llvm-for-llvmta/test/CodeGen/X86/dagcombine-shifts.ll

218 lines
5.4 KiB
LLVM
Raw Normal View History

2022-04-25 10:02:23 +02:00
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-linux-gnu | FileCheck %s
; fold (shl (zext (lshr (A, X))), X) -> (zext (shl (lshr (A, X)), X))
; Canolicalize the sequence shl/zext/lshr performing the zeroextend
; as the last instruction of the sequence.
; This will help DAGCombiner to identify and then fold the sequence
; of shifts into a single AND.
; This transformation is profitable if the shift amounts are the same
; and if there is only one use of the zext.
define i16 @fun1(i8 zeroext %v) {
; CHECK-LABEL: fun1:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: # kill: def $ax killed $ax killed $eax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i16
%shl = shl i16 %ext, 4
ret i16 %shl
}
define i32 @fun2(i8 zeroext %v) {
; CHECK-LABEL: fun2:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i32
%shl = shl i32 %ext, 4
ret i32 %shl
}
define i32 @fun3(i16 zeroext %v) {
; CHECK-LABEL: fun3:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i16 %v, 4
%ext = zext i16 %shr to i32
%shl = shl i32 %ext, 4
ret i32 %shl
}
define i64 @fun4(i8 zeroext %v) {
; CHECK-LABEL: fun4:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun5(i16 zeroext %v) {
; CHECK-LABEL: fun5:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i16 %v, 4
%ext = zext i16 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun6(i32 zeroext %v) {
; CHECK-LABEL: fun6:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: andl $-16, %eax
; CHECK-NEXT: retq
entry:
%shr = lshr i32 %v, 4
%ext = zext i32 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
; Don't fold the pattern if we use arithmetic shifts.
define i64 @fun7(i8 zeroext %v) {
; CHECK-LABEL: fun7:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: sarb $4, %dil
; CHECK-NEXT: movzbl %dil, %eax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: retq
entry:
%shr = ashr i8 %v, 4
%ext = zext i8 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun8(i16 zeroext %v) {
; CHECK-LABEL: fun8:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movswl %di, %eax
; CHECK-NEXT: shrl $4, %eax
; CHECK-NEXT: movzwl %ax, %eax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: retq
entry:
%shr = ashr i16 %v, 4
%ext = zext i16 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
define i64 @fun9(i32 zeroext %v) {
; CHECK-LABEL: fun9:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %edi, %eax
; CHECK-NEXT: sarl $4, %eax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: retq
entry:
%shr = ashr i32 %v, 4
%ext = zext i32 %shr to i64
%shl = shl i64 %ext, 4
ret i64 %shl
}
; Don't fold the pattern if there is more than one use of the
; operand in input to the shift left.
define i64 @fun10(i8 zeroext %v) {
; CHECK-LABEL: fun10:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: shrb $4, %dil
; CHECK-NEXT: movzbl %dil, %ecx
; CHECK-NEXT: movq %rcx, %rax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: orq %rcx, %rax
; CHECK-NEXT: retq
entry:
%shr = lshr i8 %v, 4
%ext = zext i8 %shr to i64
%shl = shl i64 %ext, 4
%add = add i64 %shl, %ext
ret i64 %add
}
define i64 @fun11(i16 zeroext %v) {
; CHECK-LABEL: fun11:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: # kill: def $edi killed $edi def $rdi
; CHECK-NEXT: shrl $4, %edi
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: addq %rdi, %rax
; CHECK-NEXT: retq
entry:
%shr = lshr i16 %v, 4
%ext = zext i16 %shr to i64
%shl = shl i64 %ext, 4
%add = add i64 %shl, %ext
ret i64 %add
}
define i64 @fun12(i32 zeroext %v) {
; CHECK-LABEL: fun12:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: # kill: def $edi killed $edi def $rdi
; CHECK-NEXT: shrl $4, %edi
; CHECK-NEXT: movq %rdi, %rax
; CHECK-NEXT: shlq $4, %rax
; CHECK-NEXT: addq %rdi, %rax
; CHECK-NEXT: retq
entry:
%shr = lshr i32 %v, 4
%ext = zext i32 %shr to i64
%shl = shl i64 %ext, 4
%add = add i64 %shl, %ext
ret i64 %add
}
; PR17380
; Make sure that the combined dags are legal if we run the DAGCombiner after
; Legalization took place. The add instruction is redundant and increases by
; one the number of uses of the zext. This prevents the transformation from
; firing before dags are legalized and optimized.
; Once the add is removed, the number of uses becomes one and therefore the
; dags are canonicalized. After Legalization, we need to make sure that the
; valuetype for the shift count is legal.
; Verify also that we correctly fold the shl-shr sequence into an
; AND with bitmask.
define void @g(i32 %a) {
; CHECK-LABEL: g:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $edi killed $edi def $rdi
; CHECK-NEXT: andl $-4, %edi
; CHECK-NEXT: jmp f # TAILCALL
%b = lshr i32 %a, 2
%c = zext i32 %b to i64
%d = add i64 %c, 1
%e = shl i64 %c, 2
tail call void @f(i64 %e)
ret void
}
declare dso_local void @f(i64)