1274 lines
44 KiB
C++
1274 lines
44 KiB
C++
//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the SmallVector class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SMALLVECTOR_H
|
|
#define LLVM_ADT_SMALLVECTOR_H
|
|
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MemAlloc.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <new>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
/// This is all the stuff common to all SmallVectors.
|
|
///
|
|
/// The template parameter specifies the type which should be used to hold the
|
|
/// Size and Capacity of the SmallVector, so it can be adjusted.
|
|
/// Using 32 bit size is desirable to shrink the size of the SmallVector.
|
|
/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
|
|
/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
|
|
/// buffering bitcode output - which can exceed 4GB.
|
|
template <class Size_T> class SmallVectorBase {
|
|
protected:
|
|
void *BeginX;
|
|
Size_T Size = 0, Capacity;
|
|
|
|
/// The maximum value of the Size_T used.
|
|
static constexpr size_t SizeTypeMax() {
|
|
return std::numeric_limits<Size_T>::max();
|
|
}
|
|
|
|
SmallVectorBase() = delete;
|
|
SmallVectorBase(void *FirstEl, size_t TotalCapacity)
|
|
: BeginX(FirstEl), Capacity(TotalCapacity) {}
|
|
|
|
/// This is a helper for \a grow() that's out of line to reduce code
|
|
/// duplication. This function will report a fatal error if it can't grow at
|
|
/// least to \p MinSize.
|
|
void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity);
|
|
|
|
/// This is an implementation of the grow() method which only works
|
|
/// on POD-like data types and is out of line to reduce code duplication.
|
|
/// This function will report a fatal error if it cannot increase capacity.
|
|
void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
|
|
|
|
public:
|
|
size_t size() const { return Size; }
|
|
size_t capacity() const { return Capacity; }
|
|
|
|
LLVM_NODISCARD bool empty() const { return !Size; }
|
|
|
|
/// Set the array size to \p N, which the current array must have enough
|
|
/// capacity for.
|
|
///
|
|
/// This does not construct or destroy any elements in the vector.
|
|
///
|
|
/// Clients can use this in conjunction with capacity() to write past the end
|
|
/// of the buffer when they know that more elements are available, and only
|
|
/// update the size later. This avoids the cost of value initializing elements
|
|
/// which will only be overwritten.
|
|
void set_size(size_t N) {
|
|
assert(N <= capacity());
|
|
Size = N;
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
using SmallVectorSizeType =
|
|
typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
|
|
uint32_t>::type;
|
|
|
|
/// Figure out the offset of the first element.
|
|
template <class T, typename = void> struct SmallVectorAlignmentAndSize {
|
|
alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
|
|
SmallVectorBase<SmallVectorSizeType<T>>)];
|
|
alignas(T) char FirstEl[sizeof(T)];
|
|
};
|
|
|
|
/// This is the part of SmallVectorTemplateBase which does not depend on whether
|
|
/// the type T is a POD. The extra dummy template argument is used by ArrayRef
|
|
/// to avoid unnecessarily requiring T to be complete.
|
|
template <typename T, typename = void>
|
|
class SmallVectorTemplateCommon
|
|
: public SmallVectorBase<SmallVectorSizeType<T>> {
|
|
using Base = SmallVectorBase<SmallVectorSizeType<T>>;
|
|
|
|
/// Find the address of the first element. For this pointer math to be valid
|
|
/// with small-size of 0 for T with lots of alignment, it's important that
|
|
/// SmallVectorStorage is properly-aligned even for small-size of 0.
|
|
void *getFirstEl() const {
|
|
return const_cast<void *>(reinterpret_cast<const void *>(
|
|
reinterpret_cast<const char *>(this) +
|
|
offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
|
|
}
|
|
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
|
|
|
|
protected:
|
|
SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
|
|
|
|
void grow_pod(size_t MinSize, size_t TSize) {
|
|
Base::grow_pod(getFirstEl(), MinSize, TSize);
|
|
}
|
|
|
|
/// Return true if this is a smallvector which has not had dynamic
|
|
/// memory allocated for it.
|
|
bool isSmall() const { return this->BeginX == getFirstEl(); }
|
|
|
|
/// Put this vector in a state of being small.
|
|
void resetToSmall() {
|
|
this->BeginX = getFirstEl();
|
|
this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
|
|
}
|
|
|
|
/// Return true if V is an internal reference to the given range.
|
|
bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
|
|
// Use std::less to avoid UB.
|
|
std::less<> LessThan;
|
|
return !LessThan(V, First) && LessThan(V, Last);
|
|
}
|
|
|
|
/// Return true if V is an internal reference to this vector.
|
|
bool isReferenceToStorage(const void *V) const {
|
|
return isReferenceToRange(V, this->begin(), this->end());
|
|
}
|
|
|
|
/// Return true if First and Last form a valid (possibly empty) range in this
|
|
/// vector's storage.
|
|
bool isRangeInStorage(const void *First, const void *Last) const {
|
|
// Use std::less to avoid UB.
|
|
std::less<> LessThan;
|
|
return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
|
|
!LessThan(this->end(), Last);
|
|
}
|
|
|
|
/// Return true unless Elt will be invalidated by resizing the vector to
|
|
/// NewSize.
|
|
bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
|
|
// Past the end.
|
|
if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
|
|
return true;
|
|
|
|
// Return false if Elt will be destroyed by shrinking.
|
|
if (NewSize <= this->size())
|
|
return Elt < this->begin() + NewSize;
|
|
|
|
// Return false if we need to grow.
|
|
return NewSize <= this->capacity();
|
|
}
|
|
|
|
/// Check whether Elt will be invalidated by resizing the vector to NewSize.
|
|
void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
|
|
assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
|
|
"Attempting to reference an element of the vector in an operation "
|
|
"that invalidates it");
|
|
}
|
|
|
|
/// Check whether Elt will be invalidated by increasing the size of the
|
|
/// vector by N.
|
|
void assertSafeToAdd(const void *Elt, size_t N = 1) {
|
|
this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
|
|
}
|
|
|
|
/// Check whether any part of the range will be invalidated by clearing.
|
|
void assertSafeToReferenceAfterClear(const T *From, const T *To) {
|
|
if (From == To)
|
|
return;
|
|
this->assertSafeToReferenceAfterResize(From, 0);
|
|
this->assertSafeToReferenceAfterResize(To - 1, 0);
|
|
}
|
|
template <
|
|
class ItTy,
|
|
std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
|
|
bool> = false>
|
|
void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
|
|
|
|
/// Check whether any part of the range will be invalidated by growing.
|
|
void assertSafeToAddRange(const T *From, const T *To) {
|
|
if (From == To)
|
|
return;
|
|
this->assertSafeToAdd(From, To - From);
|
|
this->assertSafeToAdd(To - 1, To - From);
|
|
}
|
|
template <
|
|
class ItTy,
|
|
std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
|
|
bool> = false>
|
|
void assertSafeToAddRange(ItTy, ItTy) {}
|
|
|
|
/// Reserve enough space to add one element, and return the updated element
|
|
/// pointer in case it was a reference to the storage.
|
|
template <class U>
|
|
static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
|
|
size_t N) {
|
|
size_t NewSize = This->size() + N;
|
|
if (LLVM_LIKELY(NewSize <= This->capacity()))
|
|
return &Elt;
|
|
|
|
bool ReferencesStorage = false;
|
|
int64_t Index = -1;
|
|
if (!U::TakesParamByValue) {
|
|
if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
|
|
ReferencesStorage = true;
|
|
Index = &Elt - This->begin();
|
|
}
|
|
}
|
|
This->grow(NewSize);
|
|
return ReferencesStorage ? This->begin() + Index : &Elt;
|
|
}
|
|
|
|
public:
|
|
using size_type = size_t;
|
|
using difference_type = ptrdiff_t;
|
|
using value_type = T;
|
|
using iterator = T *;
|
|
using const_iterator = const T *;
|
|
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
|
|
using reference = T &;
|
|
using const_reference = const T &;
|
|
using pointer = T *;
|
|
using const_pointer = const T *;
|
|
|
|
using Base::capacity;
|
|
using Base::empty;
|
|
using Base::size;
|
|
|
|
// forward iterator creation methods.
|
|
iterator begin() { return (iterator)this->BeginX; }
|
|
const_iterator begin() const { return (const_iterator)this->BeginX; }
|
|
iterator end() { return begin() + size(); }
|
|
const_iterator end() const { return begin() + size(); }
|
|
|
|
// reverse iterator creation methods.
|
|
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
|
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
|
|
reverse_iterator rend() { return reverse_iterator(begin()); }
|
|
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
|
|
|
|
size_type size_in_bytes() const { return size() * sizeof(T); }
|
|
size_type max_size() const {
|
|
return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
|
|
}
|
|
|
|
size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
|
|
|
|
/// Return a pointer to the vector's buffer, even if empty().
|
|
pointer data() { return pointer(begin()); }
|
|
/// Return a pointer to the vector's buffer, even if empty().
|
|
const_pointer data() const { return const_pointer(begin()); }
|
|
|
|
reference operator[](size_type idx) {
|
|
assert(idx < size());
|
|
return begin()[idx];
|
|
}
|
|
const_reference operator[](size_type idx) const {
|
|
assert(idx < size());
|
|
return begin()[idx];
|
|
}
|
|
|
|
reference front() {
|
|
assert(!empty());
|
|
return begin()[0];
|
|
}
|
|
const_reference front() const {
|
|
assert(!empty());
|
|
return begin()[0];
|
|
}
|
|
|
|
reference back() {
|
|
assert(!empty());
|
|
return end()[-1];
|
|
}
|
|
const_reference back() const {
|
|
assert(!empty());
|
|
return end()[-1];
|
|
}
|
|
};
|
|
|
|
/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
|
|
/// method implementations that are designed to work with non-trivial T's.
|
|
///
|
|
/// We approximate is_trivially_copyable with trivial move/copy construction and
|
|
/// trivial destruction. While the standard doesn't specify that you're allowed
|
|
/// copy these types with memcpy, there is no way for the type to observe this.
|
|
/// This catches the important case of std::pair<POD, POD>, which is not
|
|
/// trivially assignable.
|
|
template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
|
|
(is_trivially_move_constructible<T>::value) &&
|
|
std::is_trivially_destructible<T>::value>
|
|
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
|
|
friend class SmallVectorTemplateCommon<T>;
|
|
|
|
protected:
|
|
static constexpr bool TakesParamByValue = false;
|
|
using ValueParamT = const T &;
|
|
|
|
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
|
|
|
static void destroy_range(T *S, T *E) {
|
|
while (S != E) {
|
|
--E;
|
|
E->~T();
|
|
}
|
|
}
|
|
|
|
/// Move the range [I, E) into the uninitialized memory starting with "Dest",
|
|
/// constructing elements as needed.
|
|
template<typename It1, typename It2>
|
|
static void uninitialized_move(It1 I, It1 E, It2 Dest) {
|
|
std::uninitialized_copy(std::make_move_iterator(I),
|
|
std::make_move_iterator(E), Dest);
|
|
}
|
|
|
|
/// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
|
|
/// constructing elements as needed.
|
|
template<typename It1, typename It2>
|
|
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
|
|
std::uninitialized_copy(I, E, Dest);
|
|
}
|
|
|
|
/// Grow the allocated memory (without initializing new elements), doubling
|
|
/// the size of the allocated memory. Guarantees space for at least one more
|
|
/// element, or MinSize more elements if specified.
|
|
void grow(size_t MinSize = 0);
|
|
|
|
/// Create a new allocation big enough for \p MinSize and pass back its size
|
|
/// in \p NewCapacity. This is the first section of \a grow().
|
|
T *mallocForGrow(size_t MinSize, size_t &NewCapacity) {
|
|
return static_cast<T *>(
|
|
SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
|
|
MinSize, sizeof(T), NewCapacity));
|
|
}
|
|
|
|
/// Move existing elements over to the new allocation \p NewElts, the middle
|
|
/// section of \a grow().
|
|
void moveElementsForGrow(T *NewElts);
|
|
|
|
/// Transfer ownership of the allocation, finishing up \a grow().
|
|
void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
|
|
|
|
/// Reserve enough space to add one element, and return the updated element
|
|
/// pointer in case it was a reference to the storage.
|
|
const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
|
|
return this->reserveForParamAndGetAddressImpl(this, Elt, N);
|
|
}
|
|
|
|
/// Reserve enough space to add one element, and return the updated element
|
|
/// pointer in case it was a reference to the storage.
|
|
T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
|
|
return const_cast<T *>(
|
|
this->reserveForParamAndGetAddressImpl(this, Elt, N));
|
|
}
|
|
|
|
static T &&forward_value_param(T &&V) { return std::move(V); }
|
|
static const T &forward_value_param(const T &V) { return V; }
|
|
|
|
void growAndAssign(size_t NumElts, const T &Elt) {
|
|
// Grow manually in case Elt is an internal reference.
|
|
size_t NewCapacity;
|
|
T *NewElts = mallocForGrow(NumElts, NewCapacity);
|
|
std::uninitialized_fill_n(NewElts, NumElts, Elt);
|
|
this->destroy_range(this->begin(), this->end());
|
|
takeAllocationForGrow(NewElts, NewCapacity);
|
|
this->set_size(NumElts);
|
|
}
|
|
|
|
template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
|
|
// Grow manually in case one of Args is an internal reference.
|
|
size_t NewCapacity;
|
|
T *NewElts = mallocForGrow(0, NewCapacity);
|
|
::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
|
|
moveElementsForGrow(NewElts);
|
|
takeAllocationForGrow(NewElts, NewCapacity);
|
|
this->set_size(this->size() + 1);
|
|
return this->back();
|
|
}
|
|
|
|
public:
|
|
void push_back(const T &Elt) {
|
|
const T *EltPtr = reserveForParamAndGetAddress(Elt);
|
|
::new ((void *)this->end()) T(*EltPtr);
|
|
this->set_size(this->size() + 1);
|
|
}
|
|
|
|
void push_back(T &&Elt) {
|
|
T *EltPtr = reserveForParamAndGetAddress(Elt);
|
|
::new ((void *)this->end()) T(::std::move(*EltPtr));
|
|
this->set_size(this->size() + 1);
|
|
}
|
|
|
|
void pop_back() {
|
|
this->set_size(this->size() - 1);
|
|
this->end()->~T();
|
|
}
|
|
};
|
|
|
|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
|
template <typename T, bool TriviallyCopyable>
|
|
void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
|
|
size_t NewCapacity;
|
|
T *NewElts = mallocForGrow(MinSize, NewCapacity);
|
|
moveElementsForGrow(NewElts);
|
|
takeAllocationForGrow(NewElts, NewCapacity);
|
|
}
|
|
|
|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
|
template <typename T, bool TriviallyCopyable>
|
|
void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
|
|
T *NewElts) {
|
|
// Move the elements over.
|
|
this->uninitialized_move(this->begin(), this->end(), NewElts);
|
|
|
|
// Destroy the original elements.
|
|
destroy_range(this->begin(), this->end());
|
|
}
|
|
|
|
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
|
template <typename T, bool TriviallyCopyable>
|
|
void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
|
|
T *NewElts, size_t NewCapacity) {
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!this->isSmall())
|
|
free(this->begin());
|
|
|
|
this->BeginX = NewElts;
|
|
this->Capacity = NewCapacity;
|
|
}
|
|
|
|
/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
|
|
/// method implementations that are designed to work with trivially copyable
|
|
/// T's. This allows using memcpy in place of copy/move construction and
|
|
/// skipping destruction.
|
|
template <typename T>
|
|
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
|
|
friend class SmallVectorTemplateCommon<T>;
|
|
|
|
protected:
|
|
/// True if it's cheap enough to take parameters by value. Doing so avoids
|
|
/// overhead related to mitigations for reference invalidation.
|
|
static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
|
|
|
|
/// Either const T& or T, depending on whether it's cheap enough to take
|
|
/// parameters by value.
|
|
using ValueParamT =
|
|
typename std::conditional<TakesParamByValue, T, const T &>::type;
|
|
|
|
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
|
|
|
// No need to do a destroy loop for POD's.
|
|
static void destroy_range(T *, T *) {}
|
|
|
|
/// Move the range [I, E) onto the uninitialized memory
|
|
/// starting with "Dest", constructing elements into it as needed.
|
|
template<typename It1, typename It2>
|
|
static void uninitialized_move(It1 I, It1 E, It2 Dest) {
|
|
// Just do a copy.
|
|
uninitialized_copy(I, E, Dest);
|
|
}
|
|
|
|
/// Copy the range [I, E) onto the uninitialized memory
|
|
/// starting with "Dest", constructing elements into it as needed.
|
|
template<typename It1, typename It2>
|
|
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
|
|
// Arbitrary iterator types; just use the basic implementation.
|
|
std::uninitialized_copy(I, E, Dest);
|
|
}
|
|
|
|
/// Copy the range [I, E) onto the uninitialized memory
|
|
/// starting with "Dest", constructing elements into it as needed.
|
|
template <typename T1, typename T2>
|
|
static void uninitialized_copy(
|
|
T1 *I, T1 *E, T2 *Dest,
|
|
std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
|
|
T2>::value> * = nullptr) {
|
|
// Use memcpy for PODs iterated by pointers (which includes SmallVector
|
|
// iterators): std::uninitialized_copy optimizes to memmove, but we can
|
|
// use memcpy here. Note that I and E are iterators and thus might be
|
|
// invalid for memcpy if they are equal.
|
|
if (I != E)
|
|
memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
|
|
}
|
|
|
|
/// Double the size of the allocated memory, guaranteeing space for at
|
|
/// least one more element or MinSize if specified.
|
|
void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
|
|
|
|
/// Reserve enough space to add one element, and return the updated element
|
|
/// pointer in case it was a reference to the storage.
|
|
const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
|
|
return this->reserveForParamAndGetAddressImpl(this, Elt, N);
|
|
}
|
|
|
|
/// Reserve enough space to add one element, and return the updated element
|
|
/// pointer in case it was a reference to the storage.
|
|
T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
|
|
return const_cast<T *>(
|
|
this->reserveForParamAndGetAddressImpl(this, Elt, N));
|
|
}
|
|
|
|
/// Copy \p V or return a reference, depending on \a ValueParamT.
|
|
static ValueParamT forward_value_param(ValueParamT V) { return V; }
|
|
|
|
void growAndAssign(size_t NumElts, T Elt) {
|
|
// Elt has been copied in case it's an internal reference, side-stepping
|
|
// reference invalidation problems without losing the realloc optimization.
|
|
this->set_size(0);
|
|
this->grow(NumElts);
|
|
std::uninitialized_fill_n(this->begin(), NumElts, Elt);
|
|
this->set_size(NumElts);
|
|
}
|
|
|
|
template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
|
|
// Use push_back with a copy in case Args has an internal reference,
|
|
// side-stepping reference invalidation problems without losing the realloc
|
|
// optimization.
|
|
push_back(T(std::forward<ArgTypes>(Args)...));
|
|
return this->back();
|
|
}
|
|
|
|
public:
|
|
void push_back(ValueParamT Elt) {
|
|
const T *EltPtr = reserveForParamAndGetAddress(Elt);
|
|
memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
|
|
this->set_size(this->size() + 1);
|
|
}
|
|
|
|
void pop_back() { this->set_size(this->size() - 1); }
|
|
};
|
|
|
|
/// This class consists of common code factored out of the SmallVector class to
|
|
/// reduce code duplication based on the SmallVector 'N' template parameter.
|
|
template <typename T>
|
|
class SmallVectorImpl : public SmallVectorTemplateBase<T> {
|
|
using SuperClass = SmallVectorTemplateBase<T>;
|
|
|
|
public:
|
|
using iterator = typename SuperClass::iterator;
|
|
using const_iterator = typename SuperClass::const_iterator;
|
|
using reference = typename SuperClass::reference;
|
|
using size_type = typename SuperClass::size_type;
|
|
|
|
protected:
|
|
using SmallVectorTemplateBase<T>::TakesParamByValue;
|
|
using ValueParamT = typename SuperClass::ValueParamT;
|
|
|
|
// Default ctor - Initialize to empty.
|
|
explicit SmallVectorImpl(unsigned N)
|
|
: SmallVectorTemplateBase<T>(N) {}
|
|
|
|
public:
|
|
SmallVectorImpl(const SmallVectorImpl &) = delete;
|
|
|
|
~SmallVectorImpl() {
|
|
// Subclass has already destructed this vector's elements.
|
|
// If this wasn't grown from the inline copy, deallocate the old space.
|
|
if (!this->isSmall())
|
|
free(this->begin());
|
|
}
|
|
|
|
void clear() {
|
|
this->destroy_range(this->begin(), this->end());
|
|
this->Size = 0;
|
|
}
|
|
|
|
private:
|
|
template <bool ForOverwrite> void resizeImpl(size_type N) {
|
|
if (N < this->size()) {
|
|
this->pop_back_n(this->size() - N);
|
|
} else if (N > this->size()) {
|
|
this->reserve(N);
|
|
for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
|
|
if (ForOverwrite)
|
|
new (&*I) T;
|
|
else
|
|
new (&*I) T();
|
|
this->set_size(N);
|
|
}
|
|
}
|
|
|
|
public:
|
|
void resize(size_type N) { resizeImpl<false>(N); }
|
|
|
|
/// Like resize, but \ref T is POD, the new values won't be initialized.
|
|
void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
|
|
|
|
void resize(size_type N, ValueParamT NV) {
|
|
if (N == this->size())
|
|
return;
|
|
|
|
if (N < this->size()) {
|
|
this->pop_back_n(this->size() - N);
|
|
return;
|
|
}
|
|
|
|
// N > this->size(). Defer to append.
|
|
this->append(N - this->size(), NV);
|
|
}
|
|
|
|
void reserve(size_type N) {
|
|
if (this->capacity() < N)
|
|
this->grow(N);
|
|
}
|
|
|
|
void pop_back_n(size_type NumItems) {
|
|
assert(this->size() >= NumItems);
|
|
this->destroy_range(this->end() - NumItems, this->end());
|
|
this->set_size(this->size() - NumItems);
|
|
}
|
|
|
|
LLVM_NODISCARD T pop_back_val() {
|
|
T Result = ::std::move(this->back());
|
|
this->pop_back();
|
|
return Result;
|
|
}
|
|
|
|
void swap(SmallVectorImpl &RHS);
|
|
|
|
/// Add the specified range to the end of the SmallVector.
|
|
template <typename in_iter,
|
|
typename = std::enable_if_t<std::is_convertible<
|
|
typename std::iterator_traits<in_iter>::iterator_category,
|
|
std::input_iterator_tag>::value>>
|
|
void append(in_iter in_start, in_iter in_end) {
|
|
this->assertSafeToAddRange(in_start, in_end);
|
|
size_type NumInputs = std::distance(in_start, in_end);
|
|
this->reserve(this->size() + NumInputs);
|
|
this->uninitialized_copy(in_start, in_end, this->end());
|
|
this->set_size(this->size() + NumInputs);
|
|
}
|
|
|
|
/// Append \p NumInputs copies of \p Elt to the end.
|
|
void append(size_type NumInputs, ValueParamT Elt) {
|
|
const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
|
|
std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
|
|
this->set_size(this->size() + NumInputs);
|
|
}
|
|
|
|
void append(std::initializer_list<T> IL) {
|
|
append(IL.begin(), IL.end());
|
|
}
|
|
|
|
void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
|
|
|
|
void assign(size_type NumElts, ValueParamT Elt) {
|
|
// Note that Elt could be an internal reference.
|
|
if (NumElts > this->capacity()) {
|
|
this->growAndAssign(NumElts, Elt);
|
|
return;
|
|
}
|
|
|
|
// Assign over existing elements.
|
|
std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
|
|
if (NumElts > this->size())
|
|
std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
|
|
else if (NumElts < this->size())
|
|
this->destroy_range(this->begin() + NumElts, this->end());
|
|
this->set_size(NumElts);
|
|
}
|
|
|
|
// FIXME: Consider assigning over existing elements, rather than clearing &
|
|
// re-initializing them - for all assign(...) variants.
|
|
|
|
template <typename in_iter,
|
|
typename = std::enable_if_t<std::is_convertible<
|
|
typename std::iterator_traits<in_iter>::iterator_category,
|
|
std::input_iterator_tag>::value>>
|
|
void assign(in_iter in_start, in_iter in_end) {
|
|
this->assertSafeToReferenceAfterClear(in_start, in_end);
|
|
clear();
|
|
append(in_start, in_end);
|
|
}
|
|
|
|
void assign(std::initializer_list<T> IL) {
|
|
clear();
|
|
append(IL);
|
|
}
|
|
|
|
void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
|
|
|
|
iterator erase(const_iterator CI) {
|
|
// Just cast away constness because this is a non-const member function.
|
|
iterator I = const_cast<iterator>(CI);
|
|
|
|
assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
|
|
|
|
iterator N = I;
|
|
// Shift all elts down one.
|
|
std::move(I+1, this->end(), I);
|
|
// Drop the last elt.
|
|
this->pop_back();
|
|
return(N);
|
|
}
|
|
|
|
iterator erase(const_iterator CS, const_iterator CE) {
|
|
// Just cast away constness because this is a non-const member function.
|
|
iterator S = const_cast<iterator>(CS);
|
|
iterator E = const_cast<iterator>(CE);
|
|
|
|
assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
|
|
|
|
iterator N = S;
|
|
// Shift all elts down.
|
|
iterator I = std::move(E, this->end(), S);
|
|
// Drop the last elts.
|
|
this->destroy_range(I, this->end());
|
|
this->set_size(I - this->begin());
|
|
return(N);
|
|
}
|
|
|
|
private:
|
|
template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
|
|
// Callers ensure that ArgType is derived from T.
|
|
static_assert(
|
|
std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
|
|
T>::value,
|
|
"ArgType must be derived from T!");
|
|
|
|
if (I == this->end()) { // Important special case for empty vector.
|
|
this->push_back(::std::forward<ArgType>(Elt));
|
|
return this->end()-1;
|
|
}
|
|
|
|
assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
|
|
|
|
// Grow if necessary.
|
|
size_t Index = I - this->begin();
|
|
std::remove_reference_t<ArgType> *EltPtr =
|
|
this->reserveForParamAndGetAddress(Elt);
|
|
I = this->begin() + Index;
|
|
|
|
::new ((void*) this->end()) T(::std::move(this->back()));
|
|
// Push everything else over.
|
|
std::move_backward(I, this->end()-1, this->end());
|
|
this->set_size(this->size() + 1);
|
|
|
|
// If we just moved the element we're inserting, be sure to update
|
|
// the reference (never happens if TakesParamByValue).
|
|
static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
|
|
"ArgType must be 'T' when taking by value!");
|
|
if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
|
|
++EltPtr;
|
|
|
|
*I = ::std::forward<ArgType>(*EltPtr);
|
|
return I;
|
|
}
|
|
|
|
public:
|
|
iterator insert(iterator I, T &&Elt) {
|
|
return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
|
|
}
|
|
|
|
iterator insert(iterator I, const T &Elt) {
|
|
return insert_one_impl(I, this->forward_value_param(Elt));
|
|
}
|
|
|
|
iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
|
|
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
|
size_t InsertElt = I - this->begin();
|
|
|
|
if (I == this->end()) { // Important special case for empty vector.
|
|
append(NumToInsert, Elt);
|
|
return this->begin()+InsertElt;
|
|
}
|
|
|
|
assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
|
|
|
|
// Ensure there is enough space, and get the (maybe updated) address of
|
|
// Elt.
|
|
const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
|
|
|
|
// Uninvalidate the iterator.
|
|
I = this->begin()+InsertElt;
|
|
|
|
// If there are more elements between the insertion point and the end of the
|
|
// range than there are being inserted, we can use a simple approach to
|
|
// insertion. Since we already reserved space, we know that this won't
|
|
// reallocate the vector.
|
|
if (size_t(this->end()-I) >= NumToInsert) {
|
|
T *OldEnd = this->end();
|
|
append(std::move_iterator<iterator>(this->end() - NumToInsert),
|
|
std::move_iterator<iterator>(this->end()));
|
|
|
|
// Copy the existing elements that get replaced.
|
|
std::move_backward(I, OldEnd-NumToInsert, OldEnd);
|
|
|
|
// If we just moved the element we're inserting, be sure to update
|
|
// the reference (never happens if TakesParamByValue).
|
|
if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
|
|
EltPtr += NumToInsert;
|
|
|
|
std::fill_n(I, NumToInsert, *EltPtr);
|
|
return I;
|
|
}
|
|
|
|
// Otherwise, we're inserting more elements than exist already, and we're
|
|
// not inserting at the end.
|
|
|
|
// Move over the elements that we're about to overwrite.
|
|
T *OldEnd = this->end();
|
|
this->set_size(this->size() + NumToInsert);
|
|
size_t NumOverwritten = OldEnd-I;
|
|
this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
|
|
|
|
// If we just moved the element we're inserting, be sure to update
|
|
// the reference (never happens if TakesParamByValue).
|
|
if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
|
|
EltPtr += NumToInsert;
|
|
|
|
// Replace the overwritten part.
|
|
std::fill_n(I, NumOverwritten, *EltPtr);
|
|
|
|
// Insert the non-overwritten middle part.
|
|
std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
|
|
return I;
|
|
}
|
|
|
|
template <typename ItTy,
|
|
typename = std::enable_if_t<std::is_convertible<
|
|
typename std::iterator_traits<ItTy>::iterator_category,
|
|
std::input_iterator_tag>::value>>
|
|
iterator insert(iterator I, ItTy From, ItTy To) {
|
|
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
|
size_t InsertElt = I - this->begin();
|
|
|
|
if (I == this->end()) { // Important special case for empty vector.
|
|
append(From, To);
|
|
return this->begin()+InsertElt;
|
|
}
|
|
|
|
assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
|
|
|
|
// Check that the reserve that follows doesn't invalidate the iterators.
|
|
this->assertSafeToAddRange(From, To);
|
|
|
|
size_t NumToInsert = std::distance(From, To);
|
|
|
|
// Ensure there is enough space.
|
|
reserve(this->size() + NumToInsert);
|
|
|
|
// Uninvalidate the iterator.
|
|
I = this->begin()+InsertElt;
|
|
|
|
// If there are more elements between the insertion point and the end of the
|
|
// range than there are being inserted, we can use a simple approach to
|
|
// insertion. Since we already reserved space, we know that this won't
|
|
// reallocate the vector.
|
|
if (size_t(this->end()-I) >= NumToInsert) {
|
|
T *OldEnd = this->end();
|
|
append(std::move_iterator<iterator>(this->end() - NumToInsert),
|
|
std::move_iterator<iterator>(this->end()));
|
|
|
|
// Copy the existing elements that get replaced.
|
|
std::move_backward(I, OldEnd-NumToInsert, OldEnd);
|
|
|
|
std::copy(From, To, I);
|
|
return I;
|
|
}
|
|
|
|
// Otherwise, we're inserting more elements than exist already, and we're
|
|
// not inserting at the end.
|
|
|
|
// Move over the elements that we're about to overwrite.
|
|
T *OldEnd = this->end();
|
|
this->set_size(this->size() + NumToInsert);
|
|
size_t NumOverwritten = OldEnd-I;
|
|
this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
|
|
|
|
// Replace the overwritten part.
|
|
for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
|
|
*J = *From;
|
|
++J; ++From;
|
|
}
|
|
|
|
// Insert the non-overwritten middle part.
|
|
this->uninitialized_copy(From, To, OldEnd);
|
|
return I;
|
|
}
|
|
|
|
void insert(iterator I, std::initializer_list<T> IL) {
|
|
insert(I, IL.begin(), IL.end());
|
|
}
|
|
|
|
template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
|
|
if (LLVM_UNLIKELY(this->size() >= this->capacity()))
|
|
return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
|
|
|
|
::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
|
|
this->set_size(this->size() + 1);
|
|
return this->back();
|
|
}
|
|
|
|
SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
|
|
|
|
SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
|
|
|
|
bool operator==(const SmallVectorImpl &RHS) const {
|
|
if (this->size() != RHS.size()) return false;
|
|
return std::equal(this->begin(), this->end(), RHS.begin());
|
|
}
|
|
bool operator!=(const SmallVectorImpl &RHS) const {
|
|
return !(*this == RHS);
|
|
}
|
|
|
|
bool operator<(const SmallVectorImpl &RHS) const {
|
|
return std::lexicographical_compare(this->begin(), this->end(),
|
|
RHS.begin(), RHS.end());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
|
if (this == &RHS) return;
|
|
|
|
// We can only avoid copying elements if neither vector is small.
|
|
if (!this->isSmall() && !RHS.isSmall()) {
|
|
std::swap(this->BeginX, RHS.BeginX);
|
|
std::swap(this->Size, RHS.Size);
|
|
std::swap(this->Capacity, RHS.Capacity);
|
|
return;
|
|
}
|
|
this->reserve(RHS.size());
|
|
RHS.reserve(this->size());
|
|
|
|
// Swap the shared elements.
|
|
size_t NumShared = this->size();
|
|
if (NumShared > RHS.size()) NumShared = RHS.size();
|
|
for (size_type i = 0; i != NumShared; ++i)
|
|
std::swap((*this)[i], RHS[i]);
|
|
|
|
// Copy over the extra elts.
|
|
if (this->size() > RHS.size()) {
|
|
size_t EltDiff = this->size() - RHS.size();
|
|
this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
|
|
RHS.set_size(RHS.size() + EltDiff);
|
|
this->destroy_range(this->begin()+NumShared, this->end());
|
|
this->set_size(NumShared);
|
|
} else if (RHS.size() > this->size()) {
|
|
size_t EltDiff = RHS.size() - this->size();
|
|
this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
|
|
this->set_size(this->size() + EltDiff);
|
|
this->destroy_range(RHS.begin()+NumShared, RHS.end());
|
|
RHS.set_size(NumShared);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
SmallVectorImpl<T> &SmallVectorImpl<T>::
|
|
operator=(const SmallVectorImpl<T> &RHS) {
|
|
// Avoid self-assignment.
|
|
if (this == &RHS) return *this;
|
|
|
|
// If we already have sufficient space, assign the common elements, then
|
|
// destroy any excess.
|
|
size_t RHSSize = RHS.size();
|
|
size_t CurSize = this->size();
|
|
if (CurSize >= RHSSize) {
|
|
// Assign common elements.
|
|
iterator NewEnd;
|
|
if (RHSSize)
|
|
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
|
|
else
|
|
NewEnd = this->begin();
|
|
|
|
// Destroy excess elements.
|
|
this->destroy_range(NewEnd, this->end());
|
|
|
|
// Trim.
|
|
this->set_size(RHSSize);
|
|
return *this;
|
|
}
|
|
|
|
// If we have to grow to have enough elements, destroy the current elements.
|
|
// This allows us to avoid copying them during the grow.
|
|
// FIXME: don't do this if they're efficiently moveable.
|
|
if (this->capacity() < RHSSize) {
|
|
// Destroy current elements.
|
|
this->clear();
|
|
CurSize = 0;
|
|
this->grow(RHSSize);
|
|
} else if (CurSize) {
|
|
// Otherwise, use assignment for the already-constructed elements.
|
|
std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
|
|
}
|
|
|
|
// Copy construct the new elements in place.
|
|
this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
|
|
this->begin()+CurSize);
|
|
|
|
// Set end.
|
|
this->set_size(RHSSize);
|
|
return *this;
|
|
}
|
|
|
|
template <typename T>
|
|
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
|
|
// Avoid self-assignment.
|
|
if (this == &RHS) return *this;
|
|
|
|
// If the RHS isn't small, clear this vector and then steal its buffer.
|
|
if (!RHS.isSmall()) {
|
|
this->destroy_range(this->begin(), this->end());
|
|
if (!this->isSmall()) free(this->begin());
|
|
this->BeginX = RHS.BeginX;
|
|
this->Size = RHS.Size;
|
|
this->Capacity = RHS.Capacity;
|
|
RHS.resetToSmall();
|
|
return *this;
|
|
}
|
|
|
|
// If we already have sufficient space, assign the common elements, then
|
|
// destroy any excess.
|
|
size_t RHSSize = RHS.size();
|
|
size_t CurSize = this->size();
|
|
if (CurSize >= RHSSize) {
|
|
// Assign common elements.
|
|
iterator NewEnd = this->begin();
|
|
if (RHSSize)
|
|
NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
|
|
|
|
// Destroy excess elements and trim the bounds.
|
|
this->destroy_range(NewEnd, this->end());
|
|
this->set_size(RHSSize);
|
|
|
|
// Clear the RHS.
|
|
RHS.clear();
|
|
|
|
return *this;
|
|
}
|
|
|
|
// If we have to grow to have enough elements, destroy the current elements.
|
|
// This allows us to avoid copying them during the grow.
|
|
// FIXME: this may not actually make any sense if we can efficiently move
|
|
// elements.
|
|
if (this->capacity() < RHSSize) {
|
|
// Destroy current elements.
|
|
this->clear();
|
|
CurSize = 0;
|
|
this->grow(RHSSize);
|
|
} else if (CurSize) {
|
|
// Otherwise, use assignment for the already-constructed elements.
|
|
std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
|
|
}
|
|
|
|
// Move-construct the new elements in place.
|
|
this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
|
|
this->begin()+CurSize);
|
|
|
|
// Set end.
|
|
this->set_size(RHSSize);
|
|
|
|
RHS.clear();
|
|
return *this;
|
|
}
|
|
|
|
/// Storage for the SmallVector elements. This is specialized for the N=0 case
|
|
/// to avoid allocating unnecessary storage.
|
|
template <typename T, unsigned N>
|
|
struct SmallVectorStorage {
|
|
alignas(T) char InlineElts[N * sizeof(T)];
|
|
};
|
|
|
|
/// We need the storage to be properly aligned even for small-size of 0 so that
|
|
/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
|
|
/// well-defined.
|
|
template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
|
|
|
|
/// Forward declaration of SmallVector so that
|
|
/// calculateSmallVectorDefaultInlinedElements can reference
|
|
/// `sizeof(SmallVector<T, 0>)`.
|
|
template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
|
|
|
|
/// Helper class for calculating the default number of inline elements for
|
|
/// `SmallVector<T>`.
|
|
///
|
|
/// This should be migrated to a constexpr function when our minimum
|
|
/// compiler support is enough for multi-statement constexpr functions.
|
|
template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
|
|
// Parameter controlling the default number of inlined elements
|
|
// for `SmallVector<T>`.
|
|
//
|
|
// The default number of inlined elements ensures that
|
|
// 1. There is at least one inlined element.
|
|
// 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
|
|
// it contradicts 1.
|
|
static constexpr size_t kPreferredSmallVectorSizeof = 64;
|
|
|
|
// static_assert that sizeof(T) is not "too big".
|
|
//
|
|
// Because our policy guarantees at least one inlined element, it is possible
|
|
// for an arbitrarily large inlined element to allocate an arbitrarily large
|
|
// amount of inline storage. We generally consider it an antipattern for a
|
|
// SmallVector to allocate an excessive amount of inline storage, so we want
|
|
// to call attention to these cases and make sure that users are making an
|
|
// intentional decision if they request a lot of inline storage.
|
|
//
|
|
// We want this assertion to trigger in pathological cases, but otherwise
|
|
// not be too easy to hit. To accomplish that, the cutoff is actually somewhat
|
|
// larger than kPreferredSmallVectorSizeof (otherwise,
|
|
// `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
|
|
// pattern seems useful in practice).
|
|
//
|
|
// One wrinkle is that this assertion is in theory non-portable, since
|
|
// sizeof(T) is in general platform-dependent. However, we don't expect this
|
|
// to be much of an issue, because most LLVM development happens on 64-bit
|
|
// hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
|
|
// 32-bit hosts, dodging the issue. The reverse situation, where development
|
|
// happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
|
|
// 64-bit host, is expected to be very rare.
|
|
static_assert(
|
|
sizeof(T) <= 256,
|
|
"You are trying to use a default number of inlined elements for "
|
|
"`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
|
|
"explicit number of inlined elements with `SmallVector<T, N>` to make "
|
|
"sure you really want that much inline storage.");
|
|
|
|
// Discount the size of the header itself when calculating the maximum inline
|
|
// bytes.
|
|
static constexpr size_t PreferredInlineBytes =
|
|
kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
|
|
static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
|
|
static constexpr size_t value =
|
|
NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
|
|
};
|
|
|
|
/// This is a 'vector' (really, a variable-sized array), optimized
|
|
/// for the case when the array is small. It contains some number of elements
|
|
/// in-place, which allows it to avoid heap allocation when the actual number of
|
|
/// elements is below that threshold. This allows normal "small" cases to be
|
|
/// fast without losing generality for large inputs.
|
|
///
|
|
/// \note
|
|
/// In the absence of a well-motivated choice for the number of inlined
|
|
/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
|
|
/// omitting the \p N). This will choose a default number of inlined elements
|
|
/// reasonable for allocation on the stack (for example, trying to keep \c
|
|
/// sizeof(SmallVector<T>) around 64 bytes).
|
|
///
|
|
/// \warning This does not attempt to be exception safe.
|
|
///
|
|
/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
|
|
template <typename T,
|
|
unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
|
|
class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
|
|
SmallVectorStorage<T, N> {
|
|
public:
|
|
SmallVector() : SmallVectorImpl<T>(N) {}
|
|
|
|
~SmallVector() {
|
|
// Destroy the constructed elements in the vector.
|
|
this->destroy_range(this->begin(), this->end());
|
|
}
|
|
|
|
explicit SmallVector(size_t Size, const T &Value = T())
|
|
: SmallVectorImpl<T>(N) {
|
|
this->assign(Size, Value);
|
|
}
|
|
|
|
template <typename ItTy,
|
|
typename = std::enable_if_t<std::is_convertible<
|
|
typename std::iterator_traits<ItTy>::iterator_category,
|
|
std::input_iterator_tag>::value>>
|
|
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
|
|
this->append(S, E);
|
|
}
|
|
|
|
template <typename RangeTy>
|
|
explicit SmallVector(const iterator_range<RangeTy> &R)
|
|
: SmallVectorImpl<T>(N) {
|
|
this->append(R.begin(), R.end());
|
|
}
|
|
|
|
SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
|
|
this->assign(IL);
|
|
}
|
|
|
|
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
|
|
if (!RHS.empty())
|
|
SmallVectorImpl<T>::operator=(RHS);
|
|
}
|
|
|
|
SmallVector &operator=(const SmallVector &RHS) {
|
|
SmallVectorImpl<T>::operator=(RHS);
|
|
return *this;
|
|
}
|
|
|
|
SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
|
|
if (!RHS.empty())
|
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
|
}
|
|
|
|
SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
|
|
if (!RHS.empty())
|
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
|
}
|
|
|
|
SmallVector &operator=(SmallVector &&RHS) {
|
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
|
return *this;
|
|
}
|
|
|
|
SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
|
|
SmallVectorImpl<T>::operator=(::std::move(RHS));
|
|
return *this;
|
|
}
|
|
|
|
SmallVector &operator=(std::initializer_list<T> IL) {
|
|
this->assign(IL);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
template <typename T, unsigned N>
|
|
inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
|
|
return X.capacity_in_bytes();
|
|
}
|
|
|
|
/// Given a range of type R, iterate the entire range and return a
|
|
/// SmallVector with elements of the vector. This is useful, for example,
|
|
/// when you want to iterate a range and then sort the results.
|
|
template <unsigned Size, typename R>
|
|
SmallVector<typename std::remove_const<typename std::remove_reference<
|
|
decltype(*std::begin(std::declval<R &>()))>::type>::type,
|
|
Size>
|
|
to_vector(R &&Range) {
|
|
return {std::begin(Range), std::end(Range)};
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace std {
|
|
|
|
/// Implement std::swap in terms of SmallVector swap.
|
|
template<typename T>
|
|
inline void
|
|
swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
/// Implement std::swap in terms of SmallVector swap.
|
|
template<typename T, unsigned N>
|
|
inline void
|
|
swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
|
|
LHS.swap(RHS);
|
|
}
|
|
|
|
} // end namespace std
|
|
|
|
#endif // LLVM_ADT_SMALLVECTOR_H
|