528 lines
17 KiB
C++
528 lines
17 KiB
C++
|
//===-- PGOMemOPSizeOpt.cpp - Optimizations based on value profiling ===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the transformation that optimizes memory intrinsics
|
||
|
// such as memcpy using the size value profile. When memory intrinsic size
|
||
|
// value profile metadata is available, a single memory intrinsic is expanded
|
||
|
// to a sequence of guarded specialized versions that are called with the
|
||
|
// hottest size(s), for later expansion into more optimal inline sequences.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/ADT/ArrayRef.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/ADT/StringRef.h"
|
||
|
#include "llvm/ADT/Twine.h"
|
||
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
||
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
||
|
#include "llvm/Analysis/GlobalsModRef.h"
|
||
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include "llvm/IR/DerivedTypes.h"
|
||
|
#include "llvm/IR/Dominators.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/InstVisitor.h"
|
||
|
#include "llvm/IR/InstrTypes.h"
|
||
|
#include "llvm/IR/Instruction.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/LLVMContext.h"
|
||
|
#include "llvm/IR/PassManager.h"
|
||
|
#include "llvm/IR/Type.h"
|
||
|
#include "llvm/InitializePasses.h"
|
||
|
#include "llvm/Pass.h"
|
||
|
#include "llvm/PassRegistry.h"
|
||
|
#include "llvm/ProfileData/InstrProf.h"
|
||
|
#define INSTR_PROF_VALUE_PROF_MEMOP_API
|
||
|
#include "llvm/ProfileData/InstrProfData.inc"
|
||
|
#include "llvm/Support/Casting.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/ErrorHandling.h"
|
||
|
#include "llvm/Support/MathExtras.h"
|
||
|
#include "llvm/Transforms/Instrumentation.h"
|
||
|
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
|
||
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||
|
#include <cassert>
|
||
|
#include <cstdint>
|
||
|
#include <vector>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "pgo-memop-opt"
|
||
|
|
||
|
STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized.");
|
||
|
STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated.");
|
||
|
|
||
|
// The minimum call count to optimize memory intrinsic calls.
|
||
|
static cl::opt<unsigned>
|
||
|
MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore,
|
||
|
cl::init(1000),
|
||
|
cl::desc("The minimum count to optimize memory "
|
||
|
"intrinsic calls"));
|
||
|
|
||
|
// Command line option to disable memory intrinsic optimization. The default is
|
||
|
// false. This is for debug purpose.
|
||
|
static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false),
|
||
|
cl::Hidden, cl::desc("Disable optimize"));
|
||
|
|
||
|
// The percent threshold to optimize memory intrinsic calls.
|
||
|
static cl::opt<unsigned>
|
||
|
MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40),
|
||
|
cl::Hidden, cl::ZeroOrMore,
|
||
|
cl::desc("The percentage threshold for the "
|
||
|
"memory intrinsic calls optimization"));
|
||
|
|
||
|
// Maximum number of versions for optimizing memory intrinsic call.
|
||
|
static cl::opt<unsigned>
|
||
|
MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden,
|
||
|
cl::ZeroOrMore,
|
||
|
cl::desc("The max version for the optimized memory "
|
||
|
" intrinsic calls"));
|
||
|
|
||
|
// Scale the counts from the annotation using the BB count value.
|
||
|
static cl::opt<bool>
|
||
|
MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden,
|
||
|
cl::desc("Scale the memop size counts using the basic "
|
||
|
" block count value"));
|
||
|
|
||
|
cl::opt<bool>
|
||
|
MemOPOptMemcmpBcmp("pgo-memop-optimize-memcmp-bcmp", cl::init(true),
|
||
|
cl::Hidden,
|
||
|
cl::desc("Size-specialize memcmp and bcmp calls"));
|
||
|
|
||
|
static cl::opt<unsigned>
|
||
|
MemOpMaxOptSize("memop-value-prof-max-opt-size", cl::Hidden, cl::init(128),
|
||
|
cl::desc("Optimize the memop size <= this value"));
|
||
|
|
||
|
namespace {
|
||
|
class PGOMemOPSizeOptLegacyPass : public FunctionPass {
|
||
|
public:
|
||
|
static char ID;
|
||
|
|
||
|
PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) {
|
||
|
initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry());
|
||
|
}
|
||
|
|
||
|
StringRef getPassName() const override { return "PGOMemOPSize"; }
|
||
|
|
||
|
private:
|
||
|
bool runOnFunction(Function &F) override;
|
||
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
||
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
||
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
||
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
||
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||
|
}
|
||
|
};
|
||
|
} // end anonymous namespace
|
||
|
|
||
|
char PGOMemOPSizeOptLegacyPass::ID = 0;
|
||
|
INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
|
||
|
"Optimize memory intrinsic using its size value profile",
|
||
|
false, false)
|
||
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
||
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||
|
INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
|
||
|
"Optimize memory intrinsic using its size value profile",
|
||
|
false, false)
|
||
|
|
||
|
FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() {
|
||
|
return new PGOMemOPSizeOptLegacyPass();
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
static const char *getMIName(const MemIntrinsic *MI) {
|
||
|
switch (MI->getIntrinsicID()) {
|
||
|
case Intrinsic::memcpy:
|
||
|
return "memcpy";
|
||
|
case Intrinsic::memmove:
|
||
|
return "memmove";
|
||
|
case Intrinsic::memset:
|
||
|
return "memset";
|
||
|
default:
|
||
|
return "unknown";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// A class that abstracts a memop (memcpy, memmove, memset, memcmp and bcmp).
|
||
|
struct MemOp {
|
||
|
Instruction *I;
|
||
|
MemOp(MemIntrinsic *MI) : I(MI) {}
|
||
|
MemOp(CallInst *CI) : I(CI) {}
|
||
|
MemIntrinsic *asMI() { return dyn_cast<MemIntrinsic>(I); }
|
||
|
CallInst *asCI() { return cast<CallInst>(I); }
|
||
|
MemOp clone() {
|
||
|
if (auto MI = asMI())
|
||
|
return MemOp(cast<MemIntrinsic>(MI->clone()));
|
||
|
return MemOp(cast<CallInst>(asCI()->clone()));
|
||
|
}
|
||
|
Value *getLength() {
|
||
|
if (auto MI = asMI())
|
||
|
return MI->getLength();
|
||
|
return asCI()->getArgOperand(2);
|
||
|
}
|
||
|
void setLength(Value *Length) {
|
||
|
if (auto MI = asMI())
|
||
|
return MI->setLength(Length);
|
||
|
asCI()->setArgOperand(2, Length);
|
||
|
}
|
||
|
StringRef getFuncName() {
|
||
|
if (auto MI = asMI())
|
||
|
return MI->getCalledFunction()->getName();
|
||
|
return asCI()->getCalledFunction()->getName();
|
||
|
}
|
||
|
bool isMemmove() {
|
||
|
if (auto MI = asMI())
|
||
|
if (MI->getIntrinsicID() == Intrinsic::memmove)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
bool isMemcmp(TargetLibraryInfo &TLI) {
|
||
|
LibFunc Func;
|
||
|
if (asMI() == nullptr && TLI.getLibFunc(*asCI(), Func) &&
|
||
|
Func == LibFunc_memcmp) {
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
bool isBcmp(TargetLibraryInfo &TLI) {
|
||
|
LibFunc Func;
|
||
|
if (asMI() == nullptr && TLI.getLibFunc(*asCI(), Func) &&
|
||
|
Func == LibFunc_bcmp) {
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
const char *getName(TargetLibraryInfo &TLI) {
|
||
|
if (auto MI = asMI())
|
||
|
return getMIName(MI);
|
||
|
LibFunc Func;
|
||
|
if (TLI.getLibFunc(*asCI(), Func)) {
|
||
|
if (Func == LibFunc_memcmp)
|
||
|
return "memcmp";
|
||
|
if (Func == LibFunc_bcmp)
|
||
|
return "bcmp";
|
||
|
}
|
||
|
llvm_unreachable("Must be MemIntrinsic or memcmp/bcmp CallInst");
|
||
|
return nullptr;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> {
|
||
|
public:
|
||
|
MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI,
|
||
|
OptimizationRemarkEmitter &ORE, DominatorTree *DT,
|
||
|
TargetLibraryInfo &TLI)
|
||
|
: Func(Func), BFI(BFI), ORE(ORE), DT(DT), TLI(TLI), Changed(false) {
|
||
|
ValueDataArray =
|
||
|
std::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2);
|
||
|
}
|
||
|
bool isChanged() const { return Changed; }
|
||
|
void perform() {
|
||
|
WorkList.clear();
|
||
|
visit(Func);
|
||
|
|
||
|
for (auto &MO : WorkList) {
|
||
|
++NumOfPGOMemOPAnnotate;
|
||
|
if (perform(MO)) {
|
||
|
Changed = true;
|
||
|
++NumOfPGOMemOPOpt;
|
||
|
LLVM_DEBUG(dbgs() << "MemOP call: " << MO.getFuncName()
|
||
|
<< "is Transformed.\n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void visitMemIntrinsic(MemIntrinsic &MI) {
|
||
|
Value *Length = MI.getLength();
|
||
|
// Not perform on constant length calls.
|
||
|
if (dyn_cast<ConstantInt>(Length))
|
||
|
return;
|
||
|
WorkList.push_back(MemOp(&MI));
|
||
|
}
|
||
|
|
||
|
void visitCallInst(CallInst &CI) {
|
||
|
LibFunc Func;
|
||
|
if (TLI.getLibFunc(CI, Func) &&
|
||
|
(Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
|
||
|
!isa<ConstantInt>(CI.getArgOperand(2))) {
|
||
|
WorkList.push_back(MemOp(&CI));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
Function &Func;
|
||
|
BlockFrequencyInfo &BFI;
|
||
|
OptimizationRemarkEmitter &ORE;
|
||
|
DominatorTree *DT;
|
||
|
TargetLibraryInfo &TLI;
|
||
|
bool Changed;
|
||
|
std::vector<MemOp> WorkList;
|
||
|
// The space to read the profile annotation.
|
||
|
std::unique_ptr<InstrProfValueData[]> ValueDataArray;
|
||
|
bool perform(MemOp MO);
|
||
|
};
|
||
|
|
||
|
static bool isProfitable(uint64_t Count, uint64_t TotalCount) {
|
||
|
assert(Count <= TotalCount);
|
||
|
if (Count < MemOPCountThreshold)
|
||
|
return false;
|
||
|
if (Count < TotalCount * MemOPPercentThreshold / 100)
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num,
|
||
|
uint64_t Denom) {
|
||
|
if (!MemOPScaleCount)
|
||
|
return Count;
|
||
|
bool Overflowed;
|
||
|
uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed);
|
||
|
return ScaleCount / Denom;
|
||
|
}
|
||
|
|
||
|
bool MemOPSizeOpt::perform(MemOp MO) {
|
||
|
assert(MO.I);
|
||
|
if (MO.isMemmove())
|
||
|
return false;
|
||
|
if (!MemOPOptMemcmpBcmp && (MO.isMemcmp(TLI) || MO.isBcmp(TLI)))
|
||
|
return false;
|
||
|
|
||
|
uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2;
|
||
|
uint64_t TotalCount;
|
||
|
if (!getValueProfDataFromInst(*MO.I, IPVK_MemOPSize, MaxNumPromotions,
|
||
|
ValueDataArray.get(), NumVals, TotalCount))
|
||
|
return false;
|
||
|
|
||
|
uint64_t ActualCount = TotalCount;
|
||
|
uint64_t SavedTotalCount = TotalCount;
|
||
|
if (MemOPScaleCount) {
|
||
|
auto BBEdgeCount = BFI.getBlockProfileCount(MO.I->getParent());
|
||
|
if (!BBEdgeCount)
|
||
|
return false;
|
||
|
ActualCount = *BBEdgeCount;
|
||
|
}
|
||
|
|
||
|
ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals);
|
||
|
LLVM_DEBUG(dbgs() << "Read one memory intrinsic profile with count "
|
||
|
<< ActualCount << "\n");
|
||
|
LLVM_DEBUG(
|
||
|
for (auto &VD
|
||
|
: VDs) { dbgs() << " (" << VD.Value << "," << VD.Count << ")\n"; });
|
||
|
|
||
|
if (ActualCount < MemOPCountThreshold)
|
||
|
return false;
|
||
|
// Skip if the total value profiled count is 0, in which case we can't
|
||
|
// scale up the counts properly (and there is no profitable transformation).
|
||
|
if (TotalCount == 0)
|
||
|
return false;
|
||
|
|
||
|
TotalCount = ActualCount;
|
||
|
if (MemOPScaleCount)
|
||
|
LLVM_DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount
|
||
|
<< " denominator = " << SavedTotalCount << "\n");
|
||
|
|
||
|
// Keeping track of the count of the default case:
|
||
|
uint64_t RemainCount = TotalCount;
|
||
|
uint64_t SavedRemainCount = SavedTotalCount;
|
||
|
SmallVector<uint64_t, 16> SizeIds;
|
||
|
SmallVector<uint64_t, 16> CaseCounts;
|
||
|
uint64_t MaxCount = 0;
|
||
|
unsigned Version = 0;
|
||
|
// Default case is in the front -- save the slot here.
|
||
|
CaseCounts.push_back(0);
|
||
|
for (auto &VD : VDs) {
|
||
|
int64_t V = VD.Value;
|
||
|
uint64_t C = VD.Count;
|
||
|
if (MemOPScaleCount)
|
||
|
C = getScaledCount(C, ActualCount, SavedTotalCount);
|
||
|
|
||
|
if (!InstrProfIsSingleValRange(V) || V > MemOpMaxOptSize)
|
||
|
continue;
|
||
|
|
||
|
// ValueCounts are sorted on the count. Break at the first un-profitable
|
||
|
// value.
|
||
|
if (!isProfitable(C, RemainCount))
|
||
|
break;
|
||
|
|
||
|
SizeIds.push_back(V);
|
||
|
CaseCounts.push_back(C);
|
||
|
if (C > MaxCount)
|
||
|
MaxCount = C;
|
||
|
|
||
|
assert(RemainCount >= C);
|
||
|
RemainCount -= C;
|
||
|
assert(SavedRemainCount >= VD.Count);
|
||
|
SavedRemainCount -= VD.Count;
|
||
|
|
||
|
if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (Version == 0)
|
||
|
return false;
|
||
|
|
||
|
CaseCounts[0] = RemainCount;
|
||
|
if (RemainCount > MaxCount)
|
||
|
MaxCount = RemainCount;
|
||
|
|
||
|
uint64_t SumForOpt = TotalCount - RemainCount;
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version
|
||
|
<< " Versions (covering " << SumForOpt << " out of "
|
||
|
<< TotalCount << ")\n");
|
||
|
|
||
|
// mem_op(..., size)
|
||
|
// ==>
|
||
|
// switch (size) {
|
||
|
// case s1:
|
||
|
// mem_op(..., s1);
|
||
|
// goto merge_bb;
|
||
|
// case s2:
|
||
|
// mem_op(..., s2);
|
||
|
// goto merge_bb;
|
||
|
// ...
|
||
|
// default:
|
||
|
// mem_op(..., size);
|
||
|
// goto merge_bb;
|
||
|
// }
|
||
|
// merge_bb:
|
||
|
|
||
|
BasicBlock *BB = MO.I->getParent();
|
||
|
LLVM_DEBUG(dbgs() << "\n\n== Basic Block Before ==\n");
|
||
|
LLVM_DEBUG(dbgs() << *BB << "\n");
|
||
|
auto OrigBBFreq = BFI.getBlockFreq(BB);
|
||
|
|
||
|
BasicBlock *DefaultBB = SplitBlock(BB, MO.I, DT);
|
||
|
BasicBlock::iterator It(*MO.I);
|
||
|
++It;
|
||
|
assert(It != DefaultBB->end());
|
||
|
BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It), DT);
|
||
|
MergeBB->setName("MemOP.Merge");
|
||
|
BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency());
|
||
|
DefaultBB->setName("MemOP.Default");
|
||
|
|
||
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
||
|
auto &Ctx = Func.getContext();
|
||
|
IRBuilder<> IRB(BB);
|
||
|
BB->getTerminator()->eraseFromParent();
|
||
|
Value *SizeVar = MO.getLength();
|
||
|
SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size());
|
||
|
Type *MemOpTy = MO.I->getType();
|
||
|
PHINode *PHI = nullptr;
|
||
|
if (!MemOpTy->isVoidTy()) {
|
||
|
// Insert a phi for the return values at the merge block.
|
||
|
IRBuilder<> IRBM(MergeBB->getFirstNonPHI());
|
||
|
PHI = IRBM.CreatePHI(MemOpTy, SizeIds.size() + 1, "MemOP.RVMerge");
|
||
|
MO.I->replaceAllUsesWith(PHI);
|
||
|
PHI->addIncoming(MO.I, DefaultBB);
|
||
|
}
|
||
|
|
||
|
// Clear the value profile data.
|
||
|
MO.I->setMetadata(LLVMContext::MD_prof, nullptr);
|
||
|
// If all promoted, we don't need the MD.prof metadata.
|
||
|
if (SavedRemainCount > 0 || Version != NumVals)
|
||
|
// Otherwise we need update with the un-promoted records back.
|
||
|
annotateValueSite(*Func.getParent(), *MO.I, VDs.slice(Version),
|
||
|
SavedRemainCount, IPVK_MemOPSize, NumVals);
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "\n\n== Basic Block After==\n");
|
||
|
|
||
|
std::vector<DominatorTree::UpdateType> Updates;
|
||
|
if (DT)
|
||
|
Updates.reserve(2 * SizeIds.size());
|
||
|
|
||
|
for (uint64_t SizeId : SizeIds) {
|
||
|
BasicBlock *CaseBB = BasicBlock::Create(
|
||
|
Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB);
|
||
|
MemOp NewMO = MO.clone();
|
||
|
// Fix the argument.
|
||
|
auto *SizeType = dyn_cast<IntegerType>(NewMO.getLength()->getType());
|
||
|
assert(SizeType && "Expected integer type size argument.");
|
||
|
ConstantInt *CaseSizeId = ConstantInt::get(SizeType, SizeId);
|
||
|
NewMO.setLength(CaseSizeId);
|
||
|
CaseBB->getInstList().push_back(NewMO.I);
|
||
|
IRBuilder<> IRBCase(CaseBB);
|
||
|
IRBCase.CreateBr(MergeBB);
|
||
|
SI->addCase(CaseSizeId, CaseBB);
|
||
|
if (!MemOpTy->isVoidTy())
|
||
|
PHI->addIncoming(NewMO.I, CaseBB);
|
||
|
if (DT) {
|
||
|
Updates.push_back({DominatorTree::Insert, CaseBB, MergeBB});
|
||
|
Updates.push_back({DominatorTree::Insert, BB, CaseBB});
|
||
|
}
|
||
|
LLVM_DEBUG(dbgs() << *CaseBB << "\n");
|
||
|
}
|
||
|
DTU.applyUpdates(Updates);
|
||
|
Updates.clear();
|
||
|
|
||
|
setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount);
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << *BB << "\n");
|
||
|
LLVM_DEBUG(dbgs() << *DefaultBB << "\n");
|
||
|
LLVM_DEBUG(dbgs() << *MergeBB << "\n");
|
||
|
|
||
|
ORE.emit([&]() {
|
||
|
using namespace ore;
|
||
|
return OptimizationRemark(DEBUG_TYPE, "memopt-opt", MO.I)
|
||
|
<< "optimized " << NV("Memop", MO.getName(TLI)) << " with count "
|
||
|
<< NV("Count", SumForOpt) << " out of " << NV("Total", TotalCount)
|
||
|
<< " for " << NV("Versions", Version) << " versions";
|
||
|
});
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
} // namespace
|
||
|
|
||
|
static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI,
|
||
|
OptimizationRemarkEmitter &ORE,
|
||
|
DominatorTree *DT, TargetLibraryInfo &TLI) {
|
||
|
if (DisableMemOPOPT)
|
||
|
return false;
|
||
|
|
||
|
if (F.hasFnAttribute(Attribute::OptimizeForSize))
|
||
|
return false;
|
||
|
MemOPSizeOpt MemOPSizeOpt(F, BFI, ORE, DT, TLI);
|
||
|
MemOPSizeOpt.perform();
|
||
|
return MemOPSizeOpt.isChanged();
|
||
|
}
|
||
|
|
||
|
bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) {
|
||
|
BlockFrequencyInfo &BFI =
|
||
|
getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
|
||
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
||
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
||
|
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
||
|
TargetLibraryInfo &TLI =
|
||
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
||
|
return PGOMemOPSizeOptImpl(F, BFI, ORE, DT, TLI);
|
||
|
}
|
||
|
|
||
|
namespace llvm {
|
||
|
char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID;
|
||
|
|
||
|
PreservedAnalyses PGOMemOPSizeOpt::run(Function &F,
|
||
|
FunctionAnalysisManager &FAM) {
|
||
|
auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
|
||
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
||
|
auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
|
||
|
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
||
|
bool Changed = PGOMemOPSizeOptImpl(F, BFI, ORE, DT, TLI);
|
||
|
if (!Changed)
|
||
|
return PreservedAnalyses::all();
|
||
|
auto PA = PreservedAnalyses();
|
||
|
PA.preserve<GlobalsAA>();
|
||
|
PA.preserve<DominatorTreeAnalysis>();
|
||
|
return PA;
|
||
|
}
|
||
|
} // namespace llvm
|