// a regular "add" with the same fragment set.
///
class PatFrags<dag ops, list<dag> frags, code pred = [{}],
SDNodeXForm xform = NOOP_SDNodeXForm> : SDPatternOperator {
dag Operands = ops;
list<dag> Fragments = frags;
code PredicateCode = pred;
code GISelPredicateCode = [{}];
code ImmediateCode = [{}];
SDNodeXForm OperandTransform = xform;
// When this is set, the PredicateCode may refer to a constant Operands
// vector which contains the captured nodes of the DAG, in the order listed
// by the Operands field above.
//
// This is useful when Fragments involves associative / commutative
// operators: a single piece of code can easily refer to all operands even
// when re-associated / commuted variants of the fragment are matched.
bit PredicateCodeUsesOperands = false;
// Define a few pre-packaged predicates. This helps GlobalISel import
// existing rules from SelectionDAG for many common cases.
// They will be tested prior to the code in pred and must not be used in
// ImmLeaf and its subclasses.
// Is the desired pre-packaged predicate for a load?
bit IsLoad = ?;
// Is the desired pre-packaged predicate for a store?
bit IsStore = ?;
// Is the desired pre-packaged predicate for an atomic?
bit IsAtomic = ?;
// cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
// cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
bit IsUnindexed = ?;
// cast<LoadSDNode>(N)->getExtensionType() != ISD::NON_EXTLOAD
bit IsNonExtLoad = ?;
// cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
bit IsAnyExtLoad = ?;
// cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
bit IsSignExtLoad = ?;
// cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
bit IsZeroExtLoad = ?;
// !cast<StoreSDNode>(N)->isTruncatingStore();
// cast<StoreSDNode>(N)->isTruncatingStore();
bit IsTruncStore = ?;
// cast<MemSDNode>(N)->getAddressSpace() ==
// If this empty, accept any address space.
list<int> AddressSpaces = ?;
// cast<MemSDNode>(N)->getAlignment() >=
// If this is empty, accept any alignment.
int MinAlignment = ?;
// cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Monotonic
bit IsAtomicOrderingMonotonic = ?;
// cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Acquire
bit IsAtomicOrderingAcquire = ?;
// cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Release
bit IsAtomicOrderingRelease = ?;
// cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::AcquireRelease
bit IsAtomicOrderingAcquireRelease = ?;
// cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::SequentiallyConsistent
bit IsAtomicOrderingSequentiallyConsistent = ?;
// isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())
// !isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())
bit IsAtomicOrderingAcquireOrStronger = ?;
// isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())
// !isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())
bit IsAtomicOrderingReleaseOrStronger = ?;
// cast<LoadSDNode>(N)->getMemoryVT() == MVT::<VT>;
// cast<StoreSDNode>(N)->getMemoryVT() == MVT::<VT>;
ValueType MemoryVT = ?;
// cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>;
// cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>;
ValueType ScalarMemoryVT = ?;
}
// PatFrag - A version of PatFrags matching only a single fragment.
class PatFrag<dag ops, dag frag, code pred = [{}],
SDNodeXForm xform = NOOP_SDNodeXForm>
: PatFrags<ops, [frag], pred, xform>;
// OutPatFrag is a pattern fragment that is used as part of an output pattern
// (not an input pattern). These do not have predicates or transforms, but are
// used to avoid repeated subexpressions in output patterns.
class OutPatFrag<dag ops, dag frag>
: PatFrag<ops, frag, [{}], NOOP_SDNodeXForm>;
// PatLeaf's are pattern fragments that have no operands. This is just a helper
// to define immediates and other common things concisely.
class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm>
: PatFrag<(ops), frag, pred, xform>;
// ImmLeaf is a pattern fragment with a constraint on the immediate. The
// constraint is a function that is run on the immediate (always with the value
// sign extended out to an int64_t) as Imm. For example:
//
// def immSExt8 : ImmLeaf<i16, [{ return (char)Imm == Imm; }]>;
//
// this is a more convenient form to match 'imm' nodes in than PatLeaf and also
// is preferred over using PatLeaf because it allows the code generator to
// reason more about the constraint.
//
// If FastIsel should ignore all instructions that have an operand of this type,
// the FastIselShouldIgnore flag can be set. This is an optimization to reduce
// the code size of the generated fast instruction selector.
class ImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm,
SDNode ImmNode = imm>
: PatFrag<(ops), (vt ImmNode), [{}], xform> {
let ImmediateCode = pred;
bit FastIselShouldIgnore = false;
// Is the data type of the immediate an APInt?
bit IsAPInt = false;
// Is the data type of the immediate an APFloat?
bit IsAPFloat = false;
}
// Convenience wrapper for ImmLeaf to use timm/TargetConstant instead
// of imm/Constant.
class TImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm,
SDNode ImmNode = timm> : ImmLeaf<vt, pred, xform, ImmNode>;
// An ImmLeaf except that Imm is an APInt. This is useful when you need to
// zero-extend the immediate instead of sign-extend it.
//
// Note that FastISel does not currently understand IntImmLeaf and will not
// generate code for rules that make use of it. As such, it does not make sense
// to replace ImmLeaf with IntImmLeaf. However, replacing PatLeaf with an
// IntImmLeaf will allow GlobalISel to import the rule.
class IntImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm>
: ImmLeaf<vt, pred, xform> {
let IsAPInt = true;
let FastIselShouldIgnore = true;
}
// An ImmLeaf except that Imm is an APFloat.
//
// Note that FastISel does not currently understand FPImmLeaf and will not
// generate code for rules that make use of it.
class FPImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm>
: ImmLeaf<vt, pred, xform, fpimm> {
let IsAPFloat = true;
let FastIselShouldIgnore = true;
}
// Leaf fragments.
def vtInt : PatLeaf<(vt), [{ return N->getVT().isInteger(); }]>;
def vtFP : PatLeaf<(vt), [{ return N->getVT().isFloatingPoint(); }]>;
// Use ISD::isConstantSplatVectorAllOnes or ISD::isConstantSplatVectorAllZeros
// to look for the corresponding build_vector or splat_vector. Will look through
// bitcasts and check for either opcode, except when used as a pattern root.
// When used as a pattern root, only fixed-length build_vector and scalable
// splat_vector are supported.
def immAllOnesV; // ISD::isConstantSplatVectorAllOnes
def immAllZerosV; // ISD::isConstantSplatVectorAllZeros
// Other helper fragments.
def not : PatFrag<(ops node:$in), (xor node:$in, -1)>;
def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>;
def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>;
def zanyext : PatFrags<(ops node:$op),
[(zext node:$op),
(anyext node:$op)]>;
// null_frag - The null pattern operator is used in multiclass instantiations
// which accept an SDPatternOperator for use in matching patterns for internal
// definitions. When expanding a pattern, if the null fragment is referenced
// in the expansion, the pattern is discarded and it is as-if '[]' had been
// specified. This allows multiclasses to have the isel patterns be optional.
def null_frag : SDPatternOperator;
// load fragments.
def unindexedload : PatFrag<(ops node:$ptr), (ld node:$ptr)> {
let IsLoad = true;
let IsUnindexed = true;
}
def load : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> {
let IsLoad = true;
let IsNonExtLoad = true;
}
// extending load fragments.
def extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> {
let IsLoad = true;
let IsAnyExtLoad = true;
}
def sextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> {
let IsLoad = true;
let IsSignExtLoad = true;
}
def zextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> {
let IsLoad = true;
let IsZeroExtLoad = true;
}
def extloadi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i1;
}
def extloadi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i8;
}
def extloadi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i16;
}
def extloadi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i32;
}
def extloadf16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let MemoryVT = f16;
}
def extloadf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let MemoryVT = f32;
}
def extloadf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let MemoryVT = f64;
}
def sextloadi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i1;
}
def sextloadi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i8;
}
def sextloadi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i16;
}
def sextloadi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i32;
}
def zextloadi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i1;
}
def zextloadi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i8;
}
def zextloadi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i16;
}
def zextloadi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let MemoryVT = i32;
}
def extloadvi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i1;
}
def extloadvi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i8;
}
def extloadvi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i16;
}
def extloadvi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i32;
}
def extloadvf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = f32;
}
def extloadvf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = f64;
}
def sextloadvi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i1;
}
def sextloadvi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i8;
}
def sextloadvi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i16;
}
def sextloadvi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i32;
}
def zextloadvi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i1;
}
def zextloadvi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i8;
}
def zextloadvi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i16;
}
def zextloadvi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> {
let IsLoad = true;
let ScalarMemoryVT = i32;
}
// store fragments.
def unindexedstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr)> {
let IsStore = true;
let IsUnindexed = true;
}
def store : PatFrag<(ops node:$val, node:$ptr),
(unindexedstore node:$val, node:$ptr)> {
let IsStore = true;
let IsTruncStore = false;
}
// truncstore fragments.
def truncstore : PatFrag<(ops node:$val, node:$ptr),
(unindexedstore node:$val, node:$ptr)> {
let IsStore = true;
let IsTruncStore = true;
}
def truncstorei8 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let MemoryVT = i8;
}
def truncstorei16 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let MemoryVT = i16;
}
def truncstorei32 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let MemoryVT = i32;
}
def truncstoref16 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let MemoryVT = f16;
}
def truncstoref32 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let MemoryVT = f32;
}
def truncstoref64 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let MemoryVT = f64;
}
def truncstorevi8 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let ScalarMemoryVT = i8;
}
def truncstorevi16 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let ScalarMemoryVT = i16;
}
def truncstorevi32 : PatFrag<(ops node:$val, node:$ptr),
(truncstore node:$val, node:$ptr)> {
let IsStore = true;
let ScalarMemoryVT = i32;
}
// indexed store fragments.
def istore : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset)> {
let IsStore = true;
let IsTruncStore = false;
}
def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset),
(istore node:$val, node:$base, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
}]>;
def itruncstore : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset)> {
let IsStore = true;
let IsTruncStore = true;
}
def pre_truncst : PatFrag<(ops node:$val, node:$base, node:$offset),
(itruncstore node:$val, node:$base, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
}]>;
def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i1;
}
def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i8;
}
def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i16;
}
def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i32;
}
def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = f32;
}
def pre_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let ScalarMemoryVT = i8;
}
def pre_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(pre_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let ScalarMemoryVT = i16;
}
def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset),
(istore node:$val, node:$ptr, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::POST_INC || AM == ISD::POST_DEC;
}]>;
def post_truncst : PatFrag<(ops node:$val, node:$base, node:$offset),
(itruncstore node:$val, node:$base, node:$offset), [{
ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode();
return AM == ISD::POST_INC || AM == ISD::POST_DEC;
}]>;
def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i1;
}
def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i8;
}
def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i16;
}
def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = i32;
}
def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let MemoryVT = f32;
}
def post_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let ScalarMemoryVT = i8;
}
def post_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(post_truncst node:$val, node:$base, node:$offset)> {
let IsStore = true;
let ScalarMemoryVT = i16;
}
// TODO: Split these into volatile and unordered flavors to enable
// selectively legal optimizations for each. (See D66309)
def simple_load : PatFrag<(ops node:$ptr),
(load node:$ptr), [{
return cast<LoadSDNode>(N)->isSimple();
}]>;
def simple_store : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->isSimple();
}]>;
// nontemporal store fragments.
def nontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->isNonTemporal();
}]>;
def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(nontemporalstore node:$val, node:$ptr), [{
StoreSDNode *St = cast<StoreSDNode>(N);
return St->getAlignment() >= St->getMemoryVT().getStoreSize();
}]>;
def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(nontemporalstore node:$val, node:$ptr), [{
StoreSDNode *St = cast<StoreSDNode>(N);
return St->getAlignment() < St->getMemoryVT().getStoreSize();
}]>;
// nontemporal load fragments.
def nontemporalload : PatFrag<(ops node:$ptr),
(load node:$ptr), [{
return cast<LoadSDNode>(N)->isNonTemporal();
}]>;
def alignednontemporalload : PatFrag<(ops node:$ptr),
(nontemporalload node:$ptr), [{
LoadSDNode *Ld = cast<LoadSDNode>(N);
return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();
}]>;
// setcc convenience fragments.
def setoeq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOEQ)>;
def setogt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOGT)>;
def setoge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOGE)>;
def setolt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOLT)>;
def setole : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOLE)>;
def setone : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETONE)>;
def seto : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETO)>;
def setuo : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUO)>;
def setueq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUEQ)>;
def setugt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUGT)>;
def setuge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUGE)>;
def setult : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETULT)>;
def setule : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETULE)>;
def setune : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUNE)>;
def seteq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETEQ)>;
def setgt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETGT)>;
def setge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETGE)>;
def setlt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETLT)>;
def setle : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETLE)>;
def setne : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETNE)>;
// We don't have strict FP extended loads as single DAG nodes, but we can
// still provide convenience fragments to match those operations.
def strict_extloadf32 : PatFrag<(ops node:$ptr),
(strict_fpextend (f32 (load node:$ptr)))>;
def strict_extloadf64 : PatFrag<(ops node:$ptr),
(strict_fpextend (f64 (load node:$ptr)))>;
// Convenience fragments to match both strict and non-strict fp operations
def any_fadd : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fadd node:$lhs, node:$rhs),
(fadd node:$lhs, node:$rhs)]>;
def any_fsub : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fsub node:$lhs, node:$rhs),
(fsub node:$lhs, node:$rhs)]>;
def any_fmul : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fmul node:$lhs, node:$rhs),
(fmul node:$lhs, node:$rhs)]>;
def any_fdiv : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fdiv node:$lhs, node:$rhs),
(fdiv node:$lhs, node:$rhs)]>;
def any_frem : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_frem node:$lhs, node:$rhs),
(frem node:$lhs, node:$rhs)]>;
def any_fma : PatFrags<(ops node:$src1, node:$src2, node:$src3),
[(strict_fma node:$src1, node:$src2, node:$src3),
(fma node:$src1, node:$src2, node:$src3)]>;
def any_fsqrt : PatFrags<(ops node:$src),
[(strict_fsqrt node:$src),
(fsqrt node:$src)]>;
def any_fsin : PatFrags<(ops node:$src),
[(strict_fsin node:$src),
(fsin node:$src)]>;
def any_fcos : PatFrags<(ops node:$src),
[(strict_fcos node:$src),
(fcos node:$src)]>;
def any_fexp2 : PatFrags<(ops node:$src),
[(strict_fexp2 node:$src),
(fexp2 node:$src)]>;
def any_fpow : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fpow node:$lhs, node:$rhs),
(fpow node:$lhs, node:$rhs)]>;
def any_flog2 : PatFrags<(ops node:$src),
[(strict_flog2 node:$src),
(flog2 node:$src)]>;
def any_frint : PatFrags<(ops node:$src),
[(strict_frint node:$src),
(frint node:$src)]>;
def any_lrint : PatFrags<(ops node:$src),
[(strict_lrint node:$src),
(lrint node:$src)]>;
def any_llrint : PatFrags<(ops node:$src),
[(strict_llrint node:$src),
(llrint node:$src)]>;
def any_fnearbyint : PatFrags<(ops node:$src),
[(strict_fnearbyint node:$src),
(fnearbyint node:$src)]>;
def any_fceil : PatFrags<(ops node:$src),
[(strict_fceil node:$src),
(fceil node:$src)]>;
def any_ffloor : PatFrags<(ops node:$src),
[(strict_ffloor node:$src),
(ffloor node:$src)]>;
def any_lround : PatFrags<(ops node:$src),
[(strict_lround node:$src),
(lround node:$src)]>;
def any_llround : PatFrags<(ops node:$src),
[(strict_llround node:$src),
(llround node:$src)]>;
def any_fround : PatFrags<(ops node:$src),
[(strict_fround node:$src),
(fround node:$src)]>;
def any_ftrunc : PatFrags<(ops node:$src),
[(strict_ftrunc node:$src),
(ftrunc node:$src)]>;
def any_fmaxnum : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fmaxnum node:$lhs, node:$rhs),
(fmaxnum node:$lhs, node:$rhs)]>;
def any_fminnum : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fminnum node:$lhs, node:$rhs),
(fminnum node:$lhs, node:$rhs)]>;
def any_fmaximum : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fmaximum node:$lhs, node:$rhs),
(fmaximum node:$lhs, node:$rhs)]>;
def any_fminimum : PatFrags<(ops node:$lhs, node:$rhs),
[(strict_fminimum node:$lhs, node:$rhs),
(fminimum node:$lhs, node:$rhs)]>;
def any_fpround : PatFrags<(ops node:$src),
[(strict_fpround node:$src),
(fpround node:$src)]>;
def any_fpextend : PatFrags<(ops node:$src),
[(strict_fpextend node:$src),
(fpextend node:$src)]>;
def any_extloadf32 : PatFrags<(ops node:$ptr),
[(strict_extloadf32 node:$ptr),
(extloadf32 node:$ptr)]>;
def any_extloadf64 : PatFrags<(ops node:$ptr),
[(strict_extloadf64 node:$ptr),
(extloadf64 node:$ptr)]>;
def any_fp_to_sint : PatFrags<(ops node:$src),
[(strict_fp_to_sint node:$src),
(fp_to_sint node:$src)]>;
def any_fp_to_uint : PatFrags<(ops node:$src),
[(strict_fp_to_uint node:$src),
(fp_to_uint node:$src)]>;
def any_sint_to_fp : PatFrags<(ops node:$src),
[(strict_sint_to_fp node:$src),
(sint_to_fp node:$src)]>;
def any_uint_to_fp : PatFrags<(ops node:$src),
[(strict_uint_to_fp node:$src),
(uint_to_fp node:$src)]>;
def any_fsetcc : PatFrags<(ops node:$lhs, node:$rhs, node:$pred),
[(strict_fsetcc node:$lhs, node:$rhs, node:$pred),
(setcc node:$lhs, node:$rhs, node:$pred)]>;
def any_fsetccs : PatFrags<(ops node:$lhs, node:$rhs, node:$pred),
[(strict_fsetccs node:$lhs, node:$rhs, node:$pred),
(setcc node:$lhs, node:$rhs, node:$pred)]>;
multiclass binary_atomic_op_ord<SDNode atomic_op> {
def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingMonotonic = true;
}
def NAME#_acquire : PatFrag<(ops node:$ptr, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingAcquire = true;
}
def NAME#_release : PatFrag<(ops node:$ptr, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingRelease = true;
}
def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingAcquireRelease = true;
}
def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingSequentiallyConsistent = true;
}
}
multiclass ternary_atomic_op_ord<SDNode atomic_op> {
def NAME#_monotonic : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingMonotonic = true;
}
def NAME#_acquire : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingAcquire = true;
}
def NAME#_release : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingRelease = true;
}
def NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingAcquireRelease = true;
}
def NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(!cast<SDPatternOperator>(NAME) node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let IsAtomicOrderingSequentiallyConsistent = true;
}
}
multiclass binary_atomic_op<SDNode atomic_op, bit IsInt = 1> {
def _8 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val)> {
let IsAtomic = true;
let MemoryVT = !if(IsInt, i8, ?);
}
def _16 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val)> {
let IsAtomic = true;
let MemoryVT = !if(IsInt, i16, f16);
}
def _32 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val)> {
let IsAtomic = true;
let MemoryVT = !if(IsInt, i32, f32);
}
def _64 : PatFrag<(ops node:$ptr, node:$val),
(atomic_op node:$ptr, node:$val)> {
let IsAtomic = true;
let MemoryVT = !if(IsInt, i64, f64);
}
defm NAME#_8 : binary_atomic_op_ord<atomic_op>;
defm NAME#_16 : binary_atomic_op_ord<atomic_op>;
defm NAME#_32 : binary_atomic_op_ord<atomic_op>;
defm NAME#_64 : binary_atomic_op_ord<atomic_op>;
}
multiclass ternary_atomic_op<SDNode atomic_op> {
def _8 : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(atomic_op node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let MemoryVT = i8;
}
def _16 : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(atomic_op node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let MemoryVT = i16;
}
def _32 : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(atomic_op node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let MemoryVT = i32;
}
def _64 : PatFrag<(ops node:$ptr, node:$cmp, node:$val),
(atomic_op node:$ptr, node:$cmp, node:$val)> {
let IsAtomic = true;
let MemoryVT = i64;
}
defm NAME#_8 : ternary_atomic_op_ord<atomic_op>;
defm NAME#_16 : ternary_atomic_op_ord<atomic_op>;
defm NAME#_32 : ternary_atomic_op_ord<atomic_op>;
defm NAME#_64 : ternary_atomic_op_ord<atomic_op>;
}
defm atomic_load_add : binary_atomic_op<atomic_load_add>;
defm atomic_swap : binary_atomic_op<atomic_swap>;
defm atomic_load_sub : binary_atomic_op<atomic_load_sub>;
defm atomic_load_and : binary_atomic_op<atomic_load_and>;
defm atomic_load_clr : binary_atomic_op<atomic_load_clr>;
defm atomic_load_or : binary_atomic_op<atomic_load_or>;
defm atomic_load_xor : binary_atomic_op<atomic_load_xor>;
defm atomic_load_nand : binary_atomic_op<atomic_load_nand>;
defm atomic_load_min : binary_atomic_op<atomic_load_min>;
defm atomic_load_max : binary_atomic_op<atomic_load_max>;
defm atomic_load_umin : binary_atomic_op<atomic_load_umin>;
defm atomic_load_umax : binary_atomic_op<atomic_load_umax>;
defm atomic_store : binary_atomic_op<atomic_store>;
defm atomic_cmp_swap : ternary_atomic_op<atomic_cmp_swap>;
def atomic_load_8 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr)> {
let IsAtomic = true;
let MemoryVT = i8;
}
def atomic_load_16 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr)> {
let IsAtomic = true;
let MemoryVT = i16;
}
def atomic_load_32 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr)> {
let IsAtomic = true;
let MemoryVT = i32;
}
def atomic_load_64 :
PatFrag<(ops node:$ptr),
(atomic_load node:$ptr)> {
let IsAtomic = true;
let MemoryVT = i64;
}
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Support.
//
// Patterns are what are actually matched against by the target-flavored
// instruction selection DAG. Instructions defined by the target implicitly
// define patterns in most cases, but patterns can also be explicitly added when
// an operation is defined by a sequence of instructions (e.g. loading a large
// immediate value on RISC targets that do not support immediates as large as
// their GPRs).
//
class Pattern<dag patternToMatch, list<dag> resultInstrs> {
dag PatternToMatch = patternToMatch;
list<dag> ResultInstrs = resultInstrs;
list<Predicate> Predicates = []; // See class Instruction in Target.td.
int AddedComplexity = 0; // See class Instruction in Target.td.
}
// Pat - A simple (but common) form of a pattern, which produces a simple result
// not needing a full list.
class Pat<dag pattern, dag result> : Pattern<pattern, [result]>;
//===----------------------------------------------------------------------===//
// Complex pattern definitions.
//
// Complex patterns, e.g. X86 addressing mode, requires pattern matching code
// in C++. NumOperands is the number of operands returned by the select function;
// SelectFunc is the name of the function used to pattern match the max. pattern;
// RootNodes are the list of possible root nodes of the sub-dags to match.
// e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>;
//
class ComplexPattern<ValueType ty, int numops, string fn,
list<SDNode> roots = [], list<SDNodeProperty> props = [],
int complexity = -1> {
ValueType Ty = ty;
int NumOperands = numops;
string SelectFunc = fn;
list<SDNode> RootNodes = roots;
list<SDNodeProperty> Properties = props;
int Complexity = complexity;
}