llvm-for-llvmta/include/llvm/Analysis/InlineAdvisor.h

287 lines
11 KiB
C++

//===- InlineAdvisor.h - Inlining decision making abstraction -*- C++ ---*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#ifndef LLVM_INLINEADVISOR_H_
#define LLVM_INLINEADVISOR_H_
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
#include <memory>
#include <unordered_set>
namespace llvm {
class BasicBlock;
class CallBase;
class Function;
class Module;
class OptimizationRemarkEmitter;
/// There are 3 scenarios we can use the InlineAdvisor:
/// - Default - use manual heuristics.
///
/// - Release mode, the expected mode for production, day to day deployments.
/// In this mode, when building the compiler, we also compile a pre-trained ML
/// model to native code, and link it as a static library. This mode has low
/// overhead and no additional dependencies for the compiler runtime.
///
/// - Development mode, for training new models.
/// In this mode, we trade off runtime performance for flexibility. This mode
/// requires the full C Tensorflow API library, and evaluates models
/// dynamically. This mode also permits generating training logs, for offline
/// training.
enum class InliningAdvisorMode : int {
Default,
Release,
Development
};
class InlineAdvisor;
/// Capture state between an inlining decision having had been made, and
/// its impact being observable. When collecting model training data, this
/// allows recording features/decisions/partial reward data sets.
///
/// Derivations of this type are expected to be tightly coupled with their
/// InliningAdvisors. The base type implements the minimal contractual
/// obligations.
class InlineAdvice {
public:
InlineAdvice(InlineAdvisor *Advisor, CallBase &CB,
OptimizationRemarkEmitter &ORE, bool IsInliningRecommended);
InlineAdvice(InlineAdvice &&) = delete;
InlineAdvice(const InlineAdvice &) = delete;
virtual ~InlineAdvice() {
assert(Recorded && "InlineAdvice should have been informed of the "
"inliner's decision in all cases");
}
/// Exactly one of the record* APIs must be called. Implementers may extend
/// behavior by implementing the corresponding record*Impl.
///
/// Call after inlining succeeded, and did not result in deleting the callee.
void recordInlining();
/// Call after inlining succeeded, and resulted in deleting the callee.
void recordInliningWithCalleeDeleted();
/// Call after the decision for a call site was to not inline.
void recordUnsuccessfulInlining(const InlineResult &Result) {
markRecorded();
recordUnsuccessfulInliningImpl(Result);
}
/// Call to indicate inlining was not attempted.
void recordUnattemptedInlining() {
markRecorded();
recordUnattemptedInliningImpl();
}
/// Get the inlining recommendation.
bool isInliningRecommended() const { return IsInliningRecommended; }
const DebugLoc &getOriginalCallSiteDebugLoc() const { return DLoc; }
const BasicBlock *getOriginalCallSiteBasicBlock() const { return Block; }
protected:
virtual void recordInliningImpl() {}
virtual void recordInliningWithCalleeDeletedImpl() {}
virtual void recordUnsuccessfulInliningImpl(const InlineResult &Result) {}
virtual void recordUnattemptedInliningImpl() {}
InlineAdvisor *const Advisor;
/// Caller and Callee are pre-inlining.
Function *const Caller;
Function *const Callee;
// Capture the context of CB before inlining, as a successful inlining may
// change that context, and we want to report success or failure in the
// original context.
const DebugLoc DLoc;
const BasicBlock *const Block;
OptimizationRemarkEmitter &ORE;
const bool IsInliningRecommended;
private:
void markRecorded() {
assert(!Recorded && "Recording should happen exactly once");
Recorded = true;
}
void recordInlineStatsIfNeeded();
bool Recorded = false;
};
class DefaultInlineAdvice : public InlineAdvice {
public:
DefaultInlineAdvice(InlineAdvisor *Advisor, CallBase &CB,
Optional<InlineCost> OIC, OptimizationRemarkEmitter &ORE,
bool EmitRemarks = true)
: InlineAdvice(Advisor, CB, ORE, OIC.hasValue()), OriginalCB(&CB),
OIC(OIC), EmitRemarks(EmitRemarks) {}
private:
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override;
void recordInliningWithCalleeDeletedImpl() override;
void recordInliningImpl() override;
private:
CallBase *const OriginalCB;
Optional<InlineCost> OIC;
bool EmitRemarks;
};
/// Interface for deciding whether to inline a call site or not.
class InlineAdvisor {
public:
InlineAdvisor(InlineAdvisor &&) = delete;
virtual ~InlineAdvisor();
/// Get an InlineAdvice containing a recommendation on whether to
/// inline or not. \p CB is assumed to be a direct call. \p FAM is assumed to
/// be up-to-date wrt previous inlining decisions. \p MandatoryOnly indicates
/// only mandatory (always-inline) call sites should be recommended - this
/// allows the InlineAdvisor track such inlininings.
/// Returns an InlineAdvice with the inlining recommendation.
std::unique_ptr<InlineAdvice> getAdvice(CallBase &CB,
bool MandatoryOnly = false);
/// This must be called when the Inliner pass is entered, to allow the
/// InlineAdvisor update internal state, as result of function passes run
/// between Inliner pass runs (for the same module).
virtual void onPassEntry() {}
/// This must be called when the Inliner pass is exited, as function passes
/// may be run subsequently. This allows an implementation of InlineAdvisor
/// to prepare for a partial update.
virtual void onPassExit() {}
protected:
InlineAdvisor(Module &M, FunctionAnalysisManager &FAM);
virtual std::unique_ptr<InlineAdvice> getAdviceImpl(CallBase &CB) = 0;
virtual std::unique_ptr<InlineAdvice> getMandatoryAdvice(CallBase &CB,
bool Advice);
Module &M;
FunctionAnalysisManager &FAM;
std::unique_ptr<ImportedFunctionsInliningStatistics> ImportedFunctionsStats;
/// We may want to defer deleting functions to after the inlining for a whole
/// module has finished. This allows us to reliably use function pointers as
/// unique identifiers, as an efficient implementation detail of the
/// InlineAdvisor. Otherwise, it is possible the memory allocator
/// re-allocate Function objects at the same address of a deleted Function;
/// and Functions are potentially created during the function passes called
/// after each SCC inlining (e.g. argument promotion does that).
void freeDeletedFunctions();
bool isFunctionDeleted(const Function *F) const {
return DeletedFunctions.count(F);
}
enum class MandatoryInliningKind { NotMandatory, Always, Never };
static MandatoryInliningKind getMandatoryKind(CallBase &CB,
FunctionAnalysisManager &FAM,
OptimizationRemarkEmitter &ORE);
OptimizationRemarkEmitter &getCallerORE(CallBase &CB);
private:
friend class InlineAdvice;
void markFunctionAsDeleted(Function *F);
std::unordered_set<const Function *> DeletedFunctions;
};
/// The default (manual heuristics) implementation of the InlineAdvisor. This
/// implementation does not need to keep state between inliner pass runs, and is
/// reusable as-is for inliner pass test scenarios, as well as for regular use.
class DefaultInlineAdvisor : public InlineAdvisor {
public:
DefaultInlineAdvisor(Module &M, FunctionAnalysisManager &FAM,
InlineParams Params)
: InlineAdvisor(M, FAM), Params(Params) {}
private:
std::unique_ptr<InlineAdvice> getAdviceImpl(CallBase &CB) override;
void onPassExit() override { freeDeletedFunctions(); }
InlineParams Params;
};
/// The InlineAdvisorAnalysis is a module pass because the InlineAdvisor
/// needs to capture state right before inlining commences over a module.
class InlineAdvisorAnalysis : public AnalysisInfoMixin<InlineAdvisorAnalysis> {
public:
static AnalysisKey Key;
InlineAdvisorAnalysis() = default;
struct Result {
Result(Module &M, ModuleAnalysisManager &MAM) : M(M), MAM(MAM) {}
bool invalidate(Module &, const PreservedAnalyses &,
ModuleAnalysisManager::Invalidator &) {
// InlineAdvisor must be preserved across analysis invalidations.
return false;
}
bool tryCreate(InlineParams Params, InliningAdvisorMode Mode,
StringRef ReplayFile);
InlineAdvisor *getAdvisor() const { return Advisor.get(); }
void clear() { Advisor.reset(); }
private:
Module &M;
ModuleAnalysisManager &MAM;
std::unique_ptr<InlineAdvisor> Advisor;
};
Result run(Module &M, ModuleAnalysisManager &MAM) { return Result(M, MAM); }
};
#ifdef LLVM_HAVE_TF_AOT
std::unique_ptr<InlineAdvisor>
getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM);
#endif
#ifdef LLVM_HAVE_TF_API
std::unique_ptr<InlineAdvisor>
getDevelopmentModeAdvisor(Module &M, ModuleAnalysisManager &MAM,
std::function<bool(CallBase &)> GetDefaultAdvice);
#endif
// Default (manual policy) decision making helper APIs. Shared with the legacy
// pass manager inliner.
/// Return the cost only if the inliner should attempt to inline at the given
/// CallSite. If we return the cost, we will emit an optimisation remark later
/// using that cost, so we won't do so from this function. Return None if
/// inlining should not be attempted.
Optional<InlineCost>
shouldInline(CallBase &CB, function_ref<InlineCost(CallBase &CB)> GetInlineCost,
OptimizationRemarkEmitter &ORE, bool EnableDeferral = true);
/// Emit ORE message.
void emitInlinedInto(OptimizationRemarkEmitter &ORE, DebugLoc DLoc,
const BasicBlock *Block, const Function &Callee,
const Function &Caller, const InlineCost &IC,
bool ForProfileContext = false,
const char *PassName = nullptr);
/// get call site location as string
std::string getCallSiteLocation(DebugLoc DLoc);
/// Add location info to ORE message.
void addLocationToRemarks(OptimizationRemark &Remark, DebugLoc DLoc);
/// Set the inline-remark attribute.
void setInlineRemark(CallBase &CB, StringRef Message);
/// Utility for extracting the inline cost message to a string.
std::string inlineCostStr(const InlineCost &IC);
} // namespace llvm
#endif // LLVM_INLINEADVISOR_H_