llvm-for-llvmta/include/llvm/IR/Intrinsics.h

243 lines
8.3 KiB
C++

//===- Intrinsics.h - LLVM Intrinsic Function Handling ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a set of enums which allow processing of intrinsic
// functions. Values of these enum types are returned by
// Function::getIntrinsicID.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INTRINSICS_H
#define LLVM_IR_INTRINSICS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/TypeSize.h"
#include <string>
namespace llvm {
class Type;
class FunctionType;
class Function;
class LLVMContext;
class Module;
class AttributeList;
/// This namespace contains an enum with a value for every intrinsic/builtin
/// function known by LLVM. The enum values are returned by
/// Function::getIntrinsicID().
namespace Intrinsic {
// Abstraction for the arguments of the noalias intrinsics
static const int NoAliasScopeDeclScopeArg = 0;
// Intrinsic ID type. This is an opaque typedef to facilitate splitting up
// the enum into target-specific enums.
typedef unsigned ID;
enum IndependentIntrinsics : unsigned {
not_intrinsic = 0, // Must be zero
// Get the intrinsic enums generated from Intrinsics.td
#define GET_INTRINSIC_ENUM_VALUES
#include "llvm/IR/IntrinsicEnums.inc"
#undef GET_INTRINSIC_ENUM_VALUES
};
/// Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
/// Note, this version is for intrinsics with no overloads. Use the other
/// version of getName if overloads are required.
StringRef getName(ID id);
/// Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
/// Note, this version of getName supports overloads, but is less efficient
/// than the StringRef version of this function. If no overloads are
/// requried, it is safe to use this version, but better to use the StringRef
/// version.
std::string getName(ID id, ArrayRef<Type*> Tys);
/// Return the function type for an intrinsic.
FunctionType *getType(LLVMContext &Context, ID id,
ArrayRef<Type*> Tys = None);
/// Returns true if the intrinsic can be overloaded.
bool isOverloaded(ID id);
/// Returns true if the intrinsic is a leaf, i.e. it does not make any calls
/// itself. Most intrinsics are leafs, the exceptions being the patchpoint
/// and statepoint intrinsics. These call (or invoke) their "target" argument.
bool isLeaf(ID id);
/// Return the attributes for an intrinsic.
AttributeList getAttributes(LLVMContext &C, ID id);
/// Create or insert an LLVM Function declaration for an intrinsic, and return
/// it.
///
/// The Tys parameter is for intrinsics with overloaded types (e.g., those
/// using iAny, fAny, vAny, or iPTRAny). For a declaration of an overloaded
/// intrinsic, Tys must provide exactly one type for each overloaded type in
/// the intrinsic.
Function *getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys = None);
/// Looks up Name in NameTable via binary search. NameTable must be sorted
/// and all entries must start with "llvm.". If NameTable contains an exact
/// match for Name or a prefix of Name followed by a dot, its index in
/// NameTable is returned. Otherwise, -1 is returned.
int lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
StringRef Name);
/// Map a GCC builtin name to an intrinsic ID.
ID getIntrinsicForGCCBuiltin(const char *Prefix, StringRef BuiltinName);
/// Map a MS builtin name to an intrinsic ID.
ID getIntrinsicForMSBuiltin(const char *Prefix, StringRef BuiltinName);
/// This is a type descriptor which explains the type requirements of an
/// intrinsic. This is returned by getIntrinsicInfoTableEntries.
struct IITDescriptor {
enum IITDescriptorKind {
Void,
VarArg,
MMX,
Token,
Metadata,
Half,
BFloat,
Float,
Double,
Quad,
Integer,
Vector,
Pointer,
Struct,
Argument,
ExtendArgument,
TruncArgument,
HalfVecArgument,
SameVecWidthArgument,
PtrToArgument,
PtrToElt,
VecOfAnyPtrsToElt,
VecElementArgument,
Subdivide2Argument,
Subdivide4Argument,
VecOfBitcastsToInt,
AMX
} Kind;
union {
unsigned Integer_Width;
unsigned Float_Width;
unsigned Pointer_AddressSpace;
unsigned Struct_NumElements;
unsigned Argument_Info;
ElementCount Vector_Width;
};
enum ArgKind {
AK_Any,
AK_AnyInteger,
AK_AnyFloat,
AK_AnyVector,
AK_AnyPointer,
AK_MatchType = 7
};
unsigned getArgumentNumber() const {
assert(Kind == Argument || Kind == ExtendArgument ||
Kind == TruncArgument || Kind == HalfVecArgument ||
Kind == SameVecWidthArgument || Kind == PtrToArgument ||
Kind == PtrToElt || Kind == VecElementArgument ||
Kind == Subdivide2Argument || Kind == Subdivide4Argument ||
Kind == VecOfBitcastsToInt);
return Argument_Info >> 3;
}
ArgKind getArgumentKind() const {
assert(Kind == Argument || Kind == ExtendArgument ||
Kind == TruncArgument || Kind == HalfVecArgument ||
Kind == SameVecWidthArgument || Kind == PtrToArgument ||
Kind == VecElementArgument || Kind == Subdivide2Argument ||
Kind == Subdivide4Argument || Kind == VecOfBitcastsToInt);
return (ArgKind)(Argument_Info & 7);
}
// VecOfAnyPtrsToElt uses both an overloaded argument (for address space)
// and a reference argument (for matching vector width and element types)
unsigned getOverloadArgNumber() const {
assert(Kind == VecOfAnyPtrsToElt);
return Argument_Info >> 16;
}
unsigned getRefArgNumber() const {
assert(Kind == VecOfAnyPtrsToElt);
return Argument_Info & 0xFFFF;
}
static IITDescriptor get(IITDescriptorKind K, unsigned Field) {
IITDescriptor Result = { K, { Field } };
return Result;
}
static IITDescriptor get(IITDescriptorKind K, unsigned short Hi,
unsigned short Lo) {
unsigned Field = Hi << 16 | Lo;
IITDescriptor Result = {K, {Field}};
return Result;
}
static IITDescriptor getVector(unsigned Width, bool IsScalable) {
IITDescriptor Result = {Vector, {0}};
Result.Vector_Width = ElementCount::get(Width, IsScalable);
return Result;
}
};
/// Return the IIT table descriptor for the specified intrinsic into an array
/// of IITDescriptors.
void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl<IITDescriptor> &T);
enum MatchIntrinsicTypesResult {
MatchIntrinsicTypes_Match = 0,
MatchIntrinsicTypes_NoMatchRet = 1,
MatchIntrinsicTypes_NoMatchArg = 2,
};
/// Match the specified function type with the type constraints specified by
/// the .td file. If the given type is an overloaded type it is pushed to the
/// ArgTys vector.
///
/// Returns false if the given type matches with the constraints, true
/// otherwise.
MatchIntrinsicTypesResult
matchIntrinsicSignature(FunctionType *FTy, ArrayRef<IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys);
/// Verify if the intrinsic has variable arguments. This method is intended to
/// be called after all the fixed arguments have been matched first.
///
/// This method returns true on error.
bool matchIntrinsicVarArg(bool isVarArg, ArrayRef<IITDescriptor> &Infos);
/// Gets the type arguments of an intrinsic call by matching type contraints
/// specified by the .td file. The overloaded types are pushed into the
/// AgTys vector.
///
/// Returns false if the given function is not a valid intrinsic call.
bool getIntrinsicSignature(Function *F, SmallVectorImpl<Type *> &ArgTys);
// Checks if the intrinsic name matches with its signature and if not
// returns the declaration with the same signature and remangled name.
llvm::Optional<Function*> remangleIntrinsicFunction(Function *F);
} // End Intrinsic namespace
} // End llvm namespace
#endif