llvm-for-llvmta/lib/Target/X86/AsmParser/X86AsmParser.cpp

4987 lines
176 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86IntelInstPrinter.h"
#include "MCTargetDesc/X86MCExpr.h"
#include "MCTargetDesc/X86TargetStreamer.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86AsmParserCommon.h"
#include "X86Operand.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>
using namespace llvm;
static cl::opt<bool> LVIInlineAsmHardening(
"x86-experimental-lvi-inline-asm-hardening",
cl::desc("Harden inline assembly code that may be vulnerable to Load Value"
" Injection (LVI). This feature is experimental."), cl::Hidden);
static bool checkScale(unsigned Scale, StringRef &ErrMsg) {
if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
return true;
}
return false;
}
namespace {
static const char OpPrecedence[] = {
0, // IC_OR
1, // IC_XOR
2, // IC_AND
4, // IC_LSHIFT
4, // IC_RSHIFT
5, // IC_PLUS
5, // IC_MINUS
6, // IC_MULTIPLY
6, // IC_DIVIDE
6, // IC_MOD
7, // IC_NOT
8, // IC_NEG
9, // IC_RPAREN
10, // IC_LPAREN
0, // IC_IMM
0, // IC_REGISTER
3, // IC_EQ
3, // IC_NE
3, // IC_LT
3, // IC_LE
3, // IC_GT
3 // IC_GE
};
class X86AsmParser : public MCTargetAsmParser {
ParseInstructionInfo *InstInfo;
bool Code16GCC;
unsigned ForcedDataPrefix = 0;
enum VEXEncoding {
VEXEncoding_Default,
VEXEncoding_VEX,
VEXEncoding_VEX2,
VEXEncoding_VEX3,
VEXEncoding_EVEX,
};
VEXEncoding ForcedVEXEncoding = VEXEncoding_Default;
enum DispEncoding {
DispEncoding_Default,
DispEncoding_Disp8,
DispEncoding_Disp32,
};
DispEncoding ForcedDispEncoding = DispEncoding_Default;
private:
SMLoc consumeToken() {
MCAsmParser &Parser = getParser();
SMLoc Result = Parser.getTok().getLoc();
Parser.Lex();
return Result;
}
X86TargetStreamer &getTargetStreamer() {
assert(getParser().getStreamer().getTargetStreamer() &&
"do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<X86TargetStreamer &>(TS);
}
unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
uint64_t &ErrorInfo, FeatureBitset &MissingFeatures,
bool matchingInlineAsm, unsigned VariantID = 0) {
// In Code16GCC mode, match as 32-bit.
if (Code16GCC)
SwitchMode(X86::Mode32Bit);
unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MissingFeatures, matchingInlineAsm,
VariantID);
if (Code16GCC)
SwitchMode(X86::Mode16Bit);
return rv;
}
enum InfixCalculatorTok {
IC_OR = 0,
IC_XOR,
IC_AND,
IC_LSHIFT,
IC_RSHIFT,
IC_PLUS,
IC_MINUS,
IC_MULTIPLY,
IC_DIVIDE,
IC_MOD,
IC_NOT,
IC_NEG,
IC_RPAREN,
IC_LPAREN,
IC_IMM,
IC_REGISTER,
IC_EQ,
IC_NE,
IC_LT,
IC_LE,
IC_GT,
IC_GE
};
enum IntelOperatorKind {
IOK_INVALID = 0,
IOK_LENGTH,
IOK_SIZE,
IOK_TYPE,
};
enum MasmOperatorKind {
MOK_INVALID = 0,
MOK_LENGTHOF,
MOK_SIZEOF,
MOK_TYPE,
};
class InfixCalculator {
typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
SmallVector<ICToken, 4> PostfixStack;
bool isUnaryOperator(InfixCalculatorTok Op) const {
return Op == IC_NEG || Op == IC_NOT;
}
public:
int64_t popOperand() {
assert (!PostfixStack.empty() && "Poped an empty stack!");
ICToken Op = PostfixStack.pop_back_val();
if (!(Op.first == IC_IMM || Op.first == IC_REGISTER))
return -1; // The invalid Scale value will be caught later by checkScale
return Op.second;
}
void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
assert ((Op == IC_IMM || Op == IC_REGISTER) &&
"Unexpected operand!");
PostfixStack.push_back(std::make_pair(Op, Val));
}
void popOperator() { InfixOperatorStack.pop_back(); }
void pushOperator(InfixCalculatorTok Op) {
// Push the new operator if the stack is empty.
if (InfixOperatorStack.empty()) {
InfixOperatorStack.push_back(Op);
return;
}
// Push the new operator if it has a higher precedence than the operator
// on the top of the stack or the operator on the top of the stack is a
// left parentheses.
unsigned Idx = InfixOperatorStack.size() - 1;
InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
InfixOperatorStack.push_back(Op);
return;
}
// The operator on the top of the stack has higher precedence than the
// new operator.
unsigned ParenCount = 0;
while (1) {
// Nothing to process.
if (InfixOperatorStack.empty())
break;
Idx = InfixOperatorStack.size() - 1;
StackOp = InfixOperatorStack[Idx];
if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
break;
// If we have an even parentheses count and we see a left parentheses,
// then stop processing.
if (!ParenCount && StackOp == IC_LPAREN)
break;
if (StackOp == IC_RPAREN) {
++ParenCount;
InfixOperatorStack.pop_back();
} else if (StackOp == IC_LPAREN) {
--ParenCount;
InfixOperatorStack.pop_back();
} else {
InfixOperatorStack.pop_back();
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
}
// Push the new operator.
InfixOperatorStack.push_back(Op);
}
int64_t execute() {
// Push any remaining operators onto the postfix stack.
while (!InfixOperatorStack.empty()) {
InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
if (PostfixStack.empty())
return 0;
SmallVector<ICToken, 16> OperandStack;
for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
ICToken Op = PostfixStack[i];
if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
OperandStack.push_back(Op);
} else if (isUnaryOperator(Op.first)) {
assert (OperandStack.size() > 0 && "Too few operands.");
ICToken Operand = OperandStack.pop_back_val();
assert (Operand.first == IC_IMM &&
"Unary operation with a register!");
switch (Op.first) {
default:
report_fatal_error("Unexpected operator!");
break;
case IC_NEG:
OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second));
break;
case IC_NOT:
OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second));
break;
}
} else {
assert (OperandStack.size() > 1 && "Too few operands.");
int64_t Val;
ICToken Op2 = OperandStack.pop_back_val();
ICToken Op1 = OperandStack.pop_back_val();
switch (Op.first) {
default:
report_fatal_error("Unexpected operator!");
break;
case IC_PLUS:
Val = Op1.second + Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MINUS:
Val = Op1.second - Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MULTIPLY:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Multiply operation with an immediate and a register!");
Val = Op1.second * Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_DIVIDE:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Divide operation with an immediate and a register!");
assert (Op2.second != 0 && "Division by zero!");
Val = Op1.second / Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MOD:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Modulo operation with an immediate and a register!");
Val = Op1.second % Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_OR:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Or operation with an immediate and a register!");
Val = Op1.second | Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_XOR:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Xor operation with an immediate and a register!");
Val = Op1.second ^ Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_AND:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"And operation with an immediate and a register!");
Val = Op1.second & Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_LSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Left shift operation with an immediate and a register!");
Val = Op1.second << Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_RSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Right shift operation with an immediate and a register!");
Val = Op1.second >> Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_EQ:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Equals operation with an immediate and a register!");
Val = (Op1.second == Op2.second) ? -1 : 0;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_NE:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Not-equals operation with an immediate and a register!");
Val = (Op1.second != Op2.second) ? -1 : 0;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_LT:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Less-than operation with an immediate and a register!");
Val = (Op1.second < Op2.second) ? -1 : 0;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_LE:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Less-than-or-equal operation with an immediate and a "
"register!");
Val = (Op1.second <= Op2.second) ? -1 : 0;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_GT:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Greater-than operation with an immediate and a register!");
Val = (Op1.second > Op2.second) ? -1 : 0;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_GE:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Greater-than-or-equal operation with an immediate and a "
"register!");
Val = (Op1.second >= Op2.second) ? -1 : 0;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
}
}
}
assert (OperandStack.size() == 1 && "Expected a single result.");
return OperandStack.pop_back_val().second;
}
};
enum IntelExprState {
IES_INIT,
IES_OR,
IES_XOR,
IES_AND,
IES_EQ,
IES_NE,
IES_LT,
IES_LE,
IES_GT,
IES_GE,
IES_LSHIFT,
IES_RSHIFT,
IES_PLUS,
IES_MINUS,
IES_OFFSET,
IES_CAST,
IES_NOT,
IES_MULTIPLY,
IES_DIVIDE,
IES_MOD,
IES_LBRAC,
IES_RBRAC,
IES_LPAREN,
IES_RPAREN,
IES_REGISTER,
IES_INTEGER,
IES_IDENTIFIER,
IES_ERROR
};
class IntelExprStateMachine {
IntelExprState State, PrevState;
unsigned BaseReg, IndexReg, TmpReg, Scale;
int64_t Imm;
const MCExpr *Sym;
StringRef SymName;
InfixCalculator IC;
InlineAsmIdentifierInfo Info;
short BracCount;
bool MemExpr;
bool OffsetOperator;
SMLoc OffsetOperatorLoc;
AsmTypeInfo CurType;
bool setSymRef(const MCExpr *Val, StringRef ID, StringRef &ErrMsg) {
if (Sym) {
ErrMsg = "cannot use more than one symbol in memory operand";
return true;
}
Sym = Val;
SymName = ID;
return false;
}
public:
IntelExprStateMachine()
: State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0),
TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0),
MemExpr(false), OffsetOperator(false) {}
void addImm(int64_t imm) { Imm += imm; }
short getBracCount() const { return BracCount; }
bool isMemExpr() const { return MemExpr; }
bool isOffsetOperator() const { return OffsetOperator; }
SMLoc getOffsetLoc() const { return OffsetOperatorLoc; }
unsigned getBaseReg() const { return BaseReg; }
unsigned getIndexReg() const { return IndexReg; }
unsigned getScale() const { return Scale; }
const MCExpr *getSym() const { return Sym; }
StringRef getSymName() const { return SymName; }
StringRef getType() const { return CurType.Name; }
unsigned getSize() const { return CurType.Size; }
unsigned getElementSize() const { return CurType.ElementSize; }
unsigned getLength() const { return CurType.Length; }
int64_t getImm() { return Imm + IC.execute(); }
bool isValidEndState() const {
return State == IES_RBRAC || State == IES_INTEGER;
}
bool hadError() const { return State == IES_ERROR; }
const InlineAsmIdentifierInfo &getIdentifierInfo() const { return Info; }
void onOr() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_OR;
IC.pushOperator(IC_OR);
break;
}
PrevState = CurrState;
}
void onXor() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_XOR;
IC.pushOperator(IC_XOR);
break;
}
PrevState = CurrState;
}
void onAnd() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_AND;
IC.pushOperator(IC_AND);
break;
}
PrevState = CurrState;
}
void onEq() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_EQ;
IC.pushOperator(IC_EQ);
break;
}
PrevState = CurrState;
}
void onNE() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_NE;
IC.pushOperator(IC_NE);
break;
}
PrevState = CurrState;
}
void onLT() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_LT;
IC.pushOperator(IC_LT);
break;
}
PrevState = CurrState;
}
void onLE() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_LE;
IC.pushOperator(IC_LE);
break;
}
PrevState = CurrState;
}
void onGT() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_GT;
IC.pushOperator(IC_GT);
break;
}
PrevState = CurrState;
}
void onGE() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_GE;
IC.pushOperator(IC_GE);
break;
}
PrevState = CurrState;
}
void onLShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_LSHIFT;
IC.pushOperator(IC_LSHIFT);
break;
}
PrevState = CurrState;
}
void onRShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_RSHIFT;
IC.pushOperator(IC_RSHIFT);
break;
}
PrevState = CurrState;
}
bool onPlus(StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
case IES_OFFSET:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// no explicit scale.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
IndexReg = TmpReg;
Scale = 0;
}
}
break;
}
PrevState = CurrState;
return false;
}
bool onMinus(StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_EQ:
case IES_NE:
case IES_LT:
case IES_LE:
case IES_GT:
case IES_GE:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_PLUS:
case IES_NOT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_MOD:
case IES_LPAREN:
case IES_RPAREN:
case IES_LBRAC:
case IES_RBRAC:
case IES_INTEGER:
case IES_REGISTER:
case IES_INIT:
case IES_OFFSET:
State = IES_MINUS;
// push minus operator if it is not a negate operator
if (CurrState == IES_REGISTER || CurrState == IES_RPAREN ||
CurrState == IES_INTEGER || CurrState == IES_RBRAC ||
CurrState == IES_OFFSET)
IC.pushOperator(IC_MINUS);
else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
// We have negate operator for Scale: it's illegal
ErrMsg = "Scale can't be negative";
return true;
} else
IC.pushOperator(IC_NEG);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// no explicit scale.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
IndexReg = TmpReg;
Scale = 0;
}
}
break;
}
PrevState = CurrState;
return false;
}
void onNot() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_EQ:
case IES_NE:
case IES_LT:
case IES_LE:
case IES_GT:
case IES_GE:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_MOD:
case IES_LPAREN:
case IES_LBRAC:
case IES_INIT:
State = IES_NOT;
IC.pushOperator(IC_NOT);
break;
}
PrevState = CurrState;
}
bool onRegister(unsigned Reg, StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_LPAREN:
case IES_LBRAC:
State = IES_REGISTER;
TmpReg = Reg;
IC.pushOperand(IC_REGISTER);
break;
case IES_MULTIPLY:
// Index Register - Scale * Register
if (PrevState == IES_INTEGER) {
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
State = IES_REGISTER;
IndexReg = Reg;
// Get the scale and replace the 'Scale * Register' with '0'.
Scale = IC.popOperand();
if (checkScale(Scale, ErrMsg))
return true;
IC.pushOperand(IC_IMM);
IC.popOperator();
} else {
State = IES_ERROR;
}
break;
}
PrevState = CurrState;
return false;
}
bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName,
const InlineAsmIdentifierInfo &IDInfo,
const AsmTypeInfo &Type, bool ParsingMSInlineAsm,
StringRef &ErrMsg) {
// InlineAsm: Treat an enum value as an integer
if (ParsingMSInlineAsm)
if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
return onInteger(IDInfo.Enum.EnumVal, ErrMsg);
// Treat a symbolic constant like an integer
if (auto *CE = dyn_cast<MCConstantExpr>(SymRef))
return onInteger(CE->getValue(), ErrMsg);
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_CAST:
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_INIT:
case IES_LBRAC:
case IES_LPAREN:
if (setSymRef(SymRef, SymRefName, ErrMsg))
return true;
MemExpr = true;
State = IES_INTEGER;
IC.pushOperand(IC_IMM);
if (ParsingMSInlineAsm)
Info = IDInfo;
setTypeInfo(Type);
break;
}
return false;
}
bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_EQ:
case IES_NE:
case IES_LT:
case IES_LE:
case IES_GT:
case IES_GE:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_DIVIDE:
case IES_MOD:
case IES_MULTIPLY:
case IES_LPAREN:
case IES_INIT:
case IES_LBRAC:
State = IES_INTEGER;
if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
// Index Register - Register * Scale
if (IndexReg) {
ErrMsg = "BaseReg/IndexReg already set!";
return true;
}
IndexReg = TmpReg;
Scale = TmpInt;
if (checkScale(Scale, ErrMsg))
return true;
// Get the scale and replace the 'Register * Scale' with '0'.
IC.popOperator();
} else {
IC.pushOperand(IC_IMM, TmpInt);
}
break;
}
PrevState = CurrState;
return false;
}
void onStar() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_MULTIPLY;
IC.pushOperator(IC_MULTIPLY);
break;
}
}
void onDivide() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
State = IES_DIVIDE;
IC.pushOperator(IC_DIVIDE);
break;
}
}
void onMod() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
State = IES_MOD;
IC.pushOperator(IC_MOD);
break;
}
}
bool onLBrac() {
if (BracCount)
return true;
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_RBRAC:
case IES_INTEGER:
case IES_RPAREN:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
CurType.Length = 1;
CurType.Size = CurType.ElementSize;
break;
case IES_INIT:
case IES_CAST:
assert(!BracCount && "BracCount should be zero on parsing's start");
State = IES_LBRAC;
break;
}
MemExpr = true;
BracCount++;
return false;
}
bool onRBrac() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_OFFSET:
case IES_REGISTER:
case IES_RPAREN:
if (BracCount-- != 1)
return true;
State = IES_RBRAC;
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// no explicit scale.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 0;
}
}
break;
}
PrevState = CurrState;
return false;
}
void onLParen() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_EQ:
case IES_NE:
case IES_LT:
case IES_LE:
case IES_GT:
case IES_GE:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_MOD:
case IES_LPAREN:
case IES_INIT:
case IES_LBRAC:
State = IES_LPAREN;
IC.pushOperator(IC_LPAREN);
break;
}
PrevState = CurrState;
}
void onRParen() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_OFFSET:
case IES_REGISTER:
case IES_RBRAC:
case IES_RPAREN:
State = IES_RPAREN;
IC.pushOperator(IC_RPAREN);
break;
}
}
bool onOffset(const MCExpr *Val, SMLoc OffsetLoc, StringRef ID,
const InlineAsmIdentifierInfo &IDInfo,
bool ParsingMSInlineAsm, StringRef &ErrMsg) {
PrevState = State;
switch (State) {
default:
ErrMsg = "unexpected offset operator expression";
return true;
case IES_PLUS:
case IES_INIT:
case IES_LBRAC:
if (setSymRef(Val, ID, ErrMsg))
return true;
OffsetOperator = true;
OffsetOperatorLoc = OffsetLoc;
State = IES_OFFSET;
// As we cannot yet resolve the actual value (offset), we retain
// the requested semantics by pushing a '0' to the operands stack
IC.pushOperand(IC_IMM);
if (ParsingMSInlineAsm) {
Info = IDInfo;
}
break;
}
return false;
}
void onCast(AsmTypeInfo Info) {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_LPAREN:
setTypeInfo(Info);
State = IES_CAST;
break;
}
}
void setTypeInfo(AsmTypeInfo Type) { CurType = Type; }
};
bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
bool MatchingInlineAsm = false) {
MCAsmParser &Parser = getParser();
if (MatchingInlineAsm) {
if (!getLexer().isAtStartOfStatement())
Parser.eatToEndOfStatement();
return false;
}
return Parser.Error(L, Msg, Range);
}
bool MatchRegisterByName(unsigned &RegNo, StringRef RegName, SMLoc StartLoc,
SMLoc EndLoc);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
bool RestoreOnFailure);
std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
bool IsSIReg(unsigned Reg);
unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
void
AddDefaultSrcDestOperands(OperandVector &Operands,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
OperandVector &FinalOperands);
bool ParseOperand(OperandVector &Operands);
bool ParseATTOperand(OperandVector &Operands);
bool ParseIntelOperand(OperandVector &Operands);
bool ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
InlineAsmIdentifierInfo &Info, SMLoc &End);
bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End);
unsigned IdentifyIntelInlineAsmOperator(StringRef Name);
unsigned ParseIntelInlineAsmOperator(unsigned OpKind);
unsigned IdentifyMasmOperator(StringRef Name);
bool ParseMasmOperator(unsigned OpKind, int64_t &Val);
bool ParseRoundingModeOp(SMLoc Start, OperandVector &Operands);
bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM,
bool &ParseError, SMLoc &End);
bool ParseMasmNamedOperator(StringRef Name, IntelExprStateMachine &SM,
bool &ParseError, SMLoc &End);
void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start,
SMLoc End);
bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier,
InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End,
bool IsParsingOffsetOperator = false);
bool ParseMemOperand(unsigned SegReg, const MCExpr *Disp, SMLoc StartLoc,
SMLoc EndLoc, OperandVector &Operands);
X86::CondCode ParseConditionCode(StringRef CCode);
bool ParseIntelMemoryOperandSize(unsigned &Size);
bool CreateMemForMSInlineAsm(unsigned SegReg, const MCExpr *Disp,
unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc Start, SMLoc End,
unsigned Size, StringRef Identifier,
const InlineAsmIdentifierInfo &Info,
OperandVector &Operands);
bool parseDirectiveArch();
bool parseDirectiveNops(SMLoc L);
bool parseDirectiveEven(SMLoc L);
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
/// CodeView FPO data directives.
bool parseDirectiveFPOProc(SMLoc L);
bool parseDirectiveFPOSetFrame(SMLoc L);
bool parseDirectiveFPOPushReg(SMLoc L);
bool parseDirectiveFPOStackAlloc(SMLoc L);
bool parseDirectiveFPOStackAlign(SMLoc L);
bool parseDirectiveFPOEndPrologue(SMLoc L);
bool parseDirectiveFPOEndProc(SMLoc L);
/// SEH directives.
bool parseSEHRegisterNumber(unsigned RegClassID, unsigned &RegNo);
bool parseDirectiveSEHPushReg(SMLoc);
bool parseDirectiveSEHSetFrame(SMLoc);
bool parseDirectiveSEHSaveReg(SMLoc);
bool parseDirectiveSEHSaveXMM(SMLoc);
bool parseDirectiveSEHPushFrame(SMLoc);
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
bool processInstruction(MCInst &Inst, const OperandVector &Ops);
// Load Value Injection (LVI) Mitigations for machine code
void emitWarningForSpecialLVIInstruction(SMLoc Loc);
void applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out);
void applyLVILoadHardeningMitigation(MCInst &Inst, MCStreamer &Out);
/// Wrapper around MCStreamer::emitInstruction(). Possibly adds
/// instrumentation around Inst.
void emitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
MCStreamer &Out, bool MatchingInlineAsm);
bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures,
bool MatchingInlineAsm);
bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool OmitRegisterFromClobberLists(unsigned RegNo) override;
/// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
/// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
/// return false if no parsing errors occurred, true otherwise.
bool HandleAVX512Operand(OperandVector &Operands);
bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);
bool is64BitMode() const {
// FIXME: Can tablegen auto-generate this?
return getSTI().getFeatureBits()[X86::Mode64Bit];
}
bool is32BitMode() const {
// FIXME: Can tablegen auto-generate this?
return getSTI().getFeatureBits()[X86::Mode32Bit];
}
bool is16BitMode() const {
// FIXME: Can tablegen auto-generate this?
return getSTI().getFeatureBits()[X86::Mode16Bit];
}
void SwitchMode(unsigned mode) {
MCSubtargetInfo &STI = copySTI();
FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
FeatureBitset FB = ComputeAvailableFeatures(
STI.ToggleFeature(OldMode.flip(mode)));
setAvailableFeatures(FB);
assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
}
unsigned getPointerWidth() {
if (is16BitMode()) return 16;
if (is32BitMode()) return 32;
if (is64BitMode()) return 64;
llvm_unreachable("invalid mode");
}
bool isParsingIntelSyntax() {
return getParser().getAssemblerDialect();
}
/// @name Auto-generated Matcher Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"
/// }
public:
enum X86MatchResultTy {
Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "X86GenAsmMatcher.inc"
};
X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
const MCInstrInfo &mii, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti, mii), InstInfo(nullptr),
Code16GCC(false) {
Parser.addAliasForDirective(".word", ".2byte");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
};
} // end anonymous namespace
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg,
unsigned Scale, bool Is64BitMode,
StringRef &ErrMsg) {
// If we have both a base register and an index register make sure they are
// both 64-bit or 32-bit registers.
// To support VSIB, IndexReg can be 128-bit or 256-bit registers.
if (BaseReg != 0 &&
!(BaseReg == X86::RIP || BaseReg == X86::EIP ||
X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) {
ErrMsg = "invalid base+index expression";
return true;
}
if (IndexReg != 0 &&
!(IndexReg == X86::EIZ || IndexReg == X86::RIZ ||
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) {
ErrMsg = "invalid base+index expression";
return true;
}
if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) ||
IndexReg == X86::EIP || IndexReg == X86::RIP ||
IndexReg == X86::ESP || IndexReg == X86::RSP) {
ErrMsg = "invalid base+index expression";
return true;
}
// Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
// and then only in non-64-bit modes.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
(Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP &&
BaseReg != X86::SI && BaseReg != X86::DI))) {
ErrMsg = "invalid 16-bit base register";
return true;
}
if (BaseReg == 0 &&
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
ErrMsg = "16-bit memory operand may not include only index register";
return true;
}
if (BaseReg != 0 && IndexReg != 0) {
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
IndexReg == X86::EIZ)) {
ErrMsg = "base register is 64-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
IndexReg == X86::RIZ)) {
ErrMsg = "base register is 32-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
ErrMsg = "base register is 16-bit, but index register is not";
return true;
}
if ((BaseReg != X86::BX && BaseReg != X86::BP) ||
(IndexReg != X86::SI && IndexReg != X86::DI)) {
ErrMsg = "invalid 16-bit base/index register combination";
return true;
}
}
}
// RIP/EIP-relative addressing is only supported in 64-bit mode.
if (!Is64BitMode && BaseReg != 0 &&
(BaseReg == X86::RIP || BaseReg == X86::EIP)) {
ErrMsg = "IP-relative addressing requires 64-bit mode";
return true;
}
return checkScale(Scale, ErrMsg);
}
bool X86AsmParser::MatchRegisterByName(unsigned &RegNo, StringRef RegName,
SMLoc StartLoc, SMLoc EndLoc) {
// If we encounter a %, ignore it. This code handles registers with and
// without the prefix, unprefixed registers can occur in cfi directives.
RegName.consume_front("%");
RegNo = MatchRegisterName(RegName);
// If the match failed, try the register name as lowercase.
if (RegNo == 0)
RegNo = MatchRegisterName(RegName.lower());
// The "flags" and "mxcsr" registers cannot be referenced directly.
// Treat it as an identifier instead.
if (isParsingMSInlineAsm() && isParsingIntelSyntax() &&
(RegNo == X86::EFLAGS || RegNo == X86::MXCSR))
RegNo = 0;
if (!is64BitMode()) {
// FIXME: This should be done using Requires<Not64BitMode> and
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
// checked.
if (RegNo == X86::RIZ || RegNo == X86::RIP ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
X86II::isX86_64NonExtLowByteReg(RegNo) ||
X86II::isX86_64ExtendedReg(RegNo)) {
return Error(StartLoc,
"register %" + RegName + " is only available in 64-bit mode",
SMRange(StartLoc, EndLoc));
}
}
// If this is "db[0-15]", match it as an alias
// for dr[0-15].
if (RegNo == 0 && RegName.startswith("db")) {
if (RegName.size() == 3) {
switch (RegName[2]) {
case '0':
RegNo = X86::DR0;
break;
case '1':
RegNo = X86::DR1;
break;
case '2':
RegNo = X86::DR2;
break;
case '3':
RegNo = X86::DR3;
break;
case '4':
RegNo = X86::DR4;
break;
case '5':
RegNo = X86::DR5;
break;
case '6':
RegNo = X86::DR6;
break;
case '7':
RegNo = X86::DR7;
break;
case '8':
RegNo = X86::DR8;
break;
case '9':
RegNo = X86::DR9;
break;
}
} else if (RegName.size() == 4 && RegName[2] == '1') {
switch (RegName[3]) {
case '0':
RegNo = X86::DR10;
break;
case '1':
RegNo = X86::DR11;
break;
case '2':
RegNo = X86::DR12;
break;
case '3':
RegNo = X86::DR13;
break;
case '4':
RegNo = X86::DR14;
break;
case '5':
RegNo = X86::DR15;
break;
}
}
}
if (RegNo == 0) {
if (isParsingIntelSyntax())
return true;
return Error(StartLoc, "invalid register name", SMRange(StartLoc, EndLoc));
}
return false;
}
bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc, bool RestoreOnFailure) {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
RegNo = 0;
SmallVector<AsmToken, 5> Tokens;
auto OnFailure = [RestoreOnFailure, &Lexer, &Tokens]() {
if (RestoreOnFailure) {
while (!Tokens.empty()) {
Lexer.UnLex(Tokens.pop_back_val());
}
}
};
const AsmToken &PercentTok = Parser.getTok();
StartLoc = PercentTok.getLoc();
// If we encounter a %, ignore it. This code handles registers with and
// without the prefix, unprefixed registers can occur in cfi directives.
if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) {
Tokens.push_back(PercentTok);
Parser.Lex(); // Eat percent token.
}
const AsmToken &Tok = Parser.getTok();
EndLoc = Tok.getEndLoc();
if (Tok.isNot(AsmToken::Identifier)) {
OnFailure();
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
if (MatchRegisterByName(RegNo, Tok.getString(), StartLoc, EndLoc)) {
OnFailure();
return true;
}
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
if (RegNo == X86::ST0) {
Tokens.push_back(Tok);
Parser.Lex(); // Eat 'st'
// Check to see if we have '(4)' after %st.
if (Lexer.isNot(AsmToken::LParen))
return false;
// Lex the paren.
Tokens.push_back(Parser.getTok());
Parser.Lex();
const AsmToken &IntTok = Parser.getTok();
if (IntTok.isNot(AsmToken::Integer)) {
OnFailure();
return Error(IntTok.getLoc(), "expected stack index");
}
switch (IntTok.getIntVal()) {
case 0: RegNo = X86::ST0; break;
case 1: RegNo = X86::ST1; break;
case 2: RegNo = X86::ST2; break;
case 3: RegNo = X86::ST3; break;
case 4: RegNo = X86::ST4; break;
case 5: RegNo = X86::ST5; break;
case 6: RegNo = X86::ST6; break;
case 7: RegNo = X86::ST7; break;
default:
OnFailure();
return Error(IntTok.getLoc(), "invalid stack index");
}
// Lex IntTok
Tokens.push_back(IntTok);
Parser.Lex();
if (Lexer.isNot(AsmToken::RParen)) {
OnFailure();
return Error(Parser.getTok().getLoc(), "expected ')'");
}
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat ')'
return false;
}
EndLoc = Parser.getTok().getEndLoc();
if (RegNo == 0) {
OnFailure();
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
Parser.Lex(); // Eat identifier token.
return false;
}
bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
}
OperandMatchResultTy X86AsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
bool Result =
ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
bool PendingErrors = getParser().hasPendingError();
getParser().clearPendingErrors();
if (PendingErrors)
return MatchOperand_ParseFail;
if (Result)
return MatchOperand_NoMatch;
return MatchOperand_Success;
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
bool Parse32 = is32BitMode() || Code16GCC;
unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
bool Parse32 = is32BitMode() || Code16GCC;
unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
bool X86AsmParser::IsSIReg(unsigned Reg) {
switch (Reg) {
default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
case X86::RSI:
case X86::ESI:
case X86::SI:
return true;
case X86::RDI:
case X86::EDI:
case X86::DI:
return false;
}
}
unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
bool IsSIReg) {
switch (RegClassID) {
default: llvm_unreachable("Unexpected register class");
case X86::GR64RegClassID:
return IsSIReg ? X86::RSI : X86::RDI;
case X86::GR32RegClassID:
return IsSIReg ? X86::ESI : X86::EDI;
case X86::GR16RegClassID:
return IsSIReg ? X86::SI : X86::DI;
}
}
void X86AsmParser::AddDefaultSrcDestOperands(
OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
if (isParsingIntelSyntax()) {
Operands.push_back(std::move(Dst));
Operands.push_back(std::move(Src));
}
else {
Operands.push_back(std::move(Src));
Operands.push_back(std::move(Dst));
}
}
bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
OperandVector &FinalOperands) {
if (OrigOperands.size() > 1) {
// Check if sizes match, OrigOperands also contains the instruction name
assert(OrigOperands.size() == FinalOperands.size() + 1 &&
"Operand size mismatch");
SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
// Verify types match
int RegClassID = -1;
for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);
if (FinalOp.isReg() &&
(!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
// Return false and let a normal complaint about bogus operands happen
return false;
if (FinalOp.isMem()) {
if (!OrigOp.isMem())
// Return false and let a normal complaint about bogus operands happen
return false;
unsigned OrigReg = OrigOp.Mem.BaseReg;
unsigned FinalReg = FinalOp.Mem.BaseReg;
// If we've already encounterd a register class, make sure all register
// bases are of the same register class
if (RegClassID != -1 &&
!X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
return Error(OrigOp.getStartLoc(),
"mismatching source and destination index registers");
}
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
RegClassID = X86::GR64RegClassID;
else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
RegClassID = X86::GR32RegClassID;
else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
RegClassID = X86::GR16RegClassID;
else
// Unexpected register class type
// Return false and let a normal complaint about bogus operands happen
return false;
bool IsSI = IsSIReg(FinalReg);
FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);
if (FinalReg != OrigReg) {
std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
Warnings.push_back(std::make_pair(
OrigOp.getStartLoc(),
"memory operand is only for determining the size, " + RegName +
" will be used for the location"));
}
FinalOp.Mem.Size = OrigOp.Mem.Size;
FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
FinalOp.Mem.BaseReg = FinalReg;
}
}
// Produce warnings only if all the operands passed the adjustment - prevent
// legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
for (auto &WarningMsg : Warnings) {
Warning(WarningMsg.first, WarningMsg.second);
}
// Remove old operands
for (unsigned int i = 0; i < FinalOperands.size(); ++i)
OrigOperands.pop_back();
}
// OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
for (unsigned int i = 0; i < FinalOperands.size(); ++i)
OrigOperands.push_back(std::move(FinalOperands[i]));
return false;
}
bool X86AsmParser::ParseOperand(OperandVector &Operands) {
if (isParsingIntelSyntax())
return ParseIntelOperand(Operands);
return ParseATTOperand(Operands);
}
bool X86AsmParser::CreateMemForMSInlineAsm(
unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
const InlineAsmIdentifierInfo &Info, OperandVector &Operands) {
// If we found a decl other than a VarDecl, then assume it is a FuncDecl or
// some other label reference.
if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) {
// Insert an explicit size if the user didn't have one.
if (!Size) {
Size = getPointerWidth();
InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
/*Len=*/0, Size);
}
// Create an absolute memory reference in order to match against
// instructions taking a PC relative operand.
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), Disp, Start,
End, Size, Identifier,
Info.Label.Decl));
return false;
}
// We either have a direct symbol reference, or an offset from a symbol. The
// parser always puts the symbol on the LHS, so look there for size
// calculation purposes.
unsigned FrontendSize = 0;
void *Decl = nullptr;
bool IsGlobalLV = false;
if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
// Size is in terms of bits in this context.
FrontendSize = Info.Var.Type * 8;
Decl = Info.Var.Decl;
IsGlobalLV = Info.Var.IsGlobalLV;
}
// It is widely common for MS InlineAsm to use a global variable and one/two
// registers in a mmory expression, and though unaccessible via rip/eip.
if (IsGlobalLV && (BaseReg || IndexReg)) {
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, Start, End));
return false;
}
// Otherwise, we set the base register to a non-zero value
// if we don't know the actual value at this time. This is necessary to
// get the matching correct in some cases.
BaseReg = BaseReg ? BaseReg : 1;
Operands.push_back(X86Operand::CreateMem(
getPointerWidth(), SegReg, Disp, BaseReg, IndexReg, Scale, Start, End,
Size,
/*DefaultBaseReg=*/X86::RIP, Identifier, Decl, FrontendSize));
return false;
}
// Some binary bitwise operators have a named synonymous
// Query a candidate string for being such a named operator
// and if so - invoke the appropriate handler
bool X86AsmParser::ParseIntelNamedOperator(StringRef Name,
IntelExprStateMachine &SM,
bool &ParseError, SMLoc &End) {
// A named operator should be either lower or upper case, but not a mix...
// except in MASM, which uses full case-insensitivity.
if (Name.compare(Name.lower()) && Name.compare(Name.upper()) &&
!getParser().isParsingMasm())
return false;
if (Name.equals_lower("not")) {
SM.onNot();
} else if (Name.equals_lower("or")) {
SM.onOr();
} else if (Name.equals_lower("shl")) {
SM.onLShift();
} else if (Name.equals_lower("shr")) {
SM.onRShift();
} else if (Name.equals_lower("xor")) {
SM.onXor();
} else if (Name.equals_lower("and")) {
SM.onAnd();
} else if (Name.equals_lower("mod")) {
SM.onMod();
} else if (Name.equals_lower("offset")) {
SMLoc OffsetLoc = getTok().getLoc();
const MCExpr *Val = nullptr;
StringRef ID;
InlineAsmIdentifierInfo Info;
ParseError = ParseIntelOffsetOperator(Val, ID, Info, End);
if (ParseError)
return true;
StringRef ErrMsg;
ParseError =
SM.onOffset(Val, OffsetLoc, ID, Info, isParsingMSInlineAsm(), ErrMsg);
if (ParseError)
return Error(SMLoc::getFromPointer(Name.data()), ErrMsg);
} else {
return false;
}
if (!Name.equals_lower("offset"))
End = consumeToken();
return true;
}
bool X86AsmParser::ParseMasmNamedOperator(StringRef Name,
IntelExprStateMachine &SM,
bool &ParseError, SMLoc &End) {
if (Name.equals_lower("eq")) {
SM.onEq();
} else if (Name.equals_lower("ne")) {
SM.onNE();
} else if (Name.equals_lower("lt")) {
SM.onLT();
} else if (Name.equals_lower("le")) {
SM.onLE();
} else if (Name.equals_lower("gt")) {
SM.onGT();
} else if (Name.equals_lower("ge")) {
SM.onGE();
} else {
return false;
}
End = consumeToken();
return true;
}
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
MCAsmParser &Parser = getParser();
StringRef ErrMsg;
AsmToken::TokenKind PrevTK = AsmToken::Error;
bool Done = false;
while (!Done) {
// Get a fresh reference on each loop iteration in case the previous
// iteration moved the token storage during UnLex().
const AsmToken &Tok = Parser.getTok();
bool UpdateLocLex = true;
AsmToken::TokenKind TK = getLexer().getKind();
switch (TK) {
default:
if ((Done = SM.isValidEndState()))
break;
return Error(Tok.getLoc(), "unknown token in expression");
case AsmToken::Error:
return Error(getLexer().getErrLoc(), getLexer().getErr());
break;
case AsmToken::EndOfStatement:
Done = true;
break;
case AsmToken::Real:
// DotOperator: [ebx].0
UpdateLocLex = false;
if (ParseIntelDotOperator(SM, End))
return true;
break;
case AsmToken::Dot:
if (!Parser.isParsingMasm()) {
if ((Done = SM.isValidEndState()))
break;
return Error(Tok.getLoc(), "unknown token in expression");
}
// MASM allows spaces around the dot operator (e.g., "var . x")
Lex();
UpdateLocLex = false;
if (ParseIntelDotOperator(SM, End))
return true;
break;
case AsmToken::Dollar:
if (!Parser.isParsingMasm()) {
if ((Done = SM.isValidEndState()))
break;
return Error(Tok.getLoc(), "unknown token in expression");
}
LLVM_FALLTHROUGH;
case AsmToken::String: {
if (Parser.isParsingMasm()) {
// MASM parsers handle strings in expressions as constants.
SMLoc ValueLoc = Tok.getLoc();
int64_t Res;
const MCExpr *Val;
if (Parser.parsePrimaryExpr(Val, End, nullptr))
return true;
UpdateLocLex = false;
if (!Val->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
return Error(ValueLoc, "expected absolute value");
if (SM.onInteger(Res, ErrMsg))
return Error(ValueLoc, ErrMsg);
break;
}
LLVM_FALLTHROUGH;
}
case AsmToken::At:
case AsmToken::Identifier: {
SMLoc IdentLoc = Tok.getLoc();
StringRef Identifier = Tok.getString();
UpdateLocLex = false;
if (Parser.isParsingMasm()) {
size_t DotOffset = Identifier.find_first_of('.');
if (DotOffset != StringRef::npos) {
consumeToken();
StringRef LHS = Identifier.slice(0, DotOffset);
StringRef Dot = Identifier.slice(DotOffset, DotOffset + 1);
StringRef RHS = Identifier.slice(DotOffset + 1, StringRef::npos);
if (!RHS.empty()) {
getLexer().UnLex(AsmToken(AsmToken::Identifier, RHS));
}
getLexer().UnLex(AsmToken(AsmToken::Dot, Dot));
if (!LHS.empty()) {
getLexer().UnLex(AsmToken(AsmToken::Identifier, LHS));
}
break;
}
}
// (MASM only) <TYPE> PTR operator
if (Parser.isParsingMasm()) {
const AsmToken &NextTok = getLexer().peekTok();
if (NextTok.is(AsmToken::Identifier) &&
NextTok.getIdentifier().equals_lower("ptr")) {
AsmTypeInfo Info;
if (Parser.lookUpType(Identifier, Info))
return Error(Tok.getLoc(), "unknown type");
SM.onCast(Info);
// Eat type and PTR.
consumeToken();
End = consumeToken();
break;
}
}
// Register, or (MASM only) <register>.<field>
unsigned Reg;
if (Tok.is(AsmToken::Identifier)) {
if (!ParseRegister(Reg, IdentLoc, End, /*RestoreOnFailure=*/true)) {
if (SM.onRegister(Reg, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
if (Parser.isParsingMasm()) {
const std::pair<StringRef, StringRef> IDField =
Tok.getString().split('.');
const StringRef ID = IDField.first, Field = IDField.second;
SMLoc IDEndLoc = SMLoc::getFromPointer(ID.data() + ID.size());
if (!Field.empty() &&
!MatchRegisterByName(Reg, ID, IdentLoc, IDEndLoc)) {
if (SM.onRegister(Reg, ErrMsg))
return Error(IdentLoc, ErrMsg);
AsmFieldInfo Info;
SMLoc FieldStartLoc = SMLoc::getFromPointer(Field.data());
if (Parser.lookUpField(Field, Info))
return Error(FieldStartLoc, "unknown offset");
else if (SM.onPlus(ErrMsg))
return Error(getTok().getLoc(), ErrMsg);
else if (SM.onInteger(Info.Offset, ErrMsg))
return Error(IdentLoc, ErrMsg);
SM.setTypeInfo(Info.Type);
End = consumeToken();
break;
}
}
}
// Operator synonymous ("not", "or" etc.)
bool ParseError = false;
if (ParseIntelNamedOperator(Identifier, SM, ParseError, End)) {
if (ParseError)
return true;
break;
}
if (Parser.isParsingMasm() &&
ParseMasmNamedOperator(Identifier, SM, ParseError, End)) {
if (ParseError)
return true;
break;
}
// Symbol reference, when parsing assembly content
InlineAsmIdentifierInfo Info;
AsmFieldInfo FieldInfo;
const MCExpr *Val;
if (isParsingMSInlineAsm() || Parser.isParsingMasm()) {
// MS Dot Operator expression
if (Identifier.count('.') &&
(PrevTK == AsmToken::RBrac || PrevTK == AsmToken::RParen)) {
if (ParseIntelDotOperator(SM, End))
return true;
break;
}
}
if (isParsingMSInlineAsm()) {
// MS InlineAsm operators (TYPE/LENGTH/SIZE)
if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) {
if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) {
if (SM.onInteger(Val, ErrMsg))
return Error(IdentLoc, ErrMsg);
} else {
return true;
}
break;
}
// MS InlineAsm identifier
// Call parseIdentifier() to combine @ with the identifier behind it.
if (TK == AsmToken::At && Parser.parseIdentifier(Identifier))
return Error(IdentLoc, "expected identifier");
if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End))
return true;
else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type,
true, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
if (Parser.isParsingMasm()) {
if (unsigned OpKind = IdentifyMasmOperator(Identifier)) {
int64_t Val;
if (ParseMasmOperator(OpKind, Val))
return true;
if (SM.onInteger(Val, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
if (!getParser().lookUpType(Identifier, FieldInfo.Type)) {
// Field offset immediate; <TYPE>.<field specification>
Lex(); // eat type
bool EndDot = parseOptionalToken(AsmToken::Dot);
while (EndDot || (getTok().is(AsmToken::Identifier) &&
getTok().getString().startswith("."))) {
getParser().parseIdentifier(Identifier);
if (!EndDot)
Identifier.consume_front(".");
EndDot = Identifier.consume_back(".");
if (getParser().lookUpField(FieldInfo.Type.Name, Identifier,
FieldInfo)) {
SMLoc IDEnd =
SMLoc::getFromPointer(Identifier.data() + Identifier.size());
return Error(IdentLoc, "Unable to lookup field reference!",
SMRange(IdentLoc, IDEnd));
}
if (!EndDot)
EndDot = parseOptionalToken(AsmToken::Dot);
}
if (SM.onInteger(FieldInfo.Offset, ErrMsg))
return Error(IdentLoc, ErrMsg);
break;
}
}
if (getParser().parsePrimaryExpr(Val, End, &FieldInfo.Type)) {
return Error(Tok.getLoc(), "Unexpected identifier!");
} else if (SM.onIdentifierExpr(Val, Identifier, Info, FieldInfo.Type,
false, ErrMsg)) {
return Error(IdentLoc, ErrMsg);
}
break;
}
case AsmToken::Integer: {
// Look for 'b' or 'f' following an Integer as a directional label
SMLoc Loc = getTok().getLoc();
int64_t IntVal = getTok().getIntVal();
End = consumeToken();
UpdateLocLex = false;
if (getLexer().getKind() == AsmToken::Identifier) {
StringRef IDVal = getTok().getString();
if (IDVal == "f" || IDVal == "b") {
MCSymbol *Sym =
getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
const MCExpr *Val =
MCSymbolRefExpr::create(Sym, Variant, getContext());
if (IDVal == "b" && Sym->isUndefined())
return Error(Loc, "invalid reference to undefined symbol");
StringRef Identifier = Sym->getName();
InlineAsmIdentifierInfo Info;
AsmTypeInfo Type;
if (SM.onIdentifierExpr(Val, Identifier, Info, Type,
isParsingMSInlineAsm(), ErrMsg))
return Error(Loc, ErrMsg);
End = consumeToken();
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
break;
}
case AsmToken::Plus:
if (SM.onPlus(ErrMsg))
return Error(getTok().getLoc(), ErrMsg);
break;
case AsmToken::Minus:
if (SM.onMinus(ErrMsg))
return Error(getTok().getLoc(), ErrMsg);
break;
case AsmToken::Tilde: SM.onNot(); break;
case AsmToken::Star: SM.onStar(); break;
case AsmToken::Slash: SM.onDivide(); break;
case AsmToken::Percent: SM.onMod(); break;
case AsmToken::Pipe: SM.onOr(); break;
case AsmToken::Caret: SM.onXor(); break;
case AsmToken::Amp: SM.onAnd(); break;
case AsmToken::LessLess:
SM.onLShift(); break;
case AsmToken::GreaterGreater:
SM.onRShift(); break;
case AsmToken::LBrac:
if (SM.onLBrac())
return Error(Tok.getLoc(), "unexpected bracket encountered");
break;
case AsmToken::RBrac:
if (SM.onRBrac())
return Error(Tok.getLoc(), "unexpected bracket encountered");
break;
case AsmToken::LParen: SM.onLParen(); break;
case AsmToken::RParen: SM.onRParen(); break;
}
if (SM.hadError())
return Error(Tok.getLoc(), "unknown token in expression");
if (!Done && UpdateLocLex)
End = consumeToken();
PrevTK = TK;
}
return false;
}
void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM,
SMLoc Start, SMLoc End) {
SMLoc Loc = Start;
unsigned ExprLen = End.getPointer() - Start.getPointer();
// Skip everything before a symbol displacement (if we have one)
if (SM.getSym() && !SM.isOffsetOperator()) {
StringRef SymName = SM.getSymName();
if (unsigned Len = SymName.data() - Start.getPointer())
InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len);
Loc = SMLoc::getFromPointer(SymName.data() + SymName.size());
ExprLen = End.getPointer() - (SymName.data() + SymName.size());
// If we have only a symbol than there's no need for complex rewrite,
// simply skip everything after it
if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) {
if (ExprLen)
InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen);
return;
}
}
// Build an Intel Expression rewrite
StringRef BaseRegStr;
StringRef IndexRegStr;
StringRef OffsetNameStr;
if (SM.getBaseReg())
BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg());
if (SM.getIndexReg())
IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg());
if (SM.isOffsetOperator())
OffsetNameStr = SM.getSymName();
// Emit it
IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), OffsetNameStr,
SM.getImm(), SM.isMemExpr());
InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr);
}
// Inline assembly may use variable names with namespace alias qualifiers.
bool X86AsmParser::ParseIntelInlineAsmIdentifier(
const MCExpr *&Val, StringRef &Identifier, InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End, bool IsParsingOffsetOperator) {
MCAsmParser &Parser = getParser();
assert(isParsingMSInlineAsm() && "Expected to be parsing inline assembly.");
Val = nullptr;
StringRef LineBuf(Identifier.data());
SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
const AsmToken &Tok = Parser.getTok();
SMLoc Loc = Tok.getLoc();
// Advance the token stream until the end of the current token is
// after the end of what the frontend claimed.
const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
do {
End = Tok.getEndLoc();
getLexer().Lex();
} while (End.getPointer() < EndPtr);
Identifier = LineBuf;
// The frontend should end parsing on an assembler token boundary, unless it
// failed parsing.
assert((End.getPointer() == EndPtr ||
Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) &&
"frontend claimed part of a token?");
// If the identifier lookup was unsuccessful, assume that we are dealing with
// a label.
if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) {
StringRef InternalName =
SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
Loc, false);
assert(InternalName.size() && "We should have an internal name here.");
// Push a rewrite for replacing the identifier name with the internal name,
// unless we are parsing the operand of an offset operator
if (!IsParsingOffsetOperator)
InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
InternalName);
else
Identifier = InternalName;
} else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
return false;
// Create the symbol reference.
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
return false;
}
//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
bool X86AsmParser::ParseRoundingModeOp(SMLoc Start, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
// Eat "{" and mark the current place.
const SMLoc consumedToken = consumeToken();
if (Tok.isNot(AsmToken::Identifier))
return Error(Tok.getLoc(), "Expected an identifier after {");
if (Tok.getIdentifier().startswith("r")){
int rndMode = StringSwitch<int>(Tok.getIdentifier())
.Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
.Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
.Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
.Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
.Default(-1);
if (-1 == rndMode)
return Error(Tok.getLoc(), "Invalid rounding mode.");
Parser.Lex(); // Eat "r*" of r*-sae
if (!getLexer().is(AsmToken::Minus))
return Error(Tok.getLoc(), "Expected - at this point");
Parser.Lex(); // Eat "-"
Parser.Lex(); // Eat the sae
if (!getLexer().is(AsmToken::RCurly))
return Error(Tok.getLoc(), "Expected } at this point");
SMLoc End = Tok.getEndLoc();
Parser.Lex(); // Eat "}"
const MCExpr *RndModeOp =
MCConstantExpr::create(rndMode, Parser.getContext());
Operands.push_back(X86Operand::CreateImm(RndModeOp, Start, End));
return false;
}
if(Tok.getIdentifier().equals("sae")){
Parser.Lex(); // Eat the sae
if (!getLexer().is(AsmToken::RCurly))
return Error(Tok.getLoc(), "Expected } at this point");
Parser.Lex(); // Eat "}"
Operands.push_back(X86Operand::CreateToken("{sae}", consumedToken));
return false;
}
return Error(Tok.getLoc(), "unknown token in expression");
}
/// Parse the '.' operator.
bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM,
SMLoc &End) {
const AsmToken &Tok = getTok();
AsmFieldInfo Info;
// Drop the optional '.'.
StringRef DotDispStr = Tok.getString();
if (DotDispStr.startswith("."))
DotDispStr = DotDispStr.drop_front(1);
StringRef TrailingDot;
// .Imm gets lexed as a real.
if (Tok.is(AsmToken::Real)) {
APInt DotDisp;
DotDispStr.getAsInteger(10, DotDisp);
Info.Offset = DotDisp.getZExtValue();
} else if ((isParsingMSInlineAsm() || getParser().isParsingMasm()) &&
Tok.is(AsmToken::Identifier)) {
if (DotDispStr.endswith(".")) {
TrailingDot = DotDispStr.substr(DotDispStr.size() - 1);
DotDispStr = DotDispStr.drop_back(1);
}
const std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
const StringRef Base = BaseMember.first, Member = BaseMember.second;
if (getParser().lookUpField(SM.getType(), DotDispStr, Info) &&
getParser().lookUpField(SM.getSymName(), DotDispStr, Info) &&
getParser().lookUpField(DotDispStr, Info) &&
(!SemaCallback ||
SemaCallback->LookupInlineAsmField(Base, Member, Info.Offset)))
return Error(Tok.getLoc(), "Unable to lookup field reference!");
} else {
return Error(Tok.getLoc(), "Unexpected token type!");
}
// Eat the DotExpression and update End
End = SMLoc::getFromPointer(DotDispStr.data());
const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size();
while (Tok.getLoc().getPointer() < DotExprEndLoc)
Lex();
if (!TrailingDot.empty())
getLexer().UnLex(AsmToken(AsmToken::Dot, TrailingDot));
SM.addImm(Info.Offset);
SM.setTypeInfo(Info.Type);
return false;
}
/// Parse the 'offset' operator.
/// This operator is used to specify the location of a given operand
bool X86AsmParser::ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
InlineAsmIdentifierInfo &Info,
SMLoc &End) {
// Eat offset, mark start of identifier.
SMLoc Start = Lex().getLoc();
ID = getTok().getString();
if (!isParsingMSInlineAsm()) {
if ((getTok().isNot(AsmToken::Identifier) &&
getTok().isNot(AsmToken::String)) ||
getParser().parsePrimaryExpr(Val, End, nullptr))
return Error(Start, "unexpected token!");
} else if (ParseIntelInlineAsmIdentifier(Val, ID, Info, false, End, true)) {
return Error(Start, "unable to lookup expression");
} else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) {
return Error(Start, "offset operator cannot yet handle constants");
}
return false;
}
// Query a candidate string for being an Intel assembly operator
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) {
return StringSwitch<unsigned>(Name)
.Cases("TYPE","type",IOK_TYPE)
.Cases("SIZE","size",IOK_SIZE)
.Cases("LENGTH","length",IOK_LENGTH)
.Default(IOK_INVALID);
}
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
/// returns the number of elements in an array. It returns the value 1 for
/// non-array variables. The SIZE operator returns the size of a C or C++
/// variable. A variable's size is the product of its LENGTH and TYPE. The
/// TYPE operator returns the size of a C or C++ type or variable. If the
/// variable is an array, TYPE returns the size of a single element.
unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
Parser.Lex(); // Eat operator.
const MCExpr *Val = nullptr;
InlineAsmIdentifierInfo Info;
SMLoc Start = Tok.getLoc(), End;
StringRef Identifier = Tok.getString();
if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
/*IsUnevaluatedOperand=*/true, End))
return 0;
if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
Error(Start, "unable to lookup expression");
return 0;
}
unsigned CVal = 0;
switch(OpKind) {
default: llvm_unreachable("Unexpected operand kind!");
case IOK_LENGTH: CVal = Info.Var.Length; break;
case IOK_SIZE: CVal = Info.Var.Size; break;
case IOK_TYPE: CVal = Info.Var.Type; break;
}
return CVal;
}
// Query a candidate string for being an Intel assembly operator
// Report back its kind, or IOK_INVALID if does not evaluated as a known one
unsigned X86AsmParser::IdentifyMasmOperator(StringRef Name) {
return StringSwitch<unsigned>(Name.lower())
.Case("type", MOK_TYPE)
.Cases("size", "sizeof", MOK_SIZEOF)
.Cases("length", "lengthof", MOK_LENGTHOF)
.Default(MOK_INVALID);
}
/// Parse the 'LENGTHOF', 'SIZEOF', and 'TYPE' operators. The LENGTHOF operator
/// returns the number of elements in an array. It returns the value 1 for
/// non-array variables. The SIZEOF operator returns the size of a type or
/// variable in bytes. A variable's size is the product of its LENGTH and TYPE.
/// The TYPE operator returns the size of a variable. If the variable is an
/// array, TYPE returns the size of a single element.
bool X86AsmParser::ParseMasmOperator(unsigned OpKind, int64_t &Val) {
MCAsmParser &Parser = getParser();
SMLoc OpLoc = Parser.getTok().getLoc();
Parser.Lex(); // Eat operator.
Val = 0;
if (OpKind == MOK_SIZEOF || OpKind == MOK_TYPE) {
// Check for SIZEOF(<type>) and TYPE(<type>).
bool InParens = Parser.getTok().is(AsmToken::LParen);
const AsmToken &IDTok = InParens ? getLexer().peekTok() : Parser.getTok();
AsmTypeInfo Type;
if (IDTok.is(AsmToken::Identifier) &&
!Parser.lookUpType(IDTok.getIdentifier(), Type)) {
Val = Type.Size;
// Eat tokens.
if (InParens)
parseToken(AsmToken::LParen);
parseToken(AsmToken::Identifier);
if (InParens)
parseToken(AsmToken::RParen);
}
}
if (!Val) {
IntelExprStateMachine SM;
SMLoc End, Start = Parser.getTok().getLoc();
if (ParseIntelExpression(SM, End))
return true;
switch (OpKind) {
default:
llvm_unreachable("Unexpected operand kind!");
case MOK_SIZEOF:
Val = SM.getSize();
break;
case MOK_LENGTHOF:
Val = SM.getLength();
break;
case MOK_TYPE:
Val = SM.getElementSize();
break;
}
if (!Val)
return Error(OpLoc, "expression has unknown type", SMRange(Start, End));
}
return false;
}
bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) {
Size = StringSwitch<unsigned>(getTok().getString())
.Cases("BYTE", "byte", 8)
.Cases("WORD", "word", 16)
.Cases("DWORD", "dword", 32)
.Cases("FLOAT", "float", 32)
.Cases("LONG", "long", 32)
.Cases("FWORD", "fword", 48)
.Cases("DOUBLE", "double", 64)
.Cases("QWORD", "qword", 64)
.Cases("MMWORD","mmword", 64)
.Cases("XWORD", "xword", 80)
.Cases("TBYTE", "tbyte", 80)
.Cases("XMMWORD", "xmmword", 128)
.Cases("YMMWORD", "ymmword", 256)
.Cases("ZMMWORD", "zmmword", 512)
.Default(0);
if (Size) {
const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word).
if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr")))
return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
Lex(); // Eat ptr.
}
return false;
}
bool X86AsmParser::ParseIntelOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc Start, End;
// Parse optional Size directive.
unsigned Size;
if (ParseIntelMemoryOperandSize(Size))
return true;
bool PtrInOperand = bool(Size);
Start = Tok.getLoc();
// Rounding mode operand.
if (getLexer().is(AsmToken::LCurly))
return ParseRoundingModeOp(Start, Operands);
// Register operand.
unsigned RegNo = 0;
if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) {
if (RegNo == X86::RIP)
return Error(Start, "rip can only be used as a base register");
// A Register followed by ':' is considered a segment override
if (Tok.isNot(AsmToken::Colon)) {
if (PtrInOperand)
return Error(Start, "expected memory operand after 'ptr', "
"found register operand instead");
Operands.push_back(X86Operand::CreateReg(RegNo, Start, End));
return false;
}
// An alleged segment override. check if we have a valid segment register
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
return Error(Start, "invalid segment register");
// Eat ':' and update Start location
Start = Lex().getLoc();
}
// Immediates and Memory
IntelExprStateMachine SM;
if (ParseIntelExpression(SM, End))
return true;
if (isParsingMSInlineAsm())
RewriteIntelExpression(SM, Start, Tok.getLoc());
int64_t Imm = SM.getImm();
const MCExpr *Disp = SM.getSym();
const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext());
if (Disp && Imm)
Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext());
if (!Disp)
Disp = ImmDisp;
// RegNo != 0 specifies a valid segment register,
// and we are parsing a segment override
if (!SM.isMemExpr() && !RegNo) {
if (isParsingMSInlineAsm() && SM.isOffsetOperator()) {
const InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
// Disp includes the address of a variable; make sure this is recorded
// for later handling.
Operands.push_back(X86Operand::CreateImm(Disp, Start, End,
SM.getSymName(), Info.Var.Decl,
Info.Var.IsGlobalLV));
return false;
}
}
Operands.push_back(X86Operand::CreateImm(Disp, Start, End));
return false;
}
StringRef ErrMsg;
unsigned BaseReg = SM.getBaseReg();
unsigned IndexReg = SM.getIndexReg();
unsigned Scale = SM.getScale();
if (!PtrInOperand)
Size = SM.getElementSize() << 3;
if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP &&
(IndexReg == X86::ESP || IndexReg == X86::RSP))
std::swap(BaseReg, IndexReg);
// If BaseReg is a vector register and IndexReg is not, swap them unless
// Scale was specified in which case it would be an error.
if (Scale == 0 &&
!(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) &&
(X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) ||
X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg)))
std::swap(BaseReg, IndexReg);
if (Scale != 0 &&
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))
return Error(Start, "16-bit addresses cannot have a scale");
// If there was no explicit scale specified, change it to 1.
if (Scale == 0)
Scale = 1;
// If this is a 16-bit addressing mode with the base and index in the wrong
// order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is
// shared with att syntax where order matters.
if ((BaseReg == X86::SI || BaseReg == X86::DI) &&
(IndexReg == X86::BX || IndexReg == X86::BP))
std::swap(BaseReg, IndexReg);
if ((BaseReg || IndexReg) &&
CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
ErrMsg))
return Error(Start, ErrMsg);
if (isParsingMSInlineAsm())
return CreateMemForMSInlineAsm(RegNo, Disp, BaseReg, IndexReg, Scale, Start,
End, Size, SM.getSymName(),
SM.getIdentifierInfo(), Operands);
// When parsing x64 MS-style assembly, all memory operands default to
// RIP-relative when interpreted as non-absolute references.
if (Parser.isParsingMasm() && is64BitMode()) {
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
BaseReg, IndexReg, Scale, Start,
End, Size,
/*DefaultBaseReg=*/X86::RIP));
return false;
}
if ((BaseReg || IndexReg || RegNo))
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
BaseReg, IndexReg, Scale, Start,
End, Size));
else
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size));
return false;
}
bool X86AsmParser::ParseATTOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
case AsmToken::Dollar: {
// $42 or $ID -> immediate.
SMLoc Start = Parser.getTok().getLoc(), End;
Parser.Lex();
const MCExpr *Val;
// This is an immediate, so we should not parse a register. Do a precheck
// for '%' to supercede intra-register parse errors.
SMLoc L = Parser.getTok().getLoc();
if (check(getLexer().is(AsmToken::Percent), L,
"expected immediate expression") ||
getParser().parseExpression(Val, End) ||
check(isa<X86MCExpr>(Val), L, "expected immediate expression"))
return true;
Operands.push_back(X86Operand::CreateImm(Val, Start, End));
return false;
}
case AsmToken::LCurly: {
SMLoc Start = Parser.getTok().getLoc();
return ParseRoundingModeOp(Start, Operands);
}
default: {
// This a memory operand or a register. We have some parsing complications
// as a '(' may be part of an immediate expression or the addressing mode
// block. This is complicated by the fact that an assembler-level variable
// may refer either to a register or an immediate expression.
SMLoc Loc = Parser.getTok().getLoc(), EndLoc;
const MCExpr *Expr = nullptr;
unsigned Reg = 0;
if (getLexer().isNot(AsmToken::LParen)) {
// No '(' so this is either a displacement expression or a register.
if (Parser.parseExpression(Expr, EndLoc))
return true;
if (auto *RE = dyn_cast<X86MCExpr>(Expr)) {
// Segment Register. Reset Expr and copy value to register.
Expr = nullptr;
Reg = RE->getRegNo();
// Sanity check register.
if (Reg == X86::EIZ || Reg == X86::RIZ)
return Error(
Loc, "%eiz and %riz can only be used as index registers",
SMRange(Loc, EndLoc));
if (Reg == X86::RIP)
return Error(Loc, "%rip can only be used as a base register",
SMRange(Loc, EndLoc));
// Return register that are not segment prefixes immediately.
if (!Parser.parseOptionalToken(AsmToken::Colon)) {
Operands.push_back(X86Operand::CreateReg(Reg, Loc, EndLoc));
return false;
}
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg))
return Error(Loc, "invalid segment register");
// Accept a '*' absolute memory reference after the segment. Place it
// before the full memory operand.
if (getLexer().is(AsmToken::Star))
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
}
}
// This is a Memory operand.
return ParseMemOperand(Reg, Expr, Loc, EndLoc, Operands);
}
}
}
// X86::COND_INVALID if not a recognized condition code or alternate mnemonic,
// otherwise the EFLAGS Condition Code enumerator.
X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) {
return StringSwitch<X86::CondCode>(CC)
.Case("o", X86::COND_O) // Overflow
.Case("no", X86::COND_NO) // No Overflow
.Cases("b", "nae", X86::COND_B) // Below/Neither Above nor Equal
.Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below
.Cases("e", "z", X86::COND_E) // Equal/Zero
.Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero
.Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above
.Cases("a", "nbe", X86::COND_A) // Above/Neither Below nor Equal
.Case("s", X86::COND_S) // Sign
.Case("ns", X86::COND_NS) // No Sign
.Cases("p", "pe", X86::COND_P) // Parity/Parity Even
.Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd
.Cases("l", "nge", X86::COND_L) // Less/Neither Greater nor Equal
.Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less
.Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater
.Cases("g", "nle", X86::COND_G) // Greater/Neither Less nor Equal
.Default(X86::COND_INVALID);
}
// true on failure, false otherwise
// If no {z} mark was found - Parser doesn't advance
bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
const SMLoc &StartLoc) {
MCAsmParser &Parser = getParser();
// Assuming we are just pass the '{' mark, quering the next token
// Searched for {z}, but none was found. Return false, as no parsing error was
// encountered
if (!(getLexer().is(AsmToken::Identifier) &&
(getLexer().getTok().getIdentifier() == "z")))
return false;
Parser.Lex(); // Eat z
// Query and eat the '}' mark
if (!getLexer().is(AsmToken::RCurly))
return Error(getLexer().getLoc(), "Expected } at this point");
Parser.Lex(); // Eat '}'
// Assign Z with the {z} mark opernad
Z = X86Operand::CreateToken("{z}", StartLoc);
return false;
}
// true on failure, false otherwise
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LCurly)) {
// Eat "{" and mark the current place.
const SMLoc consumedToken = consumeToken();
// Distinguish {1to<NUM>} from {%k<NUM>}.
if(getLexer().is(AsmToken::Integer)) {
// Parse memory broadcasting ({1to<NUM>}).
if (getLexer().getTok().getIntVal() != 1)
return TokError("Expected 1to<NUM> at this point");
StringRef Prefix = getLexer().getTok().getString();
Parser.Lex(); // Eat first token of 1to8
if (!getLexer().is(AsmToken::Identifier))
return TokError("Expected 1to<NUM> at this point");
// Recognize only reasonable suffixes.
SmallVector<char, 5> BroadcastVector;
StringRef BroadcastString = (Prefix + getLexer().getTok().getIdentifier())
.toStringRef(BroadcastVector);
if (!BroadcastString.startswith("1to"))
return TokError("Expected 1to<NUM> at this point");
const char *BroadcastPrimitive =
StringSwitch<const char *>(BroadcastString)
.Case("1to2", "{1to2}")
.Case("1to4", "{1to4}")
.Case("1to8", "{1to8}")
.Case("1to16", "{1to16}")
.Default(nullptr);
if (!BroadcastPrimitive)
return TokError("Invalid memory broadcast primitive.");
Parser.Lex(); // Eat trailing token of 1toN
if (!getLexer().is(AsmToken::RCurly))
return TokError("Expected } at this point");
Parser.Lex(); // Eat "}"
Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
consumedToken));
// No AVX512 specific primitives can pass
// after memory broadcasting, so return.
return false;
} else {
// Parse either {k}{z}, {z}{k}, {k} or {z}
// last one have no meaning, but GCC accepts it
// Currently, we're just pass a '{' mark
std::unique_ptr<X86Operand> Z;
if (ParseZ(Z, consumedToken))
return true;
// Reaching here means that parsing of the allegadly '{z}' mark yielded
// no errors.
// Query for the need of further parsing for a {%k<NUM>} mark
if (!Z || getLexer().is(AsmToken::LCurly)) {
SMLoc StartLoc = Z ? consumeToken() : consumedToken;
// Parse an op-mask register mark ({%k<NUM>}), which is now to be
// expected
unsigned RegNo;
SMLoc RegLoc;
if (!ParseRegister(RegNo, RegLoc, StartLoc) &&
X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) {
if (RegNo == X86::K0)
return Error(RegLoc, "Register k0 can't be used as write mask");
if (!getLexer().is(AsmToken::RCurly))
return Error(getLexer().getLoc(), "Expected } at this point");
Operands.push_back(X86Operand::CreateToken("{", StartLoc));
Operands.push_back(
X86Operand::CreateReg(RegNo, StartLoc, StartLoc));
Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
} else
return Error(getLexer().getLoc(),
"Expected an op-mask register at this point");
// {%k<NUM>} mark is found, inquire for {z}
if (getLexer().is(AsmToken::LCurly) && !Z) {
// Have we've found a parsing error, or found no (expected) {z} mark
// - report an error
if (ParseZ(Z, consumeToken()) || !Z)
return Error(getLexer().getLoc(),
"Expected a {z} mark at this point");
}
// '{z}' on its own is meaningless, hence should be ignored.
// on the contrary - have it been accompanied by a K register,
// allow it.
if (Z)
Operands.push_back(std::move(Z));
}
}
}
return false;
}
/// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'. The '%ds:' prefix
/// has already been parsed if present. disp may be provided as well.
bool X86AsmParser::ParseMemOperand(unsigned SegReg, const MCExpr *Disp,
SMLoc StartLoc, SMLoc EndLoc,
OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc Loc;
// Based on the initial passed values, we may be in any of these cases, we are
// in one of these cases (with current position (*)):
// 1. seg : * disp (base-index-scale-expr)
// 2. seg : *(disp) (base-index-scale-expr)
// 3. seg : *(base-index-scale-expr)
// 4. disp *(base-index-scale-expr)
// 5. *(disp) (base-index-scale-expr)
// 6. *(base-index-scale-expr)
// 7. disp *
// 8. *(disp)
// If we do not have an displacement yet, check if we're in cases 4 or 6 by
// checking if the first object after the parenthesis is a register (or an
// identifier referring to a register) and parse the displacement or default
// to 0 as appropriate.
auto isAtMemOperand = [this]() {
if (this->getLexer().isNot(AsmToken::LParen))
return false;
AsmToken Buf[2];
StringRef Id;
auto TokCount = this->getLexer().peekTokens(Buf, true);
if (TokCount == 0)
return false;
switch (Buf[0].getKind()) {
case AsmToken::Percent:
case AsmToken::Comma:
return true;
// These lower cases are doing a peekIdentifier.
case AsmToken::At:
case AsmToken::Dollar:
if ((TokCount > 1) &&
(Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) &&
(Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer()))
Id = StringRef(Buf[0].getLoc().getPointer(),
Buf[1].getIdentifier().size() + 1);
break;
case AsmToken::Identifier:
case AsmToken::String:
Id = Buf[0].getIdentifier();
break;
default:
return false;
}
// We have an ID. Check if it is bound to a register.
if (!Id.empty()) {
MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id);
if (Sym->isVariable()) {
auto V = Sym->getVariableValue(/*SetUsed*/ false);
return isa<X86MCExpr>(V);
}
}
return false;
};
if (!Disp) {
// Parse immediate if we're not at a mem operand yet.
if (!isAtMemOperand()) {
if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc))
return true;
assert(!isa<X86MCExpr>(Disp) && "Expected non-register here.");
} else {
// Disp is implicitly zero if we haven't parsed it yet.
Disp = MCConstantExpr::create(0, Parser.getContext());
}
}
// We are now either at the end of the operand or at the '(' at the start of a
// base-index-scale-expr.
if (!parseOptionalToken(AsmToken::LParen)) {
if (SegReg == 0)
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc));
else
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
0, 0, 1, StartLoc, EndLoc));
return false;
}
// If we reached here, then eat the '(' and Process
// the rest of the memory operand.
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
SMLoc BaseLoc = getLexer().getLoc();
const MCExpr *E;
StringRef ErrMsg;
// Parse BaseReg if one is provided.
if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) {
if (Parser.parseExpression(E, EndLoc) ||
check(!isa<X86MCExpr>(E), BaseLoc, "expected register here"))
return true;
// Sanity check register.
BaseReg = cast<X86MCExpr>(E)->getRegNo();
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ)
return Error(BaseLoc, "eiz and riz can only be used as index registers",
SMRange(BaseLoc, EndLoc));
}
if (parseOptionalToken(AsmToken::Comma)) {
// Following the comma we should have either an index register, or a scale
// value. We don't support the later form, but we want to parse it
// correctly.
//
// Even though it would be completely consistent to support syntax like
// "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
if (getLexer().isNot(AsmToken::RParen)) {
if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc))
return true;
if (!isa<X86MCExpr>(E)) {
// We've parsed an unexpected Scale Value instead of an index
// register. Interpret it as an absolute.
int64_t ScaleVal;
if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr()))
return Error(Loc, "expected absolute expression");
if (ScaleVal != 1)
Warning(Loc, "scale factor without index register is ignored");
Scale = 1;
} else { // IndexReg Found.
IndexReg = cast<X86MCExpr>(E)->getRegNo();
if (BaseReg == X86::RIP)
return Error(Loc,
"%rip as base register can not have an index register");
if (IndexReg == X86::RIP)
return Error(Loc, "%rip is not allowed as an index register");
if (parseOptionalToken(AsmToken::Comma)) {
// Parse the scale amount:
// ::= ',' [scale-expression]
// A scale amount without an index is ignored.
if (getLexer().isNot(AsmToken::RParen)) {
int64_t ScaleVal;
if (Parser.parseTokenLoc(Loc) ||
Parser.parseAbsoluteExpression(ScaleVal))
return Error(Loc, "expected scale expression");
Scale = (unsigned)ScaleVal;
// Validate the scale amount.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
Scale != 1)
return Error(Loc, "scale factor in 16-bit address must be 1");
if (checkScale(Scale, ErrMsg))
return Error(Loc, ErrMsg);
}
}
}
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (parseToken(AsmToken::RParen, "unexpected token in memory operand"))
return true;
// This is to support otherwise illegal operand (%dx) found in various
// unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now
// be supported. Mark such DX variants separately fix only in special cases.
if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 &&
isa<MCConstantExpr>(Disp) &&
cast<MCConstantExpr>(Disp)->getValue() == 0) {
Operands.push_back(X86Operand::CreateDXReg(BaseLoc, BaseLoc));
return false;
}
if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
ErrMsg))
return Error(BaseLoc, ErrMsg);
if (SegReg || BaseReg || IndexReg)
Operands.push_back(X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
BaseReg, IndexReg, Scale, StartLoc,
EndLoc));
else
Operands.push_back(
X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc));
return false;
}
// Parse either a standard primary expression or a register.
bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
MCAsmParser &Parser = getParser();
// See if this is a register first.
if (getTok().is(AsmToken::Percent) ||
(isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) &&
MatchRegisterName(Parser.getTok().getString()))) {
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned RegNo;
if (ParseRegister(RegNo, StartLoc, EndLoc))
return true;
Res = X86MCExpr::create(RegNo, Parser.getContext());
return false;
}
return Parser.parsePrimaryExpr(Res, EndLoc, nullptr);
}
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
InstInfo = &Info;
// Reset the forced VEX encoding.
ForcedVEXEncoding = VEXEncoding_Default;
ForcedDispEncoding = DispEncoding_Default;
// Parse pseudo prefixes.
while (1) {
if (Name == "{") {
if (getLexer().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(), "Unexpected token after '{'");
std::string Prefix = Parser.getTok().getString().lower();
Parser.Lex(); // Eat identifier.
if (getLexer().isNot(AsmToken::RCurly))
return Error(Parser.getTok().getLoc(), "Expected '}'");
Parser.Lex(); // Eat curly.
if (Prefix == "vex")
ForcedVEXEncoding = VEXEncoding_VEX;
else if (Prefix == "vex2")
ForcedVEXEncoding = VEXEncoding_VEX2;
else if (Prefix == "vex3")
ForcedVEXEncoding = VEXEncoding_VEX3;
else if (Prefix == "evex")
ForcedVEXEncoding = VEXEncoding_EVEX;
else if (Prefix == "disp8")
ForcedDispEncoding = DispEncoding_Disp8;
else if (Prefix == "disp32")
ForcedDispEncoding = DispEncoding_Disp32;
else
return Error(NameLoc, "unknown prefix");
NameLoc = Parser.getTok().getLoc();
if (getLexer().is(AsmToken::LCurly)) {
Parser.Lex();
Name = "{";
} else {
if (getLexer().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(), "Expected identifier");
// FIXME: The mnemonic won't match correctly if its not in lower case.
Name = Parser.getTok().getString();
Parser.Lex();
}
continue;
}
// Parse MASM style pseudo prefixes.
if (isParsingMSInlineAsm()) {
if (Name.equals_lower("vex"))
ForcedVEXEncoding = VEXEncoding_VEX;
else if (Name.equals_lower("vex2"))
ForcedVEXEncoding = VEXEncoding_VEX2;
else if (Name.equals_lower("vex3"))
ForcedVEXEncoding = VEXEncoding_VEX3;
else if (Name.equals_lower("evex"))
ForcedVEXEncoding = VEXEncoding_EVEX;
if (ForcedVEXEncoding != VEXEncoding_Default) {
if (getLexer().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(), "Expected identifier");
// FIXME: The mnemonic won't match correctly if its not in lower case.
Name = Parser.getTok().getString();
NameLoc = Parser.getTok().getLoc();
Parser.Lex();
}
}
break;
}
// Support the suffix syntax for overriding displacement size as well.
if (Name.consume_back(".d32")) {
ForcedDispEncoding = DispEncoding_Disp32;
} else if (Name.consume_back(".d8")) {
ForcedDispEncoding = DispEncoding_Disp8;
}
StringRef PatchedName = Name;
// Hack to skip "short" following Jcc.
if (isParsingIntelSyntax() &&
(PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" ||
PatchedName == "jcxz" || PatchedName == "jexcz" ||
(PatchedName.startswith("j") &&
ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) {
StringRef NextTok = Parser.getTok().getString();
if (NextTok == "short") {
SMLoc NameEndLoc =
NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
// Eat the short keyword.
Parser.Lex();
// MS and GAS ignore the short keyword; they both determine the jmp type
// based on the distance of the label. (NASM does emit different code with
// and without "short," though.)
InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
NextTok.size() + 1);
}
}
// FIXME: Hack to recognize setneb as setne.
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
PatchedName != "setb" && PatchedName != "setnb")
PatchedName = PatchedName.substr(0, Name.size()-1);
unsigned ComparisonPredicate = ~0U;
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
bool IsVCMP = PatchedName[0] == 'v';
unsigned CCIdx = IsVCMP ? 4 : 3;
unsigned CC = StringSwitch<unsigned>(
PatchedName.slice(CCIdx, PatchedName.size() - 2))
.Case("eq", 0x00)
.Case("eq_oq", 0x00)
.Case("lt", 0x01)
.Case("lt_os", 0x01)
.Case("le", 0x02)
.Case("le_os", 0x02)
.Case("unord", 0x03)
.Case("unord_q", 0x03)
.Case("neq", 0x04)
.Case("neq_uq", 0x04)
.Case("nlt", 0x05)
.Case("nlt_us", 0x05)
.Case("nle", 0x06)
.Case("nle_us", 0x06)
.Case("ord", 0x07)
.Case("ord_q", 0x07)
/* AVX only from here */
.Case("eq_uq", 0x08)
.Case("nge", 0x09)
.Case("nge_us", 0x09)
.Case("ngt", 0x0A)
.Case("ngt_us", 0x0A)
.Case("false", 0x0B)
.Case("false_oq", 0x0B)
.Case("neq_oq", 0x0C)
.Case("ge", 0x0D)
.Case("ge_os", 0x0D)
.Case("gt", 0x0E)
.Case("gt_os", 0x0E)
.Case("true", 0x0F)
.Case("true_uq", 0x0F)
.Case("eq_os", 0x10)
.Case("lt_oq", 0x11)
.Case("le_oq", 0x12)
.Case("unord_s", 0x13)
.Case("neq_us", 0x14)
.Case("nlt_uq", 0x15)
.Case("nle_uq", 0x16)
.Case("ord_s", 0x17)
.Case("eq_us", 0x18)
.Case("nge_uq", 0x19)
.Case("ngt_uq", 0x1A)
.Case("false_os", 0x1B)
.Case("neq_os", 0x1C)
.Case("ge_oq", 0x1D)
.Case("gt_oq", 0x1E)
.Case("true_us", 0x1F)
.Default(~0U);
if (CC != ~0U && (IsVCMP || CC < 8)) {
if (PatchedName.endswith("ss"))
PatchedName = IsVCMP ? "vcmpss" : "cmpss";
else if (PatchedName.endswith("sd"))
PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
else if (PatchedName.endswith("ps"))
PatchedName = IsVCMP ? "vcmpps" : "cmpps";
else if (PatchedName.endswith("pd"))
PatchedName = IsVCMP ? "vcmppd" : "cmppd";
else
llvm_unreachable("Unexpected suffix!");
ComparisonPredicate = CC;
}
}
// FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcmp") &&
(PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned CC = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - SuffixSize))
.Case("eq", 0x0) // Only allowed on unsigned. Checked below.
.Case("lt", 0x1)
.Case("le", 0x2)
//.Case("false", 0x3) // Not a documented alias.
.Case("neq", 0x4)
.Case("nlt", 0x5)
.Case("nle", 0x6)
//.Case("true", 0x7) // Not a documented alias.
.Default(~0U);
if (CC != ~0U && (CC != 0 || SuffixSize == 2)) {
switch (PatchedName.back()) {
default: llvm_unreachable("Unexpected character!");
case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break;
case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break;
case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break;
case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break;
}
// Set up the immediate to push into the operands later.
ComparisonPredicate = CC;
}
}
// FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcom") &&
(PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned CC = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - SuffixSize))
.Case("lt", 0x0)
.Case("le", 0x1)
.Case("gt", 0x2)
.Case("ge", 0x3)
.Case("eq", 0x4)
.Case("neq", 0x5)
.Case("false", 0x6)
.Case("true", 0x7)
.Default(~0U);
if (CC != ~0U) {
switch (PatchedName.back()) {
default: llvm_unreachable("Unexpected character!");
case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break;
case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break;
case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break;
case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break;
}
// Set up the immediate to push into the operands later.
ComparisonPredicate = CC;
}
}
// Determine whether this is an instruction prefix.
// FIXME:
// Enhance prefixes integrity robustness. for example, following forms
// are currently tolerated:
// repz repnz <insn> ; GAS errors for the use of two similar prefixes
// lock addq %rax, %rbx ; Destination operand must be of memory type
// xacquire <insn> ; xacquire must be accompanied by 'lock'
bool IsPrefix =
StringSwitch<bool>(Name)
.Cases("cs", "ds", "es", "fs", "gs", "ss", true)
.Cases("rex64", "data32", "data16", "addr32", "addr16", true)
.Cases("xacquire", "xrelease", true)
.Cases("acquire", "release", isParsingIntelSyntax())
.Default(false);
auto isLockRepeatNtPrefix = [](StringRef N) {
return StringSwitch<bool>(N)
.Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true)
.Default(false);
};
bool CurlyAsEndOfStatement = false;
unsigned Flags = X86::IP_NO_PREFIX;
while (isLockRepeatNtPrefix(Name.lower())) {
unsigned Prefix =
StringSwitch<unsigned>(Name)
.Cases("lock", "lock", X86::IP_HAS_LOCK)
.Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT)
.Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE)
.Cases("notrack", "notrack", X86::IP_HAS_NOTRACK)
.Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible)
Flags |= Prefix;
if (getLexer().is(AsmToken::EndOfStatement)) {
// We don't have real instr with the given prefix
// let's use the prefix as the instr.
// TODO: there could be several prefixes one after another
Flags = X86::IP_NO_PREFIX;
break;
}
// FIXME: The mnemonic won't match correctly if its not in lower case.
Name = Parser.getTok().getString();
Parser.Lex(); // eat the prefix
// Hack: we could have something like "rep # some comment" or
// "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl"
while (Name.startswith(";") || Name.startswith("\n") ||
Name.startswith("#") || Name.startswith("\t") ||
Name.startswith("/")) {
// FIXME: The mnemonic won't match correctly if its not in lower case.
Name = Parser.getTok().getString();
Parser.Lex(); // go to next prefix or instr
}
}
if (Flags)
PatchedName = Name;
// Hacks to handle 'data16' and 'data32'
if (PatchedName == "data16" && is16BitMode()) {
return Error(NameLoc, "redundant data16 prefix");
}
if (PatchedName == "data32") {
if (is32BitMode())
return Error(NameLoc, "redundant data32 prefix");
if (is64BitMode())
return Error(NameLoc, "'data32' is not supported in 64-bit mode");
// Hack to 'data16' for the table lookup.
PatchedName = "data16";
if (getLexer().isNot(AsmToken::EndOfStatement)) {
StringRef Next = Parser.getTok().getString();
getLexer().Lex();
// data32 effectively changes the instruction suffix.
// TODO Generalize.
if (Next == "callw")
Next = "calll";
if (Next == "ljmpw")
Next = "ljmpl";
Name = Next;
PatchedName = Name;
ForcedDataPrefix = X86::Mode32Bit;
IsPrefix = false;
}
}
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
// Push the immediate if we extracted one from the mnemonic.
if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) {
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
}
// This does the actual operand parsing. Don't parse any more if we have a
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
// just want to parse the "lock" as the first instruction and the "incl" as
// the next one.
if (getLexer().isNot(AsmToken::EndOfStatement) && !IsPrefix) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star))
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
// Read the operands.
while(1) {
if (ParseOperand(Operands))
return true;
if (HandleAVX512Operand(Operands))
return true;
// check for comma and eat it
if (getLexer().is(AsmToken::Comma))
Parser.Lex();
else
break;
}
// In MS inline asm curly braces mark the beginning/end of a block,
// therefore they should be interepreted as end of statement
CurlyAsEndOfStatement =
isParsingIntelSyntax() && isParsingMSInlineAsm() &&
(getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
return TokError("unexpected token in argument list");
}
// Push the immediate if we extracted one from the mnemonic.
if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) {
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
}
// Consume the EndOfStatement or the prefix separator Slash
if (getLexer().is(AsmToken::EndOfStatement) ||
(IsPrefix && getLexer().is(AsmToken::Slash)))
Parser.Lex();
else if (CurlyAsEndOfStatement)
// Add an actual EndOfStatement before the curly brace
Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
getLexer().getTok().getLoc(), 0);
// This is for gas compatibility and cannot be done in td.
// Adding "p" for some floating point with no argument.
// For example: fsub --> fsubp
bool IsFp =
Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
if (IsFp && Operands.size() == 1) {
const char *Repl = StringSwitch<const char *>(Name)
.Case("fsub", "fsubp")
.Case("fdiv", "fdivp")
.Case("fsubr", "fsubrp")
.Case("fdivr", "fdivrp");
static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
}
if ((Name == "mov" || Name == "movw" || Name == "movl") &&
(Operands.size() == 3)) {
X86Operand &Op1 = (X86Operand &)*Operands[1];
X86Operand &Op2 = (X86Operand &)*Operands[2];
SMLoc Loc = Op1.getEndLoc();
// Moving a 32 or 16 bit value into a segment register has the same
// behavior. Modify such instructions to always take shorter form.
if (Op1.isReg() && Op2.isReg() &&
X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
Op2.getReg()) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
// Change instruction name to match new instruction.
if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
Name = is16BitMode() ? "movw" : "movl";
Operands[0] = X86Operand::CreateToken(Name, NameLoc);
}
// Select the correct equivalent 16-/32-bit source register.
unsigned Reg =
getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
}
}
// This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
// documented form in various unofficial manuals, so a lot of code uses it.
if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands.back();
if (Op.isDXReg())
Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
Op.getEndLoc());
}
// Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
if (Op.isDXReg())
Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
Op.getEndLoc());
}
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
bool HadVerifyError = false;
// Append default arguments to "ins[bwld]"
if (Name.startswith("ins") &&
(Operands.size() == 1 || Operands.size() == 3) &&
(Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
Name == "ins")) {
AddDefaultSrcDestOperands(TmpOperands,
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Append default arguments to "outs[bwld]"
if (Name.startswith("outs") &&
(Operands.size() == 1 || Operands.size() == 3) &&
(Name == "outsb" || Name == "outsw" || Name == "outsl" ||
Name == "outsd" || Name == "outs")) {
AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
// values of $SIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("lods") &&
(Operands.size() == 1 || Operands.size() == 2) &&
(Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("stos") &&
(Operands.size() == 1 || Operands.size() == 2) &&
(Name == "stos" || Name == "stosb" || Name == "stosw" ||
Name == "stosl" || Name == "stosd" || Name == "stosq")) {
TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("scas") &&
(Operands.size() == 1 || Operands.size() == 2) &&
(Name == "scas" || Name == "scasb" || Name == "scasw" ||
Name == "scasl" || Name == "scasd" || Name == "scasq")) {
TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Add default SI and DI operands to "cmps[bwlq]".
if (Name.startswith("cmps") &&
(Operands.size() == 1 || Operands.size() == 3) &&
(Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
DefaultMemSIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Add default SI and DI operands to "movs[bwlq]".
if (((Name.startswith("movs") &&
(Name == "movs" || Name == "movsb" || Name == "movsw" ||
Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
(Name.startswith("smov") &&
(Name == "smov" || Name == "smovb" || Name == "smovw" ||
Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
(Operands.size() == 1 || Operands.size() == 3)) {
if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
DefaultMemDIOperand(NameLoc));
HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
}
// Check if we encountered an error for one the string insturctions
if (HadVerifyError) {
return HadVerifyError;
}
// Transforms "xlat mem8" into "xlatb"
if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isMem8()) {
Warning(Op1.getStartLoc(), "memory operand is only for determining the "
"size, (R|E)BX will be used for the location");
Operands.pop_back();
static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
}
}
if (Flags)
Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc));
return false;
}
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
switch (Inst.getOpcode()) {
default: return false;
case X86::JMP_1:
// {disp32} forces a larger displacement as if the instruction was relaxed.
// NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}.
// This matches GNU assembler.
if (ForcedDispEncoding == DispEncoding_Disp32) {
Inst.setOpcode(is16BitMode() ? X86::JMP_2 : X86::JMP_4);
return true;
}
return false;
case X86::JCC_1:
// {disp32} forces a larger displacement as if the instruction was relaxed.
// NOTE: 16-bit mode uses 16-bit displacement even though it says {disp32}.
// This matches GNU assembler.
if (ForcedDispEncoding == DispEncoding_Disp32) {
Inst.setOpcode(is16BitMode() ? X86::JCC_2 : X86::JCC_4);
return true;
}
return false;
case X86::VMOVZPQILo2PQIrr:
case X86::VMOVAPDrr:
case X86::VMOVAPDYrr:
case X86::VMOVAPSrr:
case X86::VMOVAPSYrr:
case X86::VMOVDQArr:
case X86::VMOVDQAYrr:
case X86::VMOVDQUrr:
case X86::VMOVDQUYrr:
case X86::VMOVUPDrr:
case X86::VMOVUPDYrr:
case X86::VMOVUPSrr:
case X86::VMOVUPSYrr: {
// We can get a smaller encoding by using VEX.R instead of VEX.B if one of
// the registers is extended, but other isn't.
if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8)
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
case X86::VMOVSDrr:
case X86::VMOVSSrr: {
// We can get a smaller encoding by using VEX.R instead of VEX.B if one of
// the registers is extended, but other isn't.
if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8)
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
case X86::RCR8ri: case X86::RCR16ri: case X86::RCR32ri: case X86::RCR64ri:
case X86::RCL8ri: case X86::RCL16ri: case X86::RCL32ri: case X86::RCL64ri:
case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri:
case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri:
case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri:
case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri:
case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri: {
// Optimize s{hr,ar,hl} $1, <op> to "shift <op>". Similar for rotate.
// FIXME: It would be great if we could just do this with an InstAlias.
if (!Inst.getOperand(2).isImm() || Inst.getOperand(2).getImm() != 1)
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::RCR8ri: NewOpc = X86::RCR8r1; break;
case X86::RCR16ri: NewOpc = X86::RCR16r1; break;
case X86::RCR32ri: NewOpc = X86::RCR32r1; break;
case X86::RCR64ri: NewOpc = X86::RCR64r1; break;
case X86::RCL8ri: NewOpc = X86::RCL8r1; break;
case X86::RCL16ri: NewOpc = X86::RCL16r1; break;
case X86::RCL32ri: NewOpc = X86::RCL32r1; break;
case X86::RCL64ri: NewOpc = X86::RCL64r1; break;
case X86::ROR8ri: NewOpc = X86::ROR8r1; break;
case X86::ROR16ri: NewOpc = X86::ROR16r1; break;
case X86::ROR32ri: NewOpc = X86::ROR32r1; break;
case X86::ROR64ri: NewOpc = X86::ROR64r1; break;
case X86::ROL8ri: NewOpc = X86::ROL8r1; break;
case X86::ROL16ri: NewOpc = X86::ROL16r1; break;
case X86::ROL32ri: NewOpc = X86::ROL32r1; break;
case X86::ROL64ri: NewOpc = X86::ROL64r1; break;
case X86::SAR8ri: NewOpc = X86::SAR8r1; break;
case X86::SAR16ri: NewOpc = X86::SAR16r1; break;
case X86::SAR32ri: NewOpc = X86::SAR32r1; break;
case X86::SAR64ri: NewOpc = X86::SAR64r1; break;
case X86::SHR8ri: NewOpc = X86::SHR8r1; break;
case X86::SHR16ri: NewOpc = X86::SHR16r1; break;
case X86::SHR32ri: NewOpc = X86::SHR32r1; break;
case X86::SHR64ri: NewOpc = X86::SHR64r1; break;
case X86::SHL8ri: NewOpc = X86::SHL8r1; break;
case X86::SHL16ri: NewOpc = X86::SHL16r1; break;
case X86::SHL32ri: NewOpc = X86::SHL32r1; break;
case X86::SHL64ri: NewOpc = X86::SHL64r1; break;
}
MCInst TmpInst;
TmpInst.setOpcode(NewOpc);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
Inst = TmpInst;
return true;
}
case X86::RCR8mi: case X86::RCR16mi: case X86::RCR32mi: case X86::RCR64mi:
case X86::RCL8mi: case X86::RCL16mi: case X86::RCL32mi: case X86::RCL64mi:
case X86::ROR8mi: case X86::ROR16mi: case X86::ROR32mi: case X86::ROR64mi:
case X86::ROL8mi: case X86::ROL16mi: case X86::ROL32mi: case X86::ROL64mi:
case X86::SAR8mi: case X86::SAR16mi: case X86::SAR32mi: case X86::SAR64mi:
case X86::SHR8mi: case X86::SHR16mi: case X86::SHR32mi: case X86::SHR64mi:
case X86::SHL8mi: case X86::SHL16mi: case X86::SHL32mi: case X86::SHL64mi: {
// Optimize s{hr,ar,hl} $1, <op> to "shift <op>". Similar for rotate.
// FIXME: It would be great if we could just do this with an InstAlias.
if (!Inst.getOperand(X86::AddrNumOperands).isImm() ||
Inst.getOperand(X86::AddrNumOperands).getImm() != 1)
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::RCR8mi: NewOpc = X86::RCR8m1; break;
case X86::RCR16mi: NewOpc = X86::RCR16m1; break;
case X86::RCR32mi: NewOpc = X86::RCR32m1; break;
case X86::RCR64mi: NewOpc = X86::RCR64m1; break;
case X86::RCL8mi: NewOpc = X86::RCL8m1; break;
case X86::RCL16mi: NewOpc = X86::RCL16m1; break;
case X86::RCL32mi: NewOpc = X86::RCL32m1; break;
case X86::RCL64mi: NewOpc = X86::RCL64m1; break;
case X86::ROR8mi: NewOpc = X86::ROR8m1; break;
case X86::ROR16mi: NewOpc = X86::ROR16m1; break;
case X86::ROR32mi: NewOpc = X86::ROR32m1; break;
case X86::ROR64mi: NewOpc = X86::ROR64m1; break;
case X86::ROL8mi: NewOpc = X86::ROL8m1; break;
case X86::ROL16mi: NewOpc = X86::ROL16m1; break;
case X86::ROL32mi: NewOpc = X86::ROL32m1; break;
case X86::ROL64mi: NewOpc = X86::ROL64m1; break;
case X86::SAR8mi: NewOpc = X86::SAR8m1; break;
case X86::SAR16mi: NewOpc = X86::SAR16m1; break;
case X86::SAR32mi: NewOpc = X86::SAR32m1; break;
case X86::SAR64mi: NewOpc = X86::SAR64m1; break;
case X86::SHR8mi: NewOpc = X86::SHR8m1; break;
case X86::SHR16mi: NewOpc = X86::SHR16m1; break;
case X86::SHR32mi: NewOpc = X86::SHR32m1; break;
case X86::SHR64mi: NewOpc = X86::SHR64m1; break;
case X86::SHL8mi: NewOpc = X86::SHL8m1; break;
case X86::SHL16mi: NewOpc = X86::SHL16m1; break;
case X86::SHL32mi: NewOpc = X86::SHL32m1; break;
case X86::SHL64mi: NewOpc = X86::SHL64m1; break;
}
MCInst TmpInst;
TmpInst.setOpcode(NewOpc);
for (int i = 0; i != X86::AddrNumOperands; ++i)
TmpInst.addOperand(Inst.getOperand(i));
Inst = TmpInst;
return true;
}
case X86::INT: {
// Transforms "int $3" into "int3" as a size optimization. We can't write an
// instalias with an immediate operand yet.
if (!Inst.getOperand(0).isImm() || Inst.getOperand(0).getImm() != 3)
return false;
MCInst TmpInst;
TmpInst.setOpcode(X86::INT3);
Inst = TmpInst;
return true;
}
}
}
bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
switch (Inst.getOpcode()) {
case X86::VGATHERDPDYrm:
case X86::VGATHERDPDrm:
case X86::VGATHERDPSYrm:
case X86::VGATHERDPSrm:
case X86::VGATHERQPDYrm:
case X86::VGATHERQPDrm:
case X86::VGATHERQPSYrm:
case X86::VGATHERQPSrm:
case X86::VPGATHERDDYrm:
case X86::VPGATHERDDrm:
case X86::VPGATHERDQYrm:
case X86::VPGATHERDQrm:
case X86::VPGATHERQDYrm:
case X86::VPGATHERQDrm:
case X86::VPGATHERQQYrm:
case X86::VPGATHERQQrm: {
unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg());
unsigned Index =
MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg());
if (Dest == Mask || Dest == Index || Mask == Index)
return Warning(Ops[0]->getStartLoc(), "mask, index, and destination "
"registers should be distinct");
break;
}
case X86::VGATHERDPDZ128rm:
case X86::VGATHERDPDZ256rm:
case X86::VGATHERDPDZrm:
case X86::VGATHERDPSZ128rm:
case X86::VGATHERDPSZ256rm:
case X86::VGATHERDPSZrm:
case X86::VGATHERQPDZ128rm:
case X86::VGATHERQPDZ256rm:
case X86::VGATHERQPDZrm:
case X86::VGATHERQPSZ128rm:
case X86::VGATHERQPSZ256rm:
case X86::VGATHERQPSZrm:
case X86::VPGATHERDDZ128rm:
case X86::VPGATHERDDZ256rm:
case X86::VPGATHERDDZrm:
case X86::VPGATHERDQZ128rm:
case X86::VPGATHERDQZ256rm:
case X86::VPGATHERDQZrm:
case X86::VPGATHERQDZ128rm:
case X86::VPGATHERQDZ256rm:
case X86::VPGATHERQDZrm:
case X86::VPGATHERQQZ128rm:
case X86::VPGATHERQQZ256rm:
case X86::VPGATHERQQZrm: {
unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
unsigned Index =
MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg());
if (Dest == Index)
return Warning(Ops[0]->getStartLoc(), "index and destination registers "
"should be distinct");
break;
}
case X86::V4FMADDPSrm:
case X86::V4FMADDPSrmk:
case X86::V4FMADDPSrmkz:
case X86::V4FMADDSSrm:
case X86::V4FMADDSSrmk:
case X86::V4FMADDSSrmkz:
case X86::V4FNMADDPSrm:
case X86::V4FNMADDPSrmk:
case X86::V4FNMADDPSrmkz:
case X86::V4FNMADDSSrm:
case X86::V4FNMADDSSrmk:
case X86::V4FNMADDSSrmkz:
case X86::VP4DPWSSDSrm:
case X86::VP4DPWSSDSrmk:
case X86::VP4DPWSSDSrmkz:
case X86::VP4DPWSSDrm:
case X86::VP4DPWSSDrmk:
case X86::VP4DPWSSDrmkz: {
unsigned Src2 = Inst.getOperand(Inst.getNumOperands() -
X86::AddrNumOperands - 1).getReg();
unsigned Src2Enc = MRI->getEncodingValue(Src2);
if (Src2Enc % 4 != 0) {
StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2);
unsigned GroupStart = (Src2Enc / 4) * 4;
unsigned GroupEnd = GroupStart + 3;
return Warning(Ops[0]->getStartLoc(),
"source register '" + RegName + "' implicitly denotes '" +
RegName.take_front(3) + Twine(GroupStart) + "' to '" +
RegName.take_front(3) + Twine(GroupEnd) +
"' source group");
}
break;
}
}
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
// Check that we aren't mixing AH/BH/CH/DH with REX prefix. We only need to
// check this with the legacy encoding, VEX/EVEX/XOP don't use REX.
if ((MCID.TSFlags & X86II::EncodingMask) == 0) {
MCPhysReg HReg = X86::NoRegister;
bool UsesRex = MCID.TSFlags & X86II::REX_W;
unsigned NumOps = Inst.getNumOperands();
for (unsigned i = 0; i != NumOps; ++i) {
const MCOperand &MO = Inst.getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
HReg = Reg;
if (X86II::isX86_64NonExtLowByteReg(Reg) ||
X86II::isX86_64ExtendedReg(Reg))
UsesRex = true;
}
if (UsesRex && HReg != X86::NoRegister) {
StringRef RegName = X86IntelInstPrinter::getRegisterName(HReg);
return Error(Ops[0]->getStartLoc(),
"can't encode '" + RegName + "' in an instruction requiring "
"REX prefix");
}
}
return false;
}
static const char *getSubtargetFeatureName(uint64_t Val);
void X86AsmParser::emitWarningForSpecialLVIInstruction(SMLoc Loc) {
Warning(Loc, "Instruction may be vulnerable to LVI and "
"requires manual mitigation");
Note(SMLoc(), "See https://software.intel.com/"
"security-software-guidance/insights/"
"deep-dive-load-value-injection#specialinstructions"
" for more information");
}
/// RET instructions and also instructions that indirect calls/jumps from memory
/// combine a load and a branch within a single instruction. To mitigate these
/// instructions against LVI, they must be decomposed into separate load and
/// branch instructions, with an LFENCE in between. For more details, see:
/// - X86LoadValueInjectionRetHardening.cpp
/// - X86LoadValueInjectionIndirectThunks.cpp
/// - https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
///
/// Returns `true` if a mitigation was applied or warning was emitted.
void X86AsmParser::applyLVICFIMitigation(MCInst &Inst, MCStreamer &Out) {
// Information on control-flow instructions that require manual mitigation can
// be found here:
// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
switch (Inst.getOpcode()) {
case X86::RETW:
case X86::RETL:
case X86::RETQ:
case X86::RETIL:
case X86::RETIQ:
case X86::RETIW: {
MCInst ShlInst, FenceInst;
bool Parse32 = is32BitMode() || Code16GCC;
unsigned Basereg =
is64BitMode() ? X86::RSP : (Parse32 ? X86::ESP : X86::SP);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
auto ShlMemOp = X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/Basereg, /*IndexReg=*/0,
/*Scale=*/1, SMLoc{}, SMLoc{}, 0);
ShlInst.setOpcode(X86::SHL64mi);
ShlMemOp->addMemOperands(ShlInst, 5);
ShlInst.addOperand(MCOperand::createImm(0));
FenceInst.setOpcode(X86::LFENCE);
Out.emitInstruction(ShlInst, getSTI());
Out.emitInstruction(FenceInst, getSTI());
return;
}
case X86::JMP16m:
case X86::JMP32m:
case X86::JMP64m:
case X86::CALL16m:
case X86::CALL32m:
case X86::CALL64m:
emitWarningForSpecialLVIInstruction(Inst.getLoc());
return;
}
}
/// To mitigate LVI, every instruction that performs a load can be followed by
/// an LFENCE instruction to squash any potential mis-speculation. There are
/// some instructions that require additional considerations, and may requre
/// manual mitigation. For more details, see:
/// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
///
/// Returns `true` if a mitigation was applied or warning was emitted.
void X86AsmParser::applyLVILoadHardeningMitigation(MCInst &Inst,
MCStreamer &Out) {
auto Opcode = Inst.getOpcode();
auto Flags = Inst.getFlags();
if ((Flags & X86::IP_HAS_REPEAT) || (Flags & X86::IP_HAS_REPEAT_NE)) {
// Information on REP string instructions that require manual mitigation can
// be found here:
// https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
switch (Opcode) {
case X86::CMPSB:
case X86::CMPSW:
case X86::CMPSL:
case X86::CMPSQ:
case X86::SCASB:
case X86::SCASW:
case X86::SCASL:
case X86::SCASQ:
emitWarningForSpecialLVIInstruction(Inst.getLoc());
return;
}
} else if (Opcode == X86::REP_PREFIX || Opcode == X86::REPNE_PREFIX) {
// If a REP instruction is found on its own line, it may or may not be
// followed by a vulnerable instruction. Emit a warning just in case.
emitWarningForSpecialLVIInstruction(Inst.getLoc());
return;
}
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
// Can't mitigate after terminators or calls. A control flow change may have
// already occurred.
if (MCID.isTerminator() || MCID.isCall())
return;
// LFENCE has the mayLoad property, don't double fence.
if (MCID.mayLoad() && Inst.getOpcode() != X86::LFENCE) {
MCInst FenceInst;
FenceInst.setOpcode(X86::LFENCE);
Out.emitInstruction(FenceInst, getSTI());
}
}
void X86AsmParser::emitInstruction(MCInst &Inst, OperandVector &Operands,
MCStreamer &Out) {
if (LVIInlineAsmHardening &&
getSTI().getFeatureBits()[X86::FeatureLVIControlFlowIntegrity])
applyLVICFIMitigation(Inst, Out);
Out.emitInstruction(Inst, getSTI());
if (LVIInlineAsmHardening &&
getSTI().getFeatureBits()[X86::FeatureLVILoadHardening])
applyLVILoadHardeningMitigation(Inst, Out);
}
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
if (isParsingIntelSyntax())
return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
}
void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
OperandVector &Operands, MCStreamer &Out,
bool MatchingInlineAsm) {
// FIXME: This should be replaced with a real .td file alias mechanism.
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
// call.
const char *Repl = StringSwitch<const char *>(Op.getToken())
.Case("finit", "fninit")
.Case("fsave", "fnsave")
.Case("fstcw", "fnstcw")
.Case("fstcww", "fnstcw")
.Case("fstenv", "fnstenv")
.Case("fstsw", "fnstsw")
.Case("fstsww", "fnstsw")
.Case("fclex", "fnclex")
.Default(nullptr);
if (Repl) {
MCInst Inst;
Inst.setOpcode(X86::WAIT);
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
}
}
bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc,
const FeatureBitset &MissingFeatures,
bool MatchingInlineAsm) {
assert(MissingFeatures.any() && "Unknown missing feature!");
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "instruction requires:";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i])
OS << ' ' << getSubtargetFeatureName(i);
}
return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
}
static unsigned getPrefixes(OperandVector &Operands) {
unsigned Result = 0;
X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back());
if (Prefix.isPrefix()) {
Result = Prefix.getPrefix();
Operands.pop_back();
}
return Result;
}
unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) {
unsigned Opc = Inst.getOpcode();
const MCInstrDesc &MCID = MII.get(Opc);
if (ForcedVEXEncoding == VEXEncoding_EVEX &&
(MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX)
return Match_Unsupported;
if ((ForcedVEXEncoding == VEXEncoding_VEX ||
ForcedVEXEncoding == VEXEncoding_VEX2 ||
ForcedVEXEncoding == VEXEncoding_VEX3) &&
(MCID.TSFlags & X86II::EncodingMask) != X86II::VEX)
return Match_Unsupported;
// These instructions are only available with {vex}, {vex2} or {vex3} prefix
if (MCID.TSFlags & X86II::ExplicitVEXPrefix &&
(ForcedVEXEncoding != VEXEncoding_VEX &&
ForcedVEXEncoding != VEXEncoding_VEX2 &&
ForcedVEXEncoding != VEXEncoding_VEX3))
return Match_Unsupported;
// These instructions match ambiguously with their VEX encoded counterparts
// and appear first in the matching table. Reject them unless we're forcing
// EVEX encoding.
// FIXME: We really need a way to break the ambiguity.
switch (Opc) {
case X86::VCVTSD2SIZrm_Int:
case X86::VCVTSD2SI64Zrm_Int:
case X86::VCVTSS2SIZrm_Int:
case X86::VCVTSS2SI64Zrm_Int:
case X86::VCVTTSD2SIZrm: case X86::VCVTTSD2SIZrm_Int:
case X86::VCVTTSD2SI64Zrm: case X86::VCVTTSD2SI64Zrm_Int:
case X86::VCVTTSS2SIZrm: case X86::VCVTTSS2SIZrm_Int:
case X86::VCVTTSS2SI64Zrm: case X86::VCVTTSS2SI64Zrm_Int:
if (ForcedVEXEncoding != VEXEncoding_EVEX)
return Match_Unsupported;
break;
}
return Match_Success;
}
bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
SMRange EmptyRange = None;
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands,
Out, MatchingInlineAsm);
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
unsigned Prefixes = getPrefixes(Operands);
MCInst Inst;
// If VEX/EVEX encoding is forced, we need to pass the USE_* flag to the
// encoder and printer.
if (ForcedVEXEncoding == VEXEncoding_VEX)
Prefixes |= X86::IP_USE_VEX;
else if (ForcedVEXEncoding == VEXEncoding_VEX2)
Prefixes |= X86::IP_USE_VEX2;
else if (ForcedVEXEncoding == VEXEncoding_VEX3)
Prefixes |= X86::IP_USE_VEX3;
else if (ForcedVEXEncoding == VEXEncoding_EVEX)
Prefixes |= X86::IP_USE_EVEX;
// Set encoded flags for {disp8} and {disp32}.
if (ForcedDispEncoding == DispEncoding_Disp8)
Prefixes |= X86::IP_USE_DISP8;
else if (ForcedDispEncoding == DispEncoding_Disp32)
Prefixes |= X86::IP_USE_DISP32;
if (Prefixes)
Inst.setFlags(Prefixes);
// In 16-bit mode, if data32 is specified, temporarily switch to 32-bit mode
// when matching the instruction.
if (ForcedDataPrefix == X86::Mode32Bit)
SwitchMode(X86::Mode32Bit);
// First, try a direct match.
FeatureBitset MissingFeatures;
unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo,
MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax());
if (ForcedDataPrefix == X86::Mode32Bit) {
SwitchMode(X86::Mode16Bit);
ForcedDataPrefix = 0;
}
switch (OriginalError) {
default: llvm_unreachable("Unexpected match result!");
case Match_Success:
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
case Match_InvalidImmUnsignedi4: {
SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
EmptyRange, MatchingInlineAsm);
}
case Match_MissingFeature:
return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm);
case Match_InvalidOperand:
case Match_MnemonicFail:
case Match_Unsupported:
break;
}
if (Op.getToken().empty()) {
Error(IDLoc, "instruction must have size higher than 0", EmptyRange,
MatchingInlineAsm);
return true;
}
// FIXME: Ideally, we would only attempt suffix matches for things which are
// valid prefixes, and we could just infer the right unambiguous
// type. However, that requires substantially more matcher support than the
// following hack.
// Change the operand to point to a temporary token.
StringRef Base = Op.getToken();
SmallString<16> Tmp;
Tmp += Base;
Tmp += ' ';
Op.setTokenValue(Tmp);
// If this instruction starts with an 'f', then it is a floating point stack
// instruction. These come in up to three forms for 32-bit, 64-bit, and
// 80-bit floating point, which use the suffixes s,l,t respectively.
//
// Otherwise, we assume that this may be an integer instruction, which comes
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
// MemSize corresponding to Suffixes. { 8, 16, 32, 64 } { 32, 64, 80, 0 }
const char *MemSize = Base[0] != 'f' ? "\x08\x10\x20\x40" : "\x20\x40\x50\0";
// Check for the various suffix matches.
uint64_t ErrorInfoIgnore;
FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings.
unsigned Match[4];
// Some instruction like VPMULDQ is NOT the variant of VPMULD but a new one.
// So we should make sure the suffix matcher only works for memory variant
// that has the same size with the suffix.
// FIXME: This flag is a workaround for legacy instructions that didn't
// declare non suffix variant assembly.
bool HasVectorReg = false;
X86Operand *MemOp = nullptr;
for (const auto &Op : Operands) {
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
if (X86Op->isVectorReg())
HasVectorReg = true;
else if (X86Op->isMem()) {
MemOp = X86Op;
assert(MemOp->Mem.Size == 0 && "Memory size always 0 under ATT syntax");
// Have we found an unqualified memory operand,
// break. IA allows only one memory operand.
break;
}
}
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
Tmp.back() = Suffixes[I];
if (MemOp && HasVectorReg)
MemOp->Mem.Size = MemSize[I];
Match[I] = Match_MnemonicFail;
if (MemOp || !HasVectorReg) {
Match[I] =
MatchInstruction(Operands, Inst, ErrorInfoIgnore, MissingFeatures,
MatchingInlineAsm, isParsingIntelSyntax());
// If this returned as a missing feature failure, remember that.
if (Match[I] == Match_MissingFeature)
ErrorInfoMissingFeatures = MissingFeatures;
}
}
// Restore the old token.
Op.setTokenValue(Base);
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
if (NumSuccessfulMatches == 1) {
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
}
// Otherwise, the match failed, try to produce a decent error message.
// If we had multiple suffix matches, then identify this as an ambiguous
// match.
if (NumSuccessfulMatches > 1) {
char MatchChars[4];
unsigned NumMatches = 0;
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
if (Match[I] == Match_Success)
MatchChars[NumMatches++] = Suffixes[I];
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "ambiguous instructions require an explicit suffix (could be ";
for (unsigned i = 0; i != NumMatches; ++i) {
if (i != 0)
OS << ", ";
if (i + 1 == NumMatches)
OS << "or ";
OS << "'" << Base << MatchChars[i] << "'";
}
OS << ")";
Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
return true;
}
// Okay, we know that none of the variants matched successfully.
// If all of the instructions reported an invalid mnemonic, then the original
// mnemonic was invalid.
if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
if (OriginalError == Match_MnemonicFail)
return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
Op.getLocRange(), MatchingInlineAsm);
if (OriginalError == Match_Unsupported)
return Error(IDLoc, "unsupported instruction", EmptyRange,
MatchingInlineAsm);
assert(OriginalError == Match_InvalidOperand && "Unexpected error");
// Recover location info for the operand if we know which was the problem.
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction", EmptyRange,
MatchingInlineAsm);
X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
if (Operand.getStartLoc().isValid()) {
SMRange OperandRange = Operand.getLocRange();
return Error(Operand.getStartLoc(), "invalid operand for instruction",
OperandRange, MatchingInlineAsm);
}
}
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
MatchingInlineAsm);
}
// If one instruction matched as unsupported, report this as unsupported.
if (std::count(std::begin(Match), std::end(Match),
Match_Unsupported) == 1) {
return Error(IDLoc, "unsupported instruction", EmptyRange,
MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = Match_MissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
EmptyRange, MatchingInlineAsm);
return true;
}
bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
StringRef Mnemonic = (static_cast<X86Operand &>(*Operands[0])).getToken();
SMRange EmptyRange = None;
StringRef Base = (static_cast<X86Operand &>(*Operands[0])).getToken();
unsigned Prefixes = getPrefixes(Operands);
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, Out, MatchingInlineAsm);
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
MCInst Inst;
// If VEX/EVEX encoding is forced, we need to pass the USE_* flag to the
// encoder and printer.
if (ForcedVEXEncoding == VEXEncoding_VEX)
Prefixes |= X86::IP_USE_VEX;
else if (ForcedVEXEncoding == VEXEncoding_VEX2)
Prefixes |= X86::IP_USE_VEX2;
else if (ForcedVEXEncoding == VEXEncoding_VEX3)
Prefixes |= X86::IP_USE_VEX3;
else if (ForcedVEXEncoding == VEXEncoding_EVEX)
Prefixes |= X86::IP_USE_EVEX;
// Set encoded flags for {disp8} and {disp32}.
if (ForcedDispEncoding == DispEncoding_Disp8)
Prefixes |= X86::IP_USE_DISP8;
else if (ForcedDispEncoding == DispEncoding_Disp32)
Prefixes |= X86::IP_USE_DISP32;
if (Prefixes)
Inst.setFlags(Prefixes);
// Find one unsized memory operand, if present.
X86Operand *UnsizedMemOp = nullptr;
for (const auto &Op : Operands) {
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
if (X86Op->isMemUnsized()) {
UnsizedMemOp = X86Op;
// Have we found an unqualified memory operand,
// break. IA allows only one memory operand.
break;
}
}
// Allow some instructions to have implicitly pointer-sized operands. This is
// compatible with gas.
if (UnsizedMemOp) {
static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
for (const char *Instr : PtrSizedInstrs) {
if (Mnemonic == Instr) {
UnsizedMemOp->Mem.Size = getPointerWidth();
break;
}
}
}
SmallVector<unsigned, 8> Match;
FeatureBitset ErrorInfoMissingFeatures;
FeatureBitset MissingFeatures;
// If unsized push has immediate operand we should default the default pointer
// size for the size.
if (Mnemonic == "push" && Operands.size() == 2) {
auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
if (X86Op->isImm()) {
// If it's not a constant fall through and let remainder take care of it.
const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
unsigned Size = getPointerWidth();
if (CE &&
(isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
SmallString<16> Tmp;
Tmp += Base;
Tmp += (is64BitMode())
? "q"
: (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
Op.setTokenValue(Tmp);
// Do match in ATT mode to allow explicit suffix usage.
Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
MissingFeatures, MatchingInlineAsm,
false /*isParsingIntelSyntax()*/));
Op.setTokenValue(Base);
}
}
}
// If an unsized memory operand is present, try to match with each memory
// operand size. In Intel assembly, the size is not part of the instruction
// mnemonic.
if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
for (unsigned Size : MopSizes) {
UnsizedMemOp->Mem.Size = Size;
uint64_t ErrorInfoIgnore;
unsigned LastOpcode = Inst.getOpcode();
unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax());
if (Match.empty() || LastOpcode != Inst.getOpcode())
Match.push_back(M);
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeatures = MissingFeatures;
}
// Restore the size of the unsized memory operand if we modified it.
UnsizedMemOp->Mem.Size = 0;
}
// If we haven't matched anything yet, this is not a basic integer or FPU
// operation. There shouldn't be any ambiguity in our mnemonic table, so try
// matching with the unsized operand.
if (Match.empty()) {
Match.push_back(MatchInstruction(
Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax()));
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeatures = MissingFeatures;
}
// Restore the size of the unsized memory operand if we modified it.
if (UnsizedMemOp)
UnsizedMemOp->Mem.Size = 0;
// If it's a bad mnemonic, all results will be the same.
if (Match.back() == Match_MnemonicFail) {
return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
Op.getLocRange(), MatchingInlineAsm);
}
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
// If matching was ambiguous and we had size information from the frontend,
// try again with that. This handles cases like "movxz eax, m8/m16".
if (UnsizedMemOp && NumSuccessfulMatches > 1 &&
UnsizedMemOp->getMemFrontendSize()) {
UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize();
unsigned M = MatchInstruction(
Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
isParsingIntelSyntax());
if (M == Match_Success)
NumSuccessfulMatches = 1;
// Add a rewrite that encodes the size information we used from the
// frontend.
InstInfo->AsmRewrites->emplace_back(
AOK_SizeDirective, UnsizedMemOp->getStartLoc(),
/*Len=*/0, UnsizedMemOp->getMemFrontendSize());
}
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
if (NumSuccessfulMatches == 1) {
if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the individual
// transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
emitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
} else if (NumSuccessfulMatches > 1) {
assert(UnsizedMemOp &&
"multiple matches only possible with unsized memory operands");
return Error(UnsizedMemOp->getStartLoc(),
"ambiguous operand size for instruction '" + Mnemonic + "\'",
UnsizedMemOp->getLocRange());
}
// If one instruction matched as unsupported, report this as unsupported.
if (std::count(std::begin(Match), std::end(Match),
Match_Unsupported) == 1) {
return Error(IDLoc, "unsupported instruction", EmptyRange,
MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = Match_MissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRange,
MatchingInlineAsm);
}
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidImmUnsignedi4) == 1) {
SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
EmptyRange, MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
MatchingInlineAsm);
}
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
}
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal.startswith(".arch"))
return parseDirectiveArch();
if (IDVal.startswith(".code"))
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
else if (IDVal.startswith(".att_syntax")) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "prefix")
Parser.Lex();
else if (Parser.getTok().getString() == "noprefix")
return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
"supported: registers must have a "
"'%' prefix in .att_syntax");
}
getParser().setAssemblerDialect(0);
return false;
} else if (IDVal.startswith(".intel_syntax")) {
getParser().setAssemblerDialect(1);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "noprefix")
Parser.Lex();
else if (Parser.getTok().getString() == "prefix")
return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
"supported: registers must not have "
"a '%' prefix in .intel_syntax");
}
return false;
} else if (IDVal == ".nops")
return parseDirectiveNops(DirectiveID.getLoc());
else if (IDVal == ".even")
return parseDirectiveEven(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_proc")
return parseDirectiveFPOProc(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_setframe")
return parseDirectiveFPOSetFrame(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_pushreg")
return parseDirectiveFPOPushReg(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_stackalloc")
return parseDirectiveFPOStackAlloc(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_stackalign")
return parseDirectiveFPOStackAlign(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_endprologue")
return parseDirectiveFPOEndPrologue(DirectiveID.getLoc());
else if (IDVal == ".cv_fpo_endproc")
return parseDirectiveFPOEndProc(DirectiveID.getLoc());
else if (IDVal == ".seh_pushreg" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".pushreg")))
return parseDirectiveSEHPushReg(DirectiveID.getLoc());
else if (IDVal == ".seh_setframe" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".setframe")))
return parseDirectiveSEHSetFrame(DirectiveID.getLoc());
else if (IDVal == ".seh_savereg" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".savereg")))
return parseDirectiveSEHSaveReg(DirectiveID.getLoc());
else if (IDVal == ".seh_savexmm" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".savexmm128")))
return parseDirectiveSEHSaveXMM(DirectiveID.getLoc());
else if (IDVal == ".seh_pushframe" ||
(Parser.isParsingMasm() && IDVal.equals_lower(".pushframe")))
return parseDirectiveSEHPushFrame(DirectiveID.getLoc());
return true;
}
bool X86AsmParser::parseDirectiveArch() {
// Ignore .arch for now.
getParser().parseStringToEndOfStatement();
return false;
}
/// parseDirectiveNops
/// ::= .nops size[, control]
bool X86AsmParser::parseDirectiveNops(SMLoc L) {
int64_t NumBytes = 0, Control = 0;
SMLoc NumBytesLoc, ControlLoc;
const MCSubtargetInfo STI = getSTI();
NumBytesLoc = getTok().getLoc();
if (getParser().checkForValidSection() ||
getParser().parseAbsoluteExpression(NumBytes))
return true;
if (parseOptionalToken(AsmToken::Comma)) {
ControlLoc = getTok().getLoc();
if (getParser().parseAbsoluteExpression(Control))
return true;
}
if (getParser().parseToken(AsmToken::EndOfStatement,
"unexpected token in '.nops' directive"))
return true;
if (NumBytes <= 0) {
Error(NumBytesLoc, "'.nops' directive with non-positive size");
return false;
}
if (Control < 0) {
Error(ControlLoc, "'.nops' directive with negative NOP size");
return false;
}
/// Emit nops
getParser().getStreamer().emitNops(NumBytes, Control, L);
return false;
}
/// parseDirectiveEven
/// ::= .even
bool X86AsmParser::parseDirectiveEven(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return false;
const MCSection *Section = getStreamer().getCurrentSectionOnly();
if (!Section) {
getStreamer().InitSections(false);
Section = getStreamer().getCurrentSectionOnly();
}
if (Section->UseCodeAlign())
getStreamer().emitCodeAlignment(2, 0);
else
getStreamer().emitValueToAlignment(2, 0, 1, 0);
return false;
}
/// ParseDirectiveCode
/// ::= .code16 | .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
MCAsmParser &Parser = getParser();
Code16GCC = false;
if (IDVal == ".code16") {
Parser.Lex();
if (!is16BitMode()) {
SwitchMode(X86::Mode16Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
}
} else if (IDVal == ".code16gcc") {
// .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
Parser.Lex();
Code16GCC = true;
if (!is16BitMode()) {
SwitchMode(X86::Mode16Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
}
} else if (IDVal == ".code32") {
Parser.Lex();
if (!is32BitMode()) {
SwitchMode(X86::Mode32Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
}
} else if (IDVal == ".code64") {
Parser.Lex();
if (!is64BitMode()) {
SwitchMode(X86::Mode64Bit);
getParser().getStreamer().emitAssemblerFlag(MCAF_Code64);
}
} else {
Error(L, "unknown directive " + IDVal);
return false;
}
return false;
}
// .cv_fpo_proc foo
bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) {
MCAsmParser &Parser = getParser();
StringRef ProcName;
int64_t ParamsSize;
if (Parser.parseIdentifier(ProcName))
return Parser.TokError("expected symbol name");
if (Parser.parseIntToken(ParamsSize, "expected parameter byte count"))
return true;
if (!isUIntN(32, ParamsSize))
return Parser.TokError("parameters size out of range");
if (Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_proc' directive");
MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L);
}
// .cv_fpo_setframe ebp
bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) {
MCAsmParser &Parser = getParser();
unsigned Reg;
SMLoc DummyLoc;
if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_setframe' directive");
return getTargetStreamer().emitFPOSetFrame(Reg, L);
}
// .cv_fpo_pushreg ebx
bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) {
MCAsmParser &Parser = getParser();
unsigned Reg;
SMLoc DummyLoc;
if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_pushreg' directive");
return getTargetStreamer().emitFPOPushReg(Reg, L);
}
// .cv_fpo_stackalloc 20
bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) {
MCAsmParser &Parser = getParser();
int64_t Offset;
if (Parser.parseIntToken(Offset, "expected offset") ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_stackalloc' directive");
return getTargetStreamer().emitFPOStackAlloc(Offset, L);
}
// .cv_fpo_stackalign 8
bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) {
MCAsmParser &Parser = getParser();
int64_t Offset;
if (Parser.parseIntToken(Offset, "expected offset") ||
Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_stackalign' directive");
return getTargetStreamer().emitFPOStackAlign(Offset, L);
}
// .cv_fpo_endprologue
bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_endprologue' directive");
return getTargetStreamer().emitFPOEndPrologue(L);
}
// .cv_fpo_endproc
bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.parseEOL("unexpected tokens"))
return addErrorSuffix(" in '.cv_fpo_endproc' directive");
return getTargetStreamer().emitFPOEndProc(L);
}
bool X86AsmParser::parseSEHRegisterNumber(unsigned RegClassID,
unsigned &RegNo) {
SMLoc startLoc = getLexer().getLoc();
const MCRegisterInfo *MRI = getContext().getRegisterInfo();
// Try parsing the argument as a register first.
if (getLexer().getTok().isNot(AsmToken::Integer)) {
SMLoc endLoc;
if (ParseRegister(RegNo, startLoc, endLoc))
return true;
if (!X86MCRegisterClasses[RegClassID].contains(RegNo)) {
return Error(startLoc,
"register is not supported for use with this directive");
}
} else {
// Otherwise, an integer number matching the encoding of the desired
// register may appear.
int64_t EncodedReg;
if (getParser().parseAbsoluteExpression(EncodedReg))
return true;
// The SEH register number is the same as the encoding register number. Map
// from the encoding back to the LLVM register number.
RegNo = 0;
for (MCPhysReg Reg : X86MCRegisterClasses[RegClassID]) {
if (MRI->getEncodingValue(Reg) == EncodedReg) {
RegNo = Reg;
break;
}
}
if (RegNo == 0) {
return Error(startLoc,
"incorrect register number for use with this directive");
}
}
return false;
}
bool X86AsmParser::parseDirectiveSEHPushReg(SMLoc Loc) {
unsigned Reg = 0;
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFIPushReg(Reg, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHSetFrame(SMLoc Loc) {
unsigned Reg = 0;
int64_t Off;
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::Comma))
return TokError("you must specify a stack pointer offset");
getParser().Lex();
if (getParser().parseAbsoluteExpression(Off))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFISetFrame(Reg, Off, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHSaveReg(SMLoc Loc) {
unsigned Reg = 0;
int64_t Off;
if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::Comma))
return TokError("you must specify an offset on the stack");
getParser().Lex();
if (getParser().parseAbsoluteExpression(Off))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFISaveReg(Reg, Off, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHSaveXMM(SMLoc Loc) {
unsigned Reg = 0;
int64_t Off;
if (parseSEHRegisterNumber(X86::VR128XRegClassID, Reg))
return true;
if (getLexer().isNot(AsmToken::Comma))
return TokError("you must specify an offset on the stack");
getParser().Lex();
if (getParser().parseAbsoluteExpression(Off))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFISaveXMM(Reg, Off, Loc);
return false;
}
bool X86AsmParser::parseDirectiveSEHPushFrame(SMLoc Loc) {
bool Code = false;
StringRef CodeID;
if (getLexer().is(AsmToken::At)) {
SMLoc startLoc = getLexer().getLoc();
getParser().Lex();
if (!getParser().parseIdentifier(CodeID)) {
if (CodeID != "code")
return Error(startLoc, "expected @code");
Code = true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in directive");
getParser().Lex();
getStreamer().EmitWinCFIPushFrame(Code, Loc);
return false;
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmParser() {
RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#define GET_SUBTARGET_FEATURE_NAME
#include "X86GenAsmMatcher.inc"