157 lines
7.0 KiB
C++
157 lines
7.0 KiB
C++
|
//===- DisassemblerEmitter.cpp - Generate a disassembler ------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "CodeGenTarget.h"
|
||
|
#include "WebAssemblyDisassemblerEmitter.h"
|
||
|
#include "X86DisassemblerTables.h"
|
||
|
#include "X86RecognizableInstr.h"
|
||
|
#include "llvm/TableGen/Error.h"
|
||
|
#include "llvm/TableGen/Record.h"
|
||
|
#include "llvm/TableGen/TableGenBackend.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
using namespace llvm::X86Disassembler;
|
||
|
|
||
|
/// DisassemblerEmitter - Contains disassembler table emitters for various
|
||
|
/// architectures.
|
||
|
|
||
|
/// X86 Disassembler Emitter
|
||
|
///
|
||
|
/// *** IF YOU'RE HERE TO RESOLVE A "Primary decode conflict", LOOK DOWN NEAR
|
||
|
/// THE END OF THIS COMMENT!
|
||
|
///
|
||
|
/// The X86 disassembler emitter is part of the X86 Disassembler, which is
|
||
|
/// documented in lib/Target/X86/X86Disassembler.h.
|
||
|
///
|
||
|
/// The emitter produces the tables that the disassembler uses to translate
|
||
|
/// instructions. The emitter generates the following tables:
|
||
|
///
|
||
|
/// - One table (CONTEXTS_SYM) that contains a mapping of attribute masks to
|
||
|
/// instruction contexts. Although for each attribute there are cases where
|
||
|
/// that attribute determines decoding, in the majority of cases decoding is
|
||
|
/// the same whether or not an attribute is present. For example, a 64-bit
|
||
|
/// instruction with an OPSIZE prefix and an XS prefix decodes the same way in
|
||
|
/// all cases as a 64-bit instruction with only OPSIZE set. (The XS prefix
|
||
|
/// may have effects on its execution, but does not change the instruction
|
||
|
/// returned.) This allows considerable space savings in other tables.
|
||
|
/// - Six tables (ONEBYTE_SYM, TWOBYTE_SYM, THREEBYTE38_SYM, THREEBYTE3A_SYM,
|
||
|
/// THREEBYTEA6_SYM, and THREEBYTEA7_SYM contain the hierarchy that the
|
||
|
/// decoder traverses while decoding an instruction. At the lowest level of
|
||
|
/// this hierarchy are instruction UIDs, 16-bit integers that can be used to
|
||
|
/// uniquely identify the instruction and correspond exactly to its position
|
||
|
/// in the list of CodeGenInstructions for the target.
|
||
|
/// - One table (INSTRUCTIONS_SYM) contains information about the operands of
|
||
|
/// each instruction and how to decode them.
|
||
|
///
|
||
|
/// During table generation, there may be conflicts between instructions that
|
||
|
/// occupy the same space in the decode tables. These conflicts are resolved as
|
||
|
/// follows in setTableFields() (X86DisassemblerTables.cpp)
|
||
|
///
|
||
|
/// - If the current context is the native context for one of the instructions
|
||
|
/// (that is, the attributes specified for it in the LLVM tables specify
|
||
|
/// precisely the current context), then it has priority.
|
||
|
/// - If the current context isn't native for either of the instructions, then
|
||
|
/// the higher-priority context wins (that is, the one that is more specific).
|
||
|
/// That hierarchy is determined by outranks() (X86DisassemblerTables.cpp)
|
||
|
/// - If the current context is native for both instructions, then the table
|
||
|
/// emitter reports a conflict and dies.
|
||
|
///
|
||
|
/// *** RESOLUTION FOR "Primary decode conflict"S
|
||
|
///
|
||
|
/// If two instructions collide, typically the solution is (in order of
|
||
|
/// likelihood):
|
||
|
///
|
||
|
/// (1) to filter out one of the instructions by editing filter()
|
||
|
/// (X86RecognizableInstr.cpp). This is the most common resolution, but
|
||
|
/// check the Intel manuals first to make sure that (2) and (3) are not the
|
||
|
/// problem.
|
||
|
/// (2) to fix the tables (X86.td and its subsidiaries) so the opcodes are
|
||
|
/// accurate. Sometimes they are not.
|
||
|
/// (3) to fix the tables to reflect the actual context (for example, required
|
||
|
/// prefixes), and possibly to add a new context by editing
|
||
|
/// include/llvm/Support/X86DisassemblerDecoderCommon.h. This is unlikely
|
||
|
/// to be the cause.
|
||
|
///
|
||
|
/// DisassemblerEmitter.cpp contains the implementation for the emitter,
|
||
|
/// which simply pulls out instructions from the CodeGenTarget and pushes them
|
||
|
/// into X86DisassemblerTables.
|
||
|
/// X86DisassemblerTables.h contains the interface for the instruction tables,
|
||
|
/// which manage and emit the structures discussed above.
|
||
|
/// X86DisassemblerTables.cpp contains the implementation for the instruction
|
||
|
/// tables.
|
||
|
/// X86ModRMFilters.h contains filters that can be used to determine which
|
||
|
/// ModR/M values are valid for a particular instruction. These are used to
|
||
|
/// populate ModRMDecisions.
|
||
|
/// X86RecognizableInstr.h contains the interface for a single instruction,
|
||
|
/// which knows how to translate itself from a CodeGenInstruction and provide
|
||
|
/// the information necessary for integration into the tables.
|
||
|
/// X86RecognizableInstr.cpp contains the implementation for a single
|
||
|
/// instruction.
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
extern void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
|
||
|
const std::string &PredicateNamespace,
|
||
|
const std::string &GPrefix,
|
||
|
const std::string &GPostfix,
|
||
|
const std::string &ROK,
|
||
|
const std::string &RFail, const std::string &L);
|
||
|
|
||
|
void EmitDisassembler(RecordKeeper &Records, raw_ostream &OS) {
|
||
|
CodeGenTarget Target(Records);
|
||
|
emitSourceFileHeader(" * " + Target.getName().str() + " Disassembler", OS);
|
||
|
|
||
|
// X86 uses a custom disassembler.
|
||
|
if (Target.getName() == "X86") {
|
||
|
DisassemblerTables Tables;
|
||
|
|
||
|
ArrayRef<const CodeGenInstruction*> numberedInstructions =
|
||
|
Target.getInstructionsByEnumValue();
|
||
|
|
||
|
for (unsigned i = 0, e = numberedInstructions.size(); i != e; ++i)
|
||
|
RecognizableInstr::processInstr(Tables, *numberedInstructions[i], i);
|
||
|
|
||
|
if (Tables.hasConflicts()) {
|
||
|
PrintError(Target.getTargetRecord()->getLoc(), "Primary decode conflict");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Tables.emit(OS);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// WebAssembly has variable length opcodes, so can't use EmitFixedLenDecoder
|
||
|
// below (which depends on a Size table-gen Record), and also uses a custom
|
||
|
// disassembler.
|
||
|
if (Target.getName() == "WebAssembly") {
|
||
|
emitWebAssemblyDisassemblerTables(OS, Target.getInstructionsByEnumValue());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// ARM and Thumb have a CHECK() macro to deal with DecodeStatuses.
|
||
|
if (Target.getName() == "ARM" || Target.getName() == "Thumb" ||
|
||
|
Target.getName() == "AArch64" || Target.getName() == "ARM64") {
|
||
|
std::string PredicateNamespace = std::string(Target.getName());
|
||
|
if (PredicateNamespace == "Thumb")
|
||
|
PredicateNamespace = "ARM";
|
||
|
|
||
|
EmitFixedLenDecoder(Records, OS, PredicateNamespace,
|
||
|
"if (!Check(S, ", "))",
|
||
|
"S", "MCDisassembler::Fail",
|
||
|
" MCDisassembler::DecodeStatus S = "
|
||
|
"MCDisassembler::Success;\n(void)S;");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
EmitFixedLenDecoder(Records, OS, std::string(Target.getName()), "if (",
|
||
|
" == MCDisassembler::Fail)", "MCDisassembler::Success",
|
||
|
"MCDisassembler::Fail", "");
|
||
|
}
|
||
|
|
||
|
} // end namespace llvm
|