1253 lines
52 KiB
C++
1253 lines
52 KiB
C++
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the generic AliasAnalysis interface, which is used as the
|
|
// common interface used by all clients of alias analysis information, and
|
|
// implemented by all alias analysis implementations. Mod/Ref information is
|
|
// also captured by this interface.
|
|
//
|
|
// Implementations of this interface must implement the various virtual methods,
|
|
// which automatically provides functionality for the entire suite of client
|
|
// APIs.
|
|
//
|
|
// This API identifies memory regions with the MemoryLocation class. The pointer
|
|
// component specifies the base memory address of the region. The Size specifies
|
|
// the maximum size (in address units) of the memory region, or
|
|
// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
|
|
// identifies the "type" of the memory reference; see the
|
|
// TypeBasedAliasAnalysis class for details.
|
|
//
|
|
// Some non-obvious details include:
|
|
// - Pointers that point to two completely different objects in memory never
|
|
// alias, regardless of the value of the Size component.
|
|
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
|
|
// is two pointers to constant memory. Even if they are equal, constant
|
|
// memory is never stored to, so there will never be any dependencies.
|
|
// In this and other situations, the pointers may be both NoAlias and
|
|
// MustAlias at the same time. The current API can only return one result,
|
|
// though this is rarely a problem in practice.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
|
|
#define LLVM_ANALYSIS_ALIASANALYSIS_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Pass.h"
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class AnalysisUsage;
|
|
class AtomicCmpXchgInst;
|
|
class BasicAAResult;
|
|
class BasicBlock;
|
|
class CatchPadInst;
|
|
class CatchReturnInst;
|
|
class DominatorTree;
|
|
class FenceInst;
|
|
class Function;
|
|
class InvokeInst;
|
|
class PreservedAnalyses;
|
|
class TargetLibraryInfo;
|
|
class Value;
|
|
|
|
/// The possible results of an alias query.
|
|
///
|
|
/// These results are always computed between two MemoryLocation objects as
|
|
/// a query to some alias analysis.
|
|
///
|
|
/// Note that these are unscoped enumerations because we would like to support
|
|
/// implicitly testing a result for the existence of any possible aliasing with
|
|
/// a conversion to bool, but an "enum class" doesn't support this. The
|
|
/// canonical names from the literature are suffixed and unique anyways, and so
|
|
/// they serve as global constants in LLVM for these results.
|
|
///
|
|
/// See docs/AliasAnalysis.html for more information on the specific meanings
|
|
/// of these values.
|
|
enum AliasResult : uint8_t {
|
|
/// The two locations do not alias at all.
|
|
///
|
|
/// This value is arranged to convert to false, while all other values
|
|
/// convert to true. This allows a boolean context to convert the result to
|
|
/// a binary flag indicating whether there is the possibility of aliasing.
|
|
NoAlias = 0,
|
|
/// The two locations may or may not alias. This is the least precise result.
|
|
MayAlias,
|
|
/// The two locations alias, but only due to a partial overlap.
|
|
PartialAlias,
|
|
/// The two locations precisely alias each other.
|
|
MustAlias,
|
|
};
|
|
|
|
/// << operator for AliasResult.
|
|
raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
|
|
|
|
/// Flags indicating whether a memory access modifies or references memory.
|
|
///
|
|
/// This is no access at all, a modification, a reference, or both
|
|
/// a modification and a reference. These are specifically structured such that
|
|
/// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
|
|
/// work with any of the possible values.
|
|
enum class ModRefInfo : uint8_t {
|
|
/// Must is provided for completeness, but no routines will return only
|
|
/// Must today. See definition of Must below.
|
|
Must = 0,
|
|
/// The access may reference the value stored in memory,
|
|
/// a mustAlias relation was found, and no mayAlias or partialAlias found.
|
|
MustRef = 1,
|
|
/// The access may modify the value stored in memory,
|
|
/// a mustAlias relation was found, and no mayAlias or partialAlias found.
|
|
MustMod = 2,
|
|
/// The access may reference, modify or both the value stored in memory,
|
|
/// a mustAlias relation was found, and no mayAlias or partialAlias found.
|
|
MustModRef = MustRef | MustMod,
|
|
/// The access neither references nor modifies the value stored in memory.
|
|
NoModRef = 4,
|
|
/// The access may reference the value stored in memory.
|
|
Ref = NoModRef | MustRef,
|
|
/// The access may modify the value stored in memory.
|
|
Mod = NoModRef | MustMod,
|
|
/// The access may reference and may modify the value stored in memory.
|
|
ModRef = Ref | Mod,
|
|
|
|
/// About Must:
|
|
/// Must is set in a best effort manner.
|
|
/// We usually do not try our best to infer Must, instead it is merely
|
|
/// another piece of "free" information that is presented when available.
|
|
/// Must set means there was certainly a MustAlias found. For calls,
|
|
/// where multiple arguments are checked (argmemonly), this translates to
|
|
/// only MustAlias or NoAlias was found.
|
|
/// Must is not set for RAR accesses, even if the two locations must
|
|
/// alias. The reason is that two read accesses translate to an early return
|
|
/// of NoModRef. An additional alias check to set Must may be
|
|
/// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
|
|
/// We refer to Must being *set* when the most significant bit is *cleared*.
|
|
/// Conversely we *clear* Must information by *setting* the Must bit to 1.
|
|
};
|
|
|
|
LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
|
|
return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
|
|
static_cast<int>(ModRefInfo::Must);
|
|
}
|
|
LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
|
|
return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
|
|
}
|
|
LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
|
|
return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
|
|
static_cast<int>(ModRefInfo::MustModRef);
|
|
}
|
|
LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
|
|
return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
|
|
}
|
|
LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
|
|
return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
|
|
}
|
|
LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
|
|
return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
|
|
}
|
|
|
|
LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
|
|
return ModRefInfo(static_cast<int>(MRI) |
|
|
static_cast<int>(ModRefInfo::MustMod));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
|
|
return ModRefInfo(static_cast<int>(MRI) |
|
|
static_cast<int>(ModRefInfo::MustRef));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
|
|
return ModRefInfo(static_cast<int>(MRI) &
|
|
static_cast<int>(ModRefInfo::MustModRef));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
|
|
return ModRefInfo(static_cast<int>(MRI) |
|
|
static_cast<int>(ModRefInfo::MustModRef));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
|
|
return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
|
|
return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
|
|
return ModRefInfo(static_cast<int>(MRI) |
|
|
static_cast<int>(ModRefInfo::NoModRef));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
|
|
const ModRefInfo MRI2) {
|
|
return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
|
|
}
|
|
LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
|
|
const ModRefInfo MRI2) {
|
|
return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
|
|
}
|
|
|
|
/// The locations at which a function might access memory.
|
|
///
|
|
/// These are primarily used in conjunction with the \c AccessKind bits to
|
|
/// describe both the nature of access and the locations of access for a
|
|
/// function call.
|
|
enum FunctionModRefLocation {
|
|
/// Base case is no access to memory.
|
|
FMRL_Nowhere = 0,
|
|
/// Access to memory via argument pointers.
|
|
FMRL_ArgumentPointees = 8,
|
|
/// Memory that is inaccessible via LLVM IR.
|
|
FMRL_InaccessibleMem = 16,
|
|
/// Access to any memory.
|
|
FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
|
|
};
|
|
|
|
/// Summary of how a function affects memory in the program.
|
|
///
|
|
/// Loads from constant globals are not considered memory accesses for this
|
|
/// interface. Also, functions may freely modify stack space local to their
|
|
/// invocation without having to report it through these interfaces.
|
|
enum FunctionModRefBehavior {
|
|
/// This function does not perform any non-local loads or stores to memory.
|
|
///
|
|
/// This property corresponds to the GCC 'const' attribute.
|
|
/// This property corresponds to the LLVM IR 'readnone' attribute.
|
|
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
|
|
FMRB_DoesNotAccessMemory =
|
|
FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
|
|
|
|
/// The only memory references in this function (if it has any) are
|
|
/// non-volatile loads from objects pointed to by its pointer-typed
|
|
/// arguments, with arbitrary offsets.
|
|
///
|
|
/// This property corresponds to the combination of the IntrReadMem
|
|
/// and IntrArgMemOnly LLVM intrinsic flags.
|
|
FMRB_OnlyReadsArgumentPointees =
|
|
FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
|
|
|
|
/// The only memory references in this function (if it has any) are
|
|
/// non-volatile stores from objects pointed to by its pointer-typed
|
|
/// arguments, with arbitrary offsets.
|
|
///
|
|
/// This property corresponds to the combination of the IntrWriteMem
|
|
/// and IntrArgMemOnly LLVM intrinsic flags.
|
|
FMRB_OnlyWritesArgumentPointees =
|
|
FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
|
|
|
|
/// The only memory references in this function (if it has any) are
|
|
/// non-volatile loads and stores from objects pointed to by its
|
|
/// pointer-typed arguments, with arbitrary offsets.
|
|
///
|
|
/// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
|
|
FMRB_OnlyAccessesArgumentPointees =
|
|
FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
|
|
|
|
/// The only memory references in this function (if it has any) are
|
|
/// reads of memory that is otherwise inaccessible via LLVM IR.
|
|
///
|
|
/// This property corresponds to the LLVM IR inaccessiblememonly attribute.
|
|
FMRB_OnlyReadsInaccessibleMem =
|
|
FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
|
|
|
|
/// The only memory references in this function (if it has any) are
|
|
/// writes to memory that is otherwise inaccessible via LLVM IR.
|
|
///
|
|
/// This property corresponds to the LLVM IR inaccessiblememonly attribute.
|
|
FMRB_OnlyWritesInaccessibleMem =
|
|
FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
|
|
|
|
/// The only memory references in this function (if it has any) are
|
|
/// references of memory that is otherwise inaccessible via LLVM IR.
|
|
///
|
|
/// This property corresponds to the LLVM IR inaccessiblememonly attribute.
|
|
FMRB_OnlyAccessesInaccessibleMem =
|
|
FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
|
|
|
|
/// The function may perform non-volatile loads from objects pointed
|
|
/// to by its pointer-typed arguments, with arbitrary offsets, and
|
|
/// it may also perform loads of memory that is otherwise
|
|
/// inaccessible via LLVM IR.
|
|
///
|
|
/// This property corresponds to the LLVM IR
|
|
/// inaccessiblemem_or_argmemonly attribute.
|
|
FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
|
|
FMRL_ArgumentPointees |
|
|
static_cast<int>(ModRefInfo::Ref),
|
|
|
|
/// The function may perform non-volatile stores to objects pointed
|
|
/// to by its pointer-typed arguments, with arbitrary offsets, and
|
|
/// it may also perform stores of memory that is otherwise
|
|
/// inaccessible via LLVM IR.
|
|
///
|
|
/// This property corresponds to the LLVM IR
|
|
/// inaccessiblemem_or_argmemonly attribute.
|
|
FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
|
|
FMRL_ArgumentPointees |
|
|
static_cast<int>(ModRefInfo::Mod),
|
|
|
|
/// The function may perform non-volatile loads and stores of objects
|
|
/// pointed to by its pointer-typed arguments, with arbitrary offsets, and
|
|
/// it may also perform loads and stores of memory that is otherwise
|
|
/// inaccessible via LLVM IR.
|
|
///
|
|
/// This property corresponds to the LLVM IR
|
|
/// inaccessiblemem_or_argmemonly attribute.
|
|
FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
|
|
FMRL_ArgumentPointees |
|
|
static_cast<int>(ModRefInfo::ModRef),
|
|
|
|
/// This function does not perform any non-local stores or volatile loads,
|
|
/// but may read from any memory location.
|
|
///
|
|
/// This property corresponds to the GCC 'pure' attribute.
|
|
/// This property corresponds to the LLVM IR 'readonly' attribute.
|
|
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
|
|
FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
|
|
|
|
// This function does not read from memory anywhere, but may write to any
|
|
// memory location.
|
|
//
|
|
// This property corresponds to the LLVM IR 'writeonly' attribute.
|
|
// This property corresponds to the IntrWriteMem LLVM intrinsic flag.
|
|
FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
|
|
|
|
/// This indicates that the function could not be classified into one of the
|
|
/// behaviors above.
|
|
FMRB_UnknownModRefBehavior =
|
|
FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
|
|
};
|
|
|
|
// Wrapper method strips bits significant only in FunctionModRefBehavior,
|
|
// to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
|
|
// ModRefInfo enum changes, the wrapper can be updated to & with the new enum
|
|
// entry with all bits set to 1.
|
|
LLVM_NODISCARD inline ModRefInfo
|
|
createModRefInfo(const FunctionModRefBehavior FMRB) {
|
|
return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
|
|
}
|
|
|
|
/// This class stores info we want to provide to or retain within an alias
|
|
/// query. By default, the root query is stateless and starts with a freshly
|
|
/// constructed info object. Specific alias analyses can use this query info to
|
|
/// store per-query state that is important for recursive or nested queries to
|
|
/// avoid recomputing. To enable preserving this state across multiple queries
|
|
/// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
|
|
/// The information stored in an `AAQueryInfo` is currently limitted to the
|
|
/// caches used by BasicAA, but can further be extended to fit other AA needs.
|
|
class AAQueryInfo {
|
|
public:
|
|
using LocPair = std::pair<MemoryLocation, MemoryLocation>;
|
|
struct CacheEntry {
|
|
AliasResult Result;
|
|
/// Number of times a NoAlias assumption has been used.
|
|
/// 0 for assumptions that have not been used, -1 for definitive results.
|
|
int NumAssumptionUses;
|
|
/// Whether this is a definitive (non-assumption) result.
|
|
bool isDefinitive() const { return NumAssumptionUses < 0; }
|
|
};
|
|
using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
|
|
AliasCacheT AliasCache;
|
|
|
|
using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
|
|
IsCapturedCacheT IsCapturedCache;
|
|
|
|
/// How many active NoAlias assumption uses there are.
|
|
int NumAssumptionUses = 0;
|
|
|
|
/// Location pairs for which an assumption based result is currently stored.
|
|
/// Used to remove all potentially incorrect results from the cache if an
|
|
/// assumption is disproven.
|
|
SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
|
|
|
|
AAQueryInfo() : AliasCache(), IsCapturedCache() {}
|
|
};
|
|
|
|
class BatchAAResults;
|
|
|
|
class AAResults {
|
|
public:
|
|
// Make these results default constructable and movable. We have to spell
|
|
// these out because MSVC won't synthesize them.
|
|
AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
|
|
AAResults(AAResults &&Arg);
|
|
~AAResults();
|
|
|
|
/// Register a specific AA result.
|
|
template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
|
|
// FIXME: We should use a much lighter weight system than the usual
|
|
// polymorphic pattern because we don't own AAResult. It should
|
|
// ideally involve two pointers and no separate allocation.
|
|
AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
|
|
}
|
|
|
|
/// Register a function analysis ID that the results aggregation depends on.
|
|
///
|
|
/// This is used in the new pass manager to implement the invalidation logic
|
|
/// where we must invalidate the results aggregation if any of our component
|
|
/// analyses become invalid.
|
|
void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
|
|
|
|
/// Handle invalidation events in the new pass manager.
|
|
///
|
|
/// The aggregation is invalidated if any of the underlying analyses is
|
|
/// invalidated.
|
|
bool invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Alias Queries
|
|
/// @{
|
|
|
|
/// The main low level interface to the alias analysis implementation.
|
|
/// Returns an AliasResult indicating whether the two pointers are aliased to
|
|
/// each other. This is the interface that must be implemented by specific
|
|
/// alias analysis implementations.
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
|
|
|
|
/// A convenience wrapper around the primary \c alias interface.
|
|
AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
|
|
LocationSize V2Size) {
|
|
return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
|
|
}
|
|
|
|
/// A convenience wrapper around the primary \c alias interface.
|
|
AliasResult alias(const Value *V1, const Value *V2) {
|
|
return alias(MemoryLocation::getBeforeOrAfter(V1),
|
|
MemoryLocation::getBeforeOrAfter(V2));
|
|
}
|
|
|
|
/// A trivial helper function to check to see if the specified pointers are
|
|
/// no-alias.
|
|
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return alias(LocA, LocB) == NoAlias;
|
|
}
|
|
|
|
/// A convenience wrapper around the \c isNoAlias helper interface.
|
|
bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
|
|
LocationSize V2Size) {
|
|
return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
|
|
}
|
|
|
|
/// A convenience wrapper around the \c isNoAlias helper interface.
|
|
bool isNoAlias(const Value *V1, const Value *V2) {
|
|
return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
|
|
MemoryLocation::getBeforeOrAfter(V2));
|
|
}
|
|
|
|
/// A trivial helper function to check to see if the specified pointers are
|
|
/// must-alias.
|
|
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return alias(LocA, LocB) == MustAlias;
|
|
}
|
|
|
|
/// A convenience wrapper around the \c isMustAlias helper interface.
|
|
bool isMustAlias(const Value *V1, const Value *V2) {
|
|
return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
|
|
MustAlias;
|
|
}
|
|
|
|
/// Checks whether the given location points to constant memory, or if
|
|
/// \p OrLocal is true whether it points to a local alloca.
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
|
|
|
|
/// A convenience wrapper around the primary \c pointsToConstantMemory
|
|
/// interface.
|
|
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
|
|
return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
|
|
}
|
|
|
|
/// @}
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Simple mod/ref information
|
|
/// @{
|
|
|
|
/// Get the ModRef info associated with a pointer argument of a call. The
|
|
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
|
|
/// that these bits do not necessarily account for the overall behavior of
|
|
/// the function, but rather only provide additional per-argument
|
|
/// information. This never sets ModRefInfo::Must.
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
|
|
|
|
/// Return the behavior of the given call site.
|
|
FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
|
|
|
|
/// Return the behavior when calling the given function.
|
|
FunctionModRefBehavior getModRefBehavior(const Function *F);
|
|
|
|
/// Checks if the specified call is known to never read or write memory.
|
|
///
|
|
/// Note that if the call only reads from known-constant memory, it is also
|
|
/// legal to return true. Also, calls that unwind the stack are legal for
|
|
/// this predicate.
|
|
///
|
|
/// Many optimizations (such as CSE and LICM) can be performed on such calls
|
|
/// without worrying about aliasing properties, and many calls have this
|
|
/// property (e.g. calls to 'sin' and 'cos').
|
|
///
|
|
/// This property corresponds to the GCC 'const' attribute.
|
|
bool doesNotAccessMemory(const CallBase *Call) {
|
|
return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
|
|
}
|
|
|
|
/// Checks if the specified function is known to never read or write memory.
|
|
///
|
|
/// Note that if the function only reads from known-constant memory, it is
|
|
/// also legal to return true. Also, function that unwind the stack are legal
|
|
/// for this predicate.
|
|
///
|
|
/// Many optimizations (such as CSE and LICM) can be performed on such calls
|
|
/// to such functions without worrying about aliasing properties, and many
|
|
/// functions have this property (e.g. 'sin' and 'cos').
|
|
///
|
|
/// This property corresponds to the GCC 'const' attribute.
|
|
bool doesNotAccessMemory(const Function *F) {
|
|
return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
|
|
}
|
|
|
|
/// Checks if the specified call is known to only read from non-volatile
|
|
/// memory (or not access memory at all).
|
|
///
|
|
/// Calls that unwind the stack are legal for this predicate.
|
|
///
|
|
/// This property allows many common optimizations to be performed in the
|
|
/// absence of interfering store instructions, such as CSE of strlen calls.
|
|
///
|
|
/// This property corresponds to the GCC 'pure' attribute.
|
|
bool onlyReadsMemory(const CallBase *Call) {
|
|
return onlyReadsMemory(getModRefBehavior(Call));
|
|
}
|
|
|
|
/// Checks if the specified function is known to only read from non-volatile
|
|
/// memory (or not access memory at all).
|
|
///
|
|
/// Functions that unwind the stack are legal for this predicate.
|
|
///
|
|
/// This property allows many common optimizations to be performed in the
|
|
/// absence of interfering store instructions, such as CSE of strlen calls.
|
|
///
|
|
/// This property corresponds to the GCC 'pure' attribute.
|
|
bool onlyReadsMemory(const Function *F) {
|
|
return onlyReadsMemory(getModRefBehavior(F));
|
|
}
|
|
|
|
/// Checks if functions with the specified behavior are known to only read
|
|
/// from non-volatile memory (or not access memory at all).
|
|
static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
|
|
return !isModSet(createModRefInfo(MRB));
|
|
}
|
|
|
|
/// Checks if functions with the specified behavior are known to only write
|
|
/// memory (or not access memory at all).
|
|
static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
|
|
return !isRefSet(createModRefInfo(MRB));
|
|
}
|
|
|
|
/// Checks if functions with the specified behavior are known to read and
|
|
/// write at most from objects pointed to by their pointer-typed arguments
|
|
/// (with arbitrary offsets).
|
|
static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
|
|
return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
|
|
}
|
|
|
|
/// Checks if functions with the specified behavior are known to potentially
|
|
/// read or write from objects pointed to be their pointer-typed arguments
|
|
/// (with arbitrary offsets).
|
|
static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
|
|
return isModOrRefSet(createModRefInfo(MRB)) &&
|
|
((unsigned)MRB & FMRL_ArgumentPointees);
|
|
}
|
|
|
|
/// Checks if functions with the specified behavior are known to read and
|
|
/// write at most from memory that is inaccessible from LLVM IR.
|
|
static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
|
|
return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
|
|
}
|
|
|
|
/// Checks if functions with the specified behavior are known to potentially
|
|
/// read or write from memory that is inaccessible from LLVM IR.
|
|
static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
|
|
return isModOrRefSet(createModRefInfo(MRB)) &&
|
|
((unsigned)MRB & FMRL_InaccessibleMem);
|
|
}
|
|
|
|
/// Checks if functions with the specified behavior are known to read and
|
|
/// write at most from memory that is inaccessible from LLVM IR or objects
|
|
/// pointed to by their pointer-typed arguments (with arbitrary offsets).
|
|
static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
|
|
return !((unsigned)MRB & FMRL_Anywhere &
|
|
~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
|
|
}
|
|
|
|
/// getModRefInfo (for call sites) - Return information about whether
|
|
/// a particular call site modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for call sites) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(Call, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for loads) - Return information about whether
|
|
/// a particular load modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for loads) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(L, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for stores) - Return information about whether
|
|
/// a particular store modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for stores) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(S, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for fences) - Return information about whether
|
|
/// a particular store modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for fences) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(S, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for cmpxchges) - Return information about whether
|
|
/// a particular cmpxchg modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
|
|
const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(CX, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for atomicrmws) - Return information about whether
|
|
/// a particular atomicrmw modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(RMW, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for va_args) - Return information about whether
|
|
/// a particular va_arg modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for va_args) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(I, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for catchpads) - Return information about whether
|
|
/// a particular catchpad modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for catchpads) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(I, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// getModRefInfo (for catchrets) - Return information about whether
|
|
/// a particular catchret modifies or reads the specified memory location.
|
|
ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
|
|
|
|
/// getModRefInfo (for catchrets) - A convenience wrapper.
|
|
ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(I, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// Check whether or not an instruction may read or write the optionally
|
|
/// specified memory location.
|
|
///
|
|
///
|
|
/// An instruction that doesn't read or write memory may be trivially LICM'd
|
|
/// for example.
|
|
///
|
|
/// For function calls, this delegates to the alias-analysis specific
|
|
/// call-site mod-ref behavior queries. Otherwise it delegates to the specific
|
|
/// helpers above.
|
|
ModRefInfo getModRefInfo(const Instruction *I,
|
|
const Optional<MemoryLocation> &OptLoc) {
|
|
AAQueryInfo AAQIP;
|
|
return getModRefInfo(I, OptLoc, AAQIP);
|
|
}
|
|
|
|
/// A convenience wrapper for constructing the memory location.
|
|
ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
|
|
LocationSize Size) {
|
|
return getModRefInfo(I, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// Return information about whether a call and an instruction may refer to
|
|
/// the same memory locations.
|
|
ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
|
|
|
|
/// Return information about whether two call sites may refer to the same set
|
|
/// of memory locations. See the AA documentation for details:
|
|
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
|
|
|
|
/// Return information about whether a particular call site modifies
|
|
/// or reads the specified memory location \p MemLoc before instruction \p I
|
|
/// in a BasicBlock.
|
|
/// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
|
|
/// set.
|
|
ModRefInfo callCapturesBefore(const Instruction *I,
|
|
const MemoryLocation &MemLoc, DominatorTree *DT);
|
|
|
|
/// A convenience wrapper to synthesize a memory location.
|
|
ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
|
|
LocationSize Size, DominatorTree *DT) {
|
|
return callCapturesBefore(I, MemoryLocation(P, Size), DT);
|
|
}
|
|
|
|
/// @}
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Higher level methods for querying mod/ref information.
|
|
/// @{
|
|
|
|
/// Check if it is possible for execution of the specified basic block to
|
|
/// modify the location Loc.
|
|
bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
|
|
|
|
/// A convenience wrapper synthesizing a memory location.
|
|
bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
|
|
LocationSize Size) {
|
|
return canBasicBlockModify(BB, MemoryLocation(P, Size));
|
|
}
|
|
|
|
/// Check if it is possible for the execution of the specified instructions
|
|
/// to mod\ref (according to the mode) the location Loc.
|
|
///
|
|
/// The instructions to consider are all of the instructions in the range of
|
|
/// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
|
|
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
|
|
const MemoryLocation &Loc,
|
|
const ModRefInfo Mode);
|
|
|
|
/// A convenience wrapper synthesizing a memory location.
|
|
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
|
|
const Value *Ptr, LocationSize Size,
|
|
const ModRefInfo Mode) {
|
|
return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
|
|
}
|
|
|
|
private:
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI);
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
|
|
bool OrLocal = false);
|
|
ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
|
|
AAQueryInfo &AAQIP);
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
|
|
const MemoryLocation &Loc, AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI);
|
|
ModRefInfo getModRefInfo(const Instruction *I,
|
|
const Optional<MemoryLocation> &OptLoc,
|
|
AAQueryInfo &AAQIP);
|
|
|
|
class Concept;
|
|
|
|
template <typename T> class Model;
|
|
|
|
template <typename T> friend class AAResultBase;
|
|
|
|
const TargetLibraryInfo &TLI;
|
|
|
|
std::vector<std::unique_ptr<Concept>> AAs;
|
|
|
|
std::vector<AnalysisKey *> AADeps;
|
|
|
|
/// Query depth used to distinguish recursive queries.
|
|
unsigned Depth = 0;
|
|
|
|
friend class BatchAAResults;
|
|
};
|
|
|
|
/// This class is a wrapper over an AAResults, and it is intended to be used
|
|
/// only when there are no IR changes inbetween queries. BatchAAResults is
|
|
/// reusing the same `AAQueryInfo` to preserve the state across queries,
|
|
/// esentially making AA work in "batch mode". The internal state cannot be
|
|
/// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
|
|
/// or create a new BatchAAResults.
|
|
class BatchAAResults {
|
|
AAResults &AA;
|
|
AAQueryInfo AAQI;
|
|
|
|
public:
|
|
BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return AA.alias(LocA, LocB, AAQI);
|
|
}
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
|
|
return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
|
|
}
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
|
|
return AA.getModRefInfo(Call, Loc, AAQI);
|
|
}
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
|
|
return AA.getModRefInfo(Call1, Call2, AAQI);
|
|
}
|
|
ModRefInfo getModRefInfo(const Instruction *I,
|
|
const Optional<MemoryLocation> &OptLoc) {
|
|
return AA.getModRefInfo(I, OptLoc, AAQI);
|
|
}
|
|
ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
|
|
return AA.getModRefInfo(I, Call2, AAQI);
|
|
}
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
|
|
return AA.getArgModRefInfo(Call, ArgIdx);
|
|
}
|
|
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
|
|
return AA.getModRefBehavior(Call);
|
|
}
|
|
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
|
|
return alias(LocA, LocB) == MustAlias;
|
|
}
|
|
bool isMustAlias(const Value *V1, const Value *V2) {
|
|
return alias(MemoryLocation(V1, LocationSize::precise(1)),
|
|
MemoryLocation(V2, LocationSize::precise(1))) == MustAlias;
|
|
}
|
|
};
|
|
|
|
/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
|
|
/// pointer or reference.
|
|
using AliasAnalysis = AAResults;
|
|
|
|
/// A private abstract base class describing the concept of an individual alias
|
|
/// analysis implementation.
|
|
///
|
|
/// This interface is implemented by any \c Model instantiation. It is also the
|
|
/// interface which a type used to instantiate the model must provide.
|
|
///
|
|
/// All of these methods model methods by the same name in the \c
|
|
/// AAResults class. Only differences and specifics to how the
|
|
/// implementations are called are documented here.
|
|
class AAResults::Concept {
|
|
public:
|
|
virtual ~Concept() = 0;
|
|
|
|
/// An update API used internally by the AAResults to provide
|
|
/// a handle back to the top level aggregation.
|
|
virtual void setAAResults(AAResults *NewAAR) = 0;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Alias Queries
|
|
/// @{
|
|
|
|
/// The main low level interface to the alias analysis implementation.
|
|
/// Returns an AliasResult indicating whether the two pointers are aliased to
|
|
/// each other. This is the interface that must be implemented by specific
|
|
/// alias analysis implementations.
|
|
virtual AliasResult alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
|
|
|
|
/// Checks whether the given location points to constant memory, or if
|
|
/// \p OrLocal is true whether it points to a local alloca.
|
|
virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI, bool OrLocal) = 0;
|
|
|
|
/// @}
|
|
//===--------------------------------------------------------------------===//
|
|
/// \name Simple mod/ref information
|
|
/// @{
|
|
|
|
/// Get the ModRef info associated with a pointer argument of a callsite. The
|
|
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
|
|
/// that these bits do not necessarily account for the overall behavior of
|
|
/// the function, but rather only provide additional per-argument
|
|
/// information.
|
|
virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
|
|
unsigned ArgIdx) = 0;
|
|
|
|
/// Return the behavior of the given call site.
|
|
virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
|
|
|
|
/// Return the behavior when calling the given function.
|
|
virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
|
|
|
|
/// getModRefInfo (for call sites) - Return information about whether
|
|
/// a particular call site modifies or reads the specified memory location.
|
|
virtual ModRefInfo getModRefInfo(const CallBase *Call,
|
|
const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) = 0;
|
|
|
|
/// Return information about whether two call sites may refer to the same set
|
|
/// of memory locations. See the AA documentation for details:
|
|
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
|
|
virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI) = 0;
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// A private class template which derives from \c Concept and wraps some other
|
|
/// type.
|
|
///
|
|
/// This models the concept by directly forwarding each interface point to the
|
|
/// wrapped type which must implement a compatible interface. This provides
|
|
/// a type erased binding.
|
|
template <typename AAResultT> class AAResults::Model final : public Concept {
|
|
AAResultT &Result;
|
|
|
|
public:
|
|
explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
|
|
Result.setAAResults(&AAR);
|
|
}
|
|
~Model() override = default;
|
|
|
|
void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
|
|
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI) override {
|
|
return Result.alias(LocA, LocB, AAQI);
|
|
}
|
|
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
|
|
bool OrLocal) override {
|
|
return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
|
|
}
|
|
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
|
|
return Result.getArgModRefInfo(Call, ArgIdx);
|
|
}
|
|
|
|
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
|
|
return Result.getModRefBehavior(Call);
|
|
}
|
|
|
|
FunctionModRefBehavior getModRefBehavior(const Function *F) override {
|
|
return Result.getModRefBehavior(F);
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) override {
|
|
return Result.getModRefInfo(Call, Loc, AAQI);
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI) override {
|
|
return Result.getModRefInfo(Call1, Call2, AAQI);
|
|
}
|
|
};
|
|
|
|
/// A CRTP-driven "mixin" base class to help implement the function alias
|
|
/// analysis results concept.
|
|
///
|
|
/// Because of the nature of many alias analysis implementations, they often
|
|
/// only implement a subset of the interface. This base class will attempt to
|
|
/// implement the remaining portions of the interface in terms of simpler forms
|
|
/// of the interface where possible, and otherwise provide conservatively
|
|
/// correct fallback implementations.
|
|
///
|
|
/// Implementors of an alias analysis should derive from this CRTP, and then
|
|
/// override specific methods that they wish to customize. There is no need to
|
|
/// use virtual anywhere, the CRTP base class does static dispatch to the
|
|
/// derived type passed into it.
|
|
template <typename DerivedT> class AAResultBase {
|
|
// Expose some parts of the interface only to the AAResults::Model
|
|
// for wrapping. Specifically, this allows the model to call our
|
|
// setAAResults method without exposing it as a fully public API.
|
|
friend class AAResults::Model<DerivedT>;
|
|
|
|
/// A pointer to the AAResults object that this AAResult is
|
|
/// aggregated within. May be null if not aggregated.
|
|
AAResults *AAR = nullptr;
|
|
|
|
/// Helper to dispatch calls back through the derived type.
|
|
DerivedT &derived() { return static_cast<DerivedT &>(*this); }
|
|
|
|
/// A setter for the AAResults pointer, which is used to satisfy the
|
|
/// AAResults::Model contract.
|
|
void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
|
|
|
|
protected:
|
|
/// This proxy class models a common pattern where we delegate to either the
|
|
/// top-level \c AAResults aggregation if one is registered, or to the
|
|
/// current result if none are registered.
|
|
class AAResultsProxy {
|
|
AAResults *AAR;
|
|
DerivedT &CurrentResult;
|
|
|
|
public:
|
|
AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
|
|
: AAR(AAR), CurrentResult(CurrentResult) {}
|
|
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI) {
|
|
return AAR ? AAR->alias(LocA, LocB, AAQI)
|
|
: CurrentResult.alias(LocA, LocB, AAQI);
|
|
}
|
|
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
|
|
bool OrLocal) {
|
|
return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
|
|
: CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
|
|
}
|
|
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
|
|
return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
|
|
: CurrentResult.getArgModRefInfo(Call, ArgIdx);
|
|
}
|
|
|
|
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
|
|
return AAR ? AAR->getModRefBehavior(Call)
|
|
: CurrentResult.getModRefBehavior(Call);
|
|
}
|
|
|
|
FunctionModRefBehavior getModRefBehavior(const Function *F) {
|
|
return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) {
|
|
return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
|
|
: CurrentResult.getModRefInfo(Call, Loc, AAQI);
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI) {
|
|
return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
|
|
: CurrentResult.getModRefInfo(Call1, Call2, AAQI);
|
|
}
|
|
};
|
|
|
|
explicit AAResultBase() = default;
|
|
|
|
// Provide all the copy and move constructors so that derived types aren't
|
|
// constrained.
|
|
AAResultBase(const AAResultBase &Arg) {}
|
|
AAResultBase(AAResultBase &&Arg) {}
|
|
|
|
/// Get a proxy for the best AA result set to query at this time.
|
|
///
|
|
/// When this result is part of a larger aggregation, this will proxy to that
|
|
/// aggregation. When this result is used in isolation, it will just delegate
|
|
/// back to the derived class's implementation.
|
|
///
|
|
/// Note that callers of this need to take considerable care to not cause
|
|
/// performance problems when they use this routine, in the case of a large
|
|
/// number of alias analyses being aggregated, it can be expensive to walk
|
|
/// back across the chain.
|
|
AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
|
|
|
|
public:
|
|
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
|
|
AAQueryInfo &AAQI) {
|
|
return MayAlias;
|
|
}
|
|
|
|
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
|
|
bool OrLocal) {
|
|
return false;
|
|
}
|
|
|
|
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
|
|
return ModRefInfo::ModRef;
|
|
}
|
|
|
|
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
|
|
return FMRB_UnknownModRefBehavior;
|
|
}
|
|
|
|
FunctionModRefBehavior getModRefBehavior(const Function *F) {
|
|
return FMRB_UnknownModRefBehavior;
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
|
|
AAQueryInfo &AAQI) {
|
|
return ModRefInfo::ModRef;
|
|
}
|
|
|
|
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
|
|
AAQueryInfo &AAQI) {
|
|
return ModRefInfo::ModRef;
|
|
}
|
|
};
|
|
|
|
/// Return true if this pointer is returned by a noalias function.
|
|
bool isNoAliasCall(const Value *V);
|
|
|
|
/// Return true if this pointer refers to a distinct and identifiable object.
|
|
/// This returns true for:
|
|
/// Global Variables and Functions (but not Global Aliases)
|
|
/// Allocas
|
|
/// ByVal and NoAlias Arguments
|
|
/// NoAlias returns (e.g. calls to malloc)
|
|
///
|
|
bool isIdentifiedObject(const Value *V);
|
|
|
|
/// Return true if V is umabigously identified at the function-level.
|
|
/// Different IdentifiedFunctionLocals can't alias.
|
|
/// Further, an IdentifiedFunctionLocal can not alias with any function
|
|
/// arguments other than itself, which is not necessarily true for
|
|
/// IdentifiedObjects.
|
|
bool isIdentifiedFunctionLocal(const Value *V);
|
|
|
|
/// A manager for alias analyses.
|
|
///
|
|
/// This class can have analyses registered with it and when run, it will run
|
|
/// all of them and aggregate their results into single AA results interface
|
|
/// that dispatches across all of the alias analysis results available.
|
|
///
|
|
/// Note that the order in which analyses are registered is very significant.
|
|
/// That is the order in which the results will be aggregated and queried.
|
|
///
|
|
/// This manager effectively wraps the AnalysisManager for registering alias
|
|
/// analyses. When you register your alias analysis with this manager, it will
|
|
/// ensure the analysis itself is registered with its AnalysisManager.
|
|
///
|
|
/// The result of this analysis is only invalidated if one of the particular
|
|
/// aggregated AA results end up being invalidated. This removes the need to
|
|
/// explicitly preserve the results of `AAManager`. Note that analyses should no
|
|
/// longer be registered once the `AAManager` is run.
|
|
class AAManager : public AnalysisInfoMixin<AAManager> {
|
|
public:
|
|
using Result = AAResults;
|
|
|
|
/// Register a specific AA result.
|
|
template <typename AnalysisT> void registerFunctionAnalysis() {
|
|
ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
|
|
}
|
|
|
|
/// Register a specific AA result.
|
|
template <typename AnalysisT> void registerModuleAnalysis() {
|
|
ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
|
|
}
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &AM);
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<AAManager>;
|
|
|
|
static AnalysisKey Key;
|
|
|
|
SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
|
|
AAResults &AAResults),
|
|
4> ResultGetters;
|
|
|
|
template <typename AnalysisT>
|
|
static void getFunctionAAResultImpl(Function &F,
|
|
FunctionAnalysisManager &AM,
|
|
AAResults &AAResults) {
|
|
AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
|
|
AAResults.addAADependencyID(AnalysisT::ID());
|
|
}
|
|
|
|
template <typename AnalysisT>
|
|
static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
|
|
AAResults &AAResults) {
|
|
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
if (auto *R =
|
|
MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
|
|
AAResults.addAAResult(*R);
|
|
MAMProxy
|
|
.template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A wrapper pass to provide the legacy pass manager access to a suitably
|
|
/// prepared AAResults object.
|
|
class AAResultsWrapperPass : public FunctionPass {
|
|
std::unique_ptr<AAResults> AAR;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AAResultsWrapperPass();
|
|
|
|
AAResults &getAAResults() { return *AAR; }
|
|
const AAResults &getAAResults() const { return *AAR; }
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
};
|
|
|
|
/// A wrapper pass for external alias analyses. This just squirrels away the
|
|
/// callback used to run any analyses and register their results.
|
|
struct ExternalAAWrapperPass : ImmutablePass {
|
|
using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
|
|
|
|
CallbackT CB;
|
|
|
|
static char ID;
|
|
|
|
ExternalAAWrapperPass();
|
|
|
|
explicit ExternalAAWrapperPass(CallbackT CB);
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
|
|
FunctionPass *createAAResultsWrapperPass();
|
|
|
|
/// A wrapper pass around a callback which can be used to populate the
|
|
/// AAResults in the AAResultsWrapperPass from an external AA.
|
|
///
|
|
/// The callback provided here will be used each time we prepare an AAResults
|
|
/// object, and will receive a reference to the function wrapper pass, the
|
|
/// function, and the AAResults object to populate. This should be used when
|
|
/// setting up a custom pass pipeline to inject a hook into the AA results.
|
|
ImmutablePass *createExternalAAWrapperPass(
|
|
std::function<void(Pass &, Function &, AAResults &)> Callback);
|
|
|
|
/// A helper for the legacy pass manager to create a \c AAResults
|
|
/// object populated to the best of our ability for a particular function when
|
|
/// inside of a \c ModulePass or a \c CallGraphSCCPass.
|
|
///
|
|
/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
|
|
/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
|
|
/// getAnalysisUsage.
|
|
AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
|
|
|
|
/// A helper for the legacy pass manager to populate \p AU to add uses to make
|
|
/// sure the analyses required by \p createLegacyPMAAResults are available.
|
|
void getAAResultsAnalysisUsage(AnalysisUsage &AU);
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ANALYSIS_ALIASANALYSIS_H
|