73 lines
3.5 KiB
LLVM
73 lines
3.5 KiB
LLVM
|
; RUN: llc %s -o - | FileCheck %s
|
||
|
|
||
|
target triple = "thumbv7s-apple-ios"
|
||
|
|
||
|
declare <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %shuffle.i.i307, <8 x i8> %shuffle.i27.i308, <8 x i8> %vtbl2.i25.i)
|
||
|
|
||
|
; Check that we get the motivating example:
|
||
|
; The bitcasts force the values to go through the GPRs, whereas
|
||
|
; they are defined on VPRs and used on VPRs.
|
||
|
;
|
||
|
; CHECK-LABEL: motivatingExample:
|
||
|
; CHECK: vld1.32 {[[ARG1_VALlo:d[0-9]+]], [[ARG1_VALhi:d[0-9]+]]}, [r0]
|
||
|
; CHECK-NEXT: vldr [[ARG2_VAL:d[0-9]+]], [r1]
|
||
|
; CHECK-NEXT: vtbl.8 [[RES:d[0-9]+]], {[[ARG1_VALlo]], [[ARG1_VALhi]]}, [[ARG2_VAL]]
|
||
|
; CHECK-NEXT: vstr [[RES]], [r1]
|
||
|
; CHECK-NEXT: bx lr
|
||
|
define void @motivatingExample(<2 x i64>* %addr, <8 x i8>* %addr2) {
|
||
|
%shuffle.i.bc.i309 = load <2 x i64>, <2 x i64>* %addr
|
||
|
%vtbl2.i25.i = load <8 x i8>, <8 x i8>* %addr2
|
||
|
%shuffle.i.extract.i310 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 0
|
||
|
%shuffle.i27.extract.i311 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 1
|
||
|
%tmp45 = bitcast i64 %shuffle.i.extract.i310 to <8 x i8>
|
||
|
%tmp46 = bitcast i64 %shuffle.i27.extract.i311 to <8 x i8>
|
||
|
%vtbl2.i25.i313 = tail call <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %tmp45, <8 x i8> %tmp46, <8 x i8> %vtbl2.i25.i)
|
||
|
store <8 x i8> %vtbl2.i25.i313, <8 x i8>* %addr2
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
; Check that we do not perform the transformation for dynamic index.
|
||
|
; CHECK-LABEL: dynamicIndex:
|
||
|
; CHECK-NOT: mul
|
||
|
; CHECK: pop
|
||
|
define void @dynamicIndex(<2 x i64>* %addr, <8 x i8>* %addr2, i32 %index) {
|
||
|
%shuffle.i.bc.i309 = load <2 x i64>, <2 x i64>* %addr
|
||
|
%vtbl2.i25.i = load <8 x i8>, <8 x i8>* %addr2
|
||
|
%shuffle.i.extract.i310 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 %index
|
||
|
%shuffle.i27.extract.i311 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 1
|
||
|
%tmp45 = bitcast i64 %shuffle.i.extract.i310 to <8 x i8>
|
||
|
%tmp46 = bitcast i64 %shuffle.i27.extract.i311 to <8 x i8>
|
||
|
%vtbl2.i25.i313 = tail call <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %tmp45, <8 x i8> %tmp46, <8 x i8> %vtbl2.i25.i)
|
||
|
store <8 x i8> %vtbl2.i25.i313, <8 x i8>* %addr2
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
; Check that we do not perform the transformation when there are several uses
|
||
|
; of the result of the bitcast.
|
||
|
; CHECK-LABEL: severalUses:
|
||
|
; ARG1_VALlo is hard coded because we need to access the high part of d0,
|
||
|
; i.e., s1, and we can't express that with filecheck.
|
||
|
; CHECK: vld1.32 {[[ARG1_VALlo:d0]], [[ARG1_VALhi:d[0-9]+]]}, [r0]
|
||
|
; CHECK-NEXT: vldr [[ARG2_VAL:d[0-9]+]], [r1]
|
||
|
; s1 is actually 2 * ARG1_VALlo + 1, but we cannot express that with filecheck.
|
||
|
; CHECK-NEXT: vmov [[REThi:r[0-9]+]], s1
|
||
|
; We build the return value here. s0 is 2 * ARG1_VALlo.
|
||
|
; CHECK-NEXT: vmov r0, s0
|
||
|
; This copy is correct but actually useless. We should be able to clean it up.
|
||
|
; CHECK-NEXT: vmov [[ARG1_VALloCPY:d[0-9]+]], r0, [[REThi]]
|
||
|
; CHECK-NEXT: vtbl.8 [[RES:d[0-9]+]], {[[ARG1_VALloCPY]], [[ARG1_VALhi]]}, [[ARG2_VAL]]
|
||
|
; CHECK-NEXT: vstr [[RES]], [r1]
|
||
|
; CHECK-NEXT: mov r1, [[REThi]]
|
||
|
; CHECK-NEXT: bx lr
|
||
|
define i64 @severalUses(<2 x i64>* %addr, <8 x i8>* %addr2) {
|
||
|
%shuffle.i.bc.i309 = load <2 x i64>, <2 x i64>* %addr
|
||
|
%vtbl2.i25.i = load <8 x i8>, <8 x i8>* %addr2
|
||
|
%shuffle.i.extract.i310 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 0
|
||
|
%shuffle.i27.extract.i311 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 1
|
||
|
%tmp45 = bitcast i64 %shuffle.i.extract.i310 to <8 x i8>
|
||
|
%tmp46 = bitcast i64 %shuffle.i27.extract.i311 to <8 x i8>
|
||
|
%vtbl2.i25.i313 = tail call <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %tmp45, <8 x i8> %tmp46, <8 x i8> %vtbl2.i25.i)
|
||
|
store <8 x i8> %vtbl2.i25.i313, <8 x i8>* %addr2
|
||
|
ret i64 %shuffle.i.extract.i310
|
||
|
}
|