110 lines
3.6 KiB
C
110 lines
3.6 KiB
C
|
//===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This module provides means for calculating a maximum spanning tree for a
|
||
|
// given set of weighted edges. The type parameter T is the type of a node.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_MAXIMUMSPANNINGTREE_H
|
||
|
#define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_MAXIMUMSPANNINGTREE_H
|
||
|
|
||
|
#include "llvm/ADT/EquivalenceClasses.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include <algorithm>
|
||
|
#include <vector>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
/// MaximumSpanningTree - A MST implementation.
|
||
|
/// The type parameter T determines the type of the nodes of the graph.
|
||
|
template <typename T>
|
||
|
class MaximumSpanningTree {
|
||
|
public:
|
||
|
typedef std::pair<const T*, const T*> Edge;
|
||
|
typedef std::pair<Edge, double> EdgeWeight;
|
||
|
typedef std::vector<EdgeWeight> EdgeWeights;
|
||
|
protected:
|
||
|
typedef std::vector<Edge> MaxSpanTree;
|
||
|
|
||
|
MaxSpanTree MST;
|
||
|
|
||
|
private:
|
||
|
// A comparing class for comparing weighted edges.
|
||
|
struct EdgeWeightCompare {
|
||
|
static bool getBlockSize(const T *X) {
|
||
|
const BasicBlock *BB = dyn_cast_or_null<BasicBlock>(X);
|
||
|
return BB ? BB->size() : 0;
|
||
|
}
|
||
|
|
||
|
bool operator()(EdgeWeight X, EdgeWeight Y) const {
|
||
|
if (X.second > Y.second) return true;
|
||
|
if (X.second < Y.second) return false;
|
||
|
|
||
|
// Equal edge weights: break ties by comparing block sizes.
|
||
|
size_t XSizeA = getBlockSize(X.first.first);
|
||
|
size_t YSizeA = getBlockSize(Y.first.first);
|
||
|
if (XSizeA > YSizeA) return true;
|
||
|
if (XSizeA < YSizeA) return false;
|
||
|
|
||
|
size_t XSizeB = getBlockSize(X.first.second);
|
||
|
size_t YSizeB = getBlockSize(Y.first.second);
|
||
|
if (XSizeB > YSizeB) return true;
|
||
|
if (XSizeB < YSizeB) return false;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
static char ID; // Class identification, replacement for typeinfo
|
||
|
|
||
|
/// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
|
||
|
/// spanning tree.
|
||
|
MaximumSpanningTree(EdgeWeights &EdgeVector) {
|
||
|
llvm::stable_sort(EdgeVector, EdgeWeightCompare());
|
||
|
|
||
|
// Create spanning tree, Forest contains a special data structure
|
||
|
// that makes checking if two nodes are already in a common (sub-)tree
|
||
|
// fast and cheap.
|
||
|
EquivalenceClasses<const T*> Forest;
|
||
|
for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
|
||
|
EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
|
||
|
Edge e = (*EWi).first;
|
||
|
|
||
|
Forest.insert(e.first);
|
||
|
Forest.insert(e.second);
|
||
|
}
|
||
|
|
||
|
// Iterate over the sorted edges, biggest first.
|
||
|
for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
|
||
|
EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
|
||
|
Edge e = (*EWi).first;
|
||
|
|
||
|
if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
|
||
|
Forest.unionSets(e.first, e.second);
|
||
|
// So we know now that the edge is not already in a subtree, so we push
|
||
|
// the edge to the MST.
|
||
|
MST.push_back(e);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
typename MaxSpanTree::iterator begin() {
|
||
|
return MST.begin();
|
||
|
}
|
||
|
|
||
|
typename MaxSpanTree::iterator end() {
|
||
|
return MST.end();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // End llvm namespace
|
||
|
|
||
|
#endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_MAXIMUMSPANNINGTREE_H
|