llvm-for-llvmta/lib/Transforms/Scalar/CallSiteSplitting.cpp

591 lines
21 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- CallSiteSplitting.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a transformation that tries to split a call-site to pass
// more constrained arguments if its argument is predicated in the control flow
// so that we can expose better context to the later passes (e.g, inliner, jump
// threading, or IPA-CP based function cloning, etc.).
// As of now we support two cases :
//
// 1) Try to a split call-site with constrained arguments, if any constraints
// on any argument can be found by following the single predecessors of the
// all site's predecessors. Currently this pass only handles call-sites with 2
// predecessors. For example, in the code below, we try to split the call-site
// since we can predicate the argument(ptr) based on the OR condition.
//
// Split from :
// if (!ptr || c)
// callee(ptr);
// to :
// if (!ptr)
// callee(null) // set the known constant value
// else if (c)
// callee(nonnull ptr) // set non-null attribute in the argument
//
// 2) We can also split a call-site based on constant incoming values of a PHI
// For example,
// from :
// Header:
// %c = icmp eq i32 %i1, %i2
// br i1 %c, label %Tail, label %TBB
// TBB:
// br label Tail%
// Tail:
// %p = phi i32 [ 0, %Header], [ 1, %TBB]
// call void @bar(i32 %p)
// to
// Header:
// %c = icmp eq i32 %i1, %i2
// br i1 %c, label %Tail-split0, label %TBB
// TBB:
// br label %Tail-split1
// Tail-split0:
// call void @bar(i32 0)
// br label %Tail
// Tail-split1:
// call void @bar(i32 1)
// br label %Tail
// Tail:
// %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "callsite-splitting"
STATISTIC(NumCallSiteSplit, "Number of call-site split");
/// Only allow instructions before a call, if their CodeSize cost is below
/// DuplicationThreshold. Those instructions need to be duplicated in all
/// split blocks.
static cl::opt<unsigned>
DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
cl::desc("Only allow instructions before a call, if "
"their cost is below DuplicationThreshold"),
cl::init(5));
static void addNonNullAttribute(CallBase &CB, Value *Op) {
unsigned ArgNo = 0;
for (auto &I : CB.args()) {
if (&*I == Op)
CB.addParamAttr(ArgNo, Attribute::NonNull);
++ArgNo;
}
}
static void setConstantInArgument(CallBase &CB, Value *Op,
Constant *ConstValue) {
unsigned ArgNo = 0;
for (auto &I : CB.args()) {
if (&*I == Op) {
// It is possible we have already added the non-null attribute to the
// parameter by using an earlier constraining condition.
CB.removeParamAttr(ArgNo, Attribute::NonNull);
CB.setArgOperand(ArgNo, ConstValue);
}
++ArgNo;
}
}
static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) {
assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
Value *Op0 = Cmp->getOperand(0);
unsigned ArgNo = 0;
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) {
// Don't consider constant or arguments that are already known non-null.
if (isa<Constant>(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull))
continue;
if (*I == Op0)
return true;
}
return false;
}
typedef std::pair<ICmpInst *, unsigned> ConditionTy;
typedef SmallVector<ConditionTy, 2> ConditionsTy;
/// If From has a conditional jump to To, add the condition to Conditions,
/// if it is relevant to any argument at CB.
static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To,
ConditionsTy &Conditions) {
auto *BI = dyn_cast<BranchInst>(From->getTerminator());
if (!BI || !BI->isConditional())
return;
CmpInst::Predicate Pred;
Value *Cond = BI->getCondition();
if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
return;
ICmpInst *Cmp = cast<ICmpInst>(Cond);
if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
if (isCondRelevantToAnyCallArgument(Cmp, CB))
Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
? Pred
: Cmp->getInversePredicate()});
}
/// Record ICmp conditions relevant to any argument in CB following Pred's
/// single predecessors. If there are conflicting conditions along a path, like
/// x == 1 and x == 0, the first condition will be used. We stop once we reach
/// an edge to StopAt.
static void recordConditions(CallBase &CB, BasicBlock *Pred,
ConditionsTy &Conditions, BasicBlock *StopAt) {
BasicBlock *From = Pred;
BasicBlock *To = Pred;
SmallPtrSet<BasicBlock *, 4> Visited;
while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
(From = From->getSinglePredecessor())) {
recordCondition(CB, From, To, Conditions);
Visited.insert(From);
To = From;
}
}
static void addConditions(CallBase &CB, const ConditionsTy &Conditions) {
for (auto &Cond : Conditions) {
Value *Arg = Cond.first->getOperand(0);
Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
if (Cond.second == ICmpInst::ICMP_EQ)
setConstantInArgument(CB, Arg, ConstVal);
else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
assert(Cond.second == ICmpInst::ICMP_NE);
addNonNullAttribute(CB, Arg);
}
}
}
static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
return Preds;
}
static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) {
if (CB.isConvergent() || CB.cannotDuplicate())
return false;
// FIXME: As of now we handle only CallInst. InvokeInst could be handled
// without too much effort.
if (!isa<CallInst>(CB))
return false;
BasicBlock *CallSiteBB = CB.getParent();
// Need 2 predecessors and cannot split an edge from an IndirectBrInst.
SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
isa<IndirectBrInst>(Preds[1]->getTerminator()))
return false;
// BasicBlock::canSplitPredecessors is more aggressive, so checking for
// BasicBlock::isEHPad as well.
if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
return false;
// Allow splitting a call-site only when the CodeSize cost of the
// instructions before the call is less then DuplicationThreshold. The
// instructions before the call will be duplicated in the split blocks and
// corresponding uses will be updated.
InstructionCost Cost = 0;
for (auto &InstBeforeCall :
llvm::make_range(CallSiteBB->begin(), CB.getIterator())) {
Cost += TTI.getInstructionCost(&InstBeforeCall,
TargetTransformInfo::TCK_CodeSize);
if (Cost >= DuplicationThreshold)
return false;
}
return true;
}
static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
Value *V) {
Instruction *Copy = I->clone();
Copy->setName(I->getName());
Copy->insertBefore(Before);
if (V)
Copy->setOperand(0, V);
return Copy;
}
/// Copy mandatory `musttail` return sequence that follows original `CI`, and
/// link it up to `NewCI` value instead:
///
/// * (optional) `bitcast NewCI to ...`
/// * `ret bitcast or NewCI`
///
/// Insert this sequence right before `SplitBB`'s terminator, which will be
/// cleaned up later in `splitCallSite` below.
static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
Instruction *NewCI) {
bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
auto II = std::next(CI->getIterator());
BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
if (BCI)
++II;
ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
assert(RI && "`musttail` call must be followed by `ret` instruction");
Instruction *TI = SplitBB->getTerminator();
Value *V = NewCI;
if (BCI)
V = cloneInstForMustTail(BCI, TI, V);
cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
// FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
// that prevents doing this now.
}
/// For each (predecessor, conditions from predecessors) pair, it will split the
/// basic block containing the call site, hook it up to the predecessor and
/// replace the call instruction with new call instructions, which contain
/// constraints based on the conditions from their predecessors.
/// For example, in the IR below with an OR condition, the call-site can
/// be split. In this case, Preds for Tail is [(Header, a == null),
/// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
/// CallInst1, which has constraints based on the conditions from Head and
/// CallInst2, which has constraints based on the conditions coming from TBB.
///
/// From :
///
/// Header:
/// %c = icmp eq i32* %a, null
/// br i1 %c %Tail, %TBB
/// TBB:
/// %c2 = icmp eq i32* %b, null
/// br i1 %c %Tail, %End
/// Tail:
/// %ca = call i1 @callee (i32* %a, i32* %b)
///
/// to :
///
/// Header: // PredBB1 is Header
/// %c = icmp eq i32* %a, null
/// br i1 %c %Tail-split1, %TBB
/// TBB: // PredBB2 is TBB
/// %c2 = icmp eq i32* %b, null
/// br i1 %c %Tail-split2, %End
/// Tail-split1:
/// %ca1 = call @callee (i32* null, i32* %b) // CallInst1
/// br %Tail
/// Tail-split2:
/// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
/// br %Tail
/// Tail:
/// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
///
/// Note that in case any arguments at the call-site are constrained by its
/// predecessors, new call-sites with more constrained arguments will be
/// created in createCallSitesOnPredicatedArgument().
static void splitCallSite(
CallBase &CB,
const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
DomTreeUpdater &DTU) {
BasicBlock *TailBB = CB.getParent();
bool IsMustTailCall = CB.isMustTailCall();
PHINode *CallPN = nullptr;
// `musttail` calls must be followed by optional `bitcast`, and `ret`. The
// split blocks will be terminated right after that so there're no users for
// this phi in a `TailBB`.
if (!IsMustTailCall && !CB.use_empty()) {
CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call");
CallPN->setDebugLoc(CB.getDebugLoc());
}
LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n");
assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
// ValueToValueMapTy is neither copy nor moveable, so we use a simple array
// here.
ValueToValueMapTy ValueToValueMaps[2];
for (unsigned i = 0; i < Preds.size(); i++) {
BasicBlock *PredBB = Preds[i].first;
BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i],
DTU);
assert(SplitBlock && "Unexpected new basic block split.");
auto *NewCI =
cast<CallBase>(&*std::prev(SplitBlock->getTerminator()->getIterator()));
addConditions(*NewCI, Preds[i].second);
// Handle PHIs used as arguments in the call-site.
for (PHINode &PN : TailBB->phis()) {
unsigned ArgNo = 0;
for (auto &CI : CB.args()) {
if (&*CI == &PN) {
NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
}
++ArgNo;
}
}
LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName()
<< "\n");
if (CallPN)
CallPN->addIncoming(NewCI, SplitBlock);
// Clone and place bitcast and return instructions before `TI`
if (IsMustTailCall)
copyMustTailReturn(SplitBlock, &CB, NewCI);
}
NumCallSiteSplit++;
// FIXME: remove TI in `copyMustTailReturn`
if (IsMustTailCall) {
// Remove superfluous `br` terminators from the end of the Split blocks
// NOTE: Removing terminator removes the SplitBlock from the TailBB's
// predecessors. Therefore we must get complete list of Splits before
// attempting removal.
SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
assert(Splits.size() == 2 && "Expected exactly 2 splits!");
for (unsigned i = 0; i < Splits.size(); i++) {
Splits[i]->getTerminator()->eraseFromParent();
DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}});
}
// Erase the tail block once done with musttail patching
DTU.deleteBB(TailBB);
return;
}
auto *OriginalBegin = &*TailBB->begin();
// Replace users of the original call with a PHI mering call-sites split.
if (CallPN) {
CallPN->insertBefore(OriginalBegin);
CB.replaceAllUsesWith(CallPN);
}
// Remove instructions moved to split blocks from TailBB, from the duplicated
// call instruction to the beginning of the basic block. If an instruction
// has any uses, add a new PHI node to combine the values coming from the
// split blocks. The new PHI nodes are placed before the first original
// instruction, so we do not end up deleting them. By using reverse-order, we
// do not introduce unnecessary PHI nodes for def-use chains from the call
// instruction to the beginning of the block.
auto I = CB.getReverseIterator();
while (I != TailBB->rend()) {
Instruction *CurrentI = &*I++;
if (!CurrentI->use_empty()) {
// If an existing PHI has users after the call, there is no need to create
// a new one.
if (isa<PHINode>(CurrentI))
continue;
PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
NewPN->setDebugLoc(CurrentI->getDebugLoc());
for (auto &Mapping : ValueToValueMaps)
NewPN->addIncoming(Mapping[CurrentI],
cast<Instruction>(Mapping[CurrentI])->getParent());
NewPN->insertBefore(&*TailBB->begin());
CurrentI->replaceAllUsesWith(NewPN);
}
CurrentI->eraseFromParent();
// We are done once we handled the first original instruction in TailBB.
if (CurrentI == OriginalBegin)
break;
}
}
// Return true if the call-site has an argument which is a PHI with only
// constant incoming values.
static bool isPredicatedOnPHI(CallBase &CB) {
BasicBlock *Parent = CB.getParent();
if (&CB != Parent->getFirstNonPHIOrDbg())
return false;
for (auto &PN : Parent->phis()) {
for (auto &Arg : CB.args()) {
if (&*Arg != &PN)
continue;
assert(PN.getNumIncomingValues() == 2 &&
"Unexpected number of incoming values");
if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1))
return false;
if (PN.getIncomingValue(0) == PN.getIncomingValue(1))
continue;
if (isa<Constant>(PN.getIncomingValue(0)) &&
isa<Constant>(PN.getIncomingValue(1)))
return true;
}
}
return false;
}
using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
// Check if any of the arguments in CS are predicated on a PHI node and return
// the set of predecessors we should use for splitting.
static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) {
if (!isPredicatedOnPHI(CB))
return {};
auto Preds = getTwoPredecessors(CB.getParent());
return {{Preds[0], {}}, {Preds[1], {}}};
}
// Checks if any of the arguments in CS are predicated in a predecessor and
// returns a list of predecessors with the conditions that hold on their edges
// to CS.
static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB,
DomTreeUpdater &DTU) {
auto Preds = getTwoPredecessors(CB.getParent());
if (Preds[0] == Preds[1])
return {};
// We can stop recording conditions once we reached the immediate dominator
// for the block containing the call site. Conditions in predecessors of the
// that node will be the same for all paths to the call site and splitting
// is not beneficial.
assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent());
BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
ConditionsTy Conditions;
// Record condition on edge BB(CS) <- Pred
recordCondition(CB, Pred, CB.getParent(), Conditions);
// Record conditions following Pred's single predecessors.
recordConditions(CB, Pred, Conditions, StopAt);
PredsCS.push_back({Pred, Conditions});
}
if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
return P.second.empty();
}))
return {};
return PredsCS;
}
static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI,
DomTreeUpdater &DTU) {
// Check if we can split the call site.
if (!CB.arg_size() || !canSplitCallSite(CB, TTI))
return false;
auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU);
if (PredsWithConds.empty())
PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB);
if (PredsWithConds.empty())
return false;
splitCallSite(CB, PredsWithConds, DTU);
return true;
}
static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
TargetTransformInfo &TTI, DominatorTree &DT) {
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
bool Changed = false;
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
BasicBlock &BB = *BI++;
auto II = BB.getFirstNonPHIOrDbg()->getIterator();
auto IE = BB.getTerminator()->getIterator();
// Iterate until we reach the terminator instruction. tryToSplitCallSite
// can replace BB's terminator in case BB is a successor of itself. In that
// case, IE will be invalidated and we also have to check the current
// terminator.
while (II != IE && &*II != BB.getTerminator()) {
CallBase *CB = dyn_cast<CallBase>(&*II++);
if (!CB || isa<IntrinsicInst>(CB) || isInstructionTriviallyDead(CB, &TLI))
continue;
Function *Callee = CB->getCalledFunction();
if (!Callee || Callee->isDeclaration())
continue;
// Successful musttail call-site splits result in erased CI and erased BB.
// Check if such path is possible before attempting the splitting.
bool IsMustTail = CB->isMustTailCall();
Changed |= tryToSplitCallSite(*CB, TTI, DTU);
// There're no interesting instructions after this. The call site
// itself might have been erased on splitting.
if (IsMustTail)
break;
}
}
return Changed;
}
namespace {
struct CallSiteSplittingLegacyPass : public FunctionPass {
static char ID;
CallSiteSplittingLegacyPass() : FunctionPass(ID) {
initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return doCallSiteSplitting(F, TLI, TTI, DT);
}
};
} // namespace
char CallSiteSplittingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
"Call-site splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
"Call-site splitting", false, false)
FunctionPass *llvm::createCallSiteSplittingPass() {
return new CallSiteSplittingLegacyPass();
}
PreservedAnalyses CallSiteSplittingPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!doCallSiteSplitting(F, TLI, TTI, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}