llvm-for-llvmta/lib/ExecutionEngine/JITLink/JITLink.cpp

351 lines
10 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===------------- JITLink.cpp - Core Run-time JIT linker APIs ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JITLink/JITLink.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/ExecutionEngine/JITLink/ELF.h"
#include "llvm/ExecutionEngine/JITLink/MachO.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "jitlink"
namespace {
enum JITLinkErrorCode { GenericJITLinkError = 1 };
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class JITLinkerErrorCategory : public std::error_category {
public:
const char *name() const noexcept override { return "runtimedyld"; }
std::string message(int Condition) const override {
switch (static_cast<JITLinkErrorCode>(Condition)) {
case GenericJITLinkError:
return "Generic JITLink error";
}
llvm_unreachable("Unrecognized JITLinkErrorCode");
}
};
static ManagedStatic<JITLinkerErrorCategory> JITLinkerErrorCategory;
} // namespace
namespace llvm {
namespace jitlink {
char JITLinkError::ID = 0;
void JITLinkError::log(raw_ostream &OS) const { OS << ErrMsg << "\n"; }
std::error_code JITLinkError::convertToErrorCode() const {
return std::error_code(GenericJITLinkError, *JITLinkerErrorCategory);
}
const char *getGenericEdgeKindName(Edge::Kind K) {
switch (K) {
case Edge::Invalid:
return "INVALID RELOCATION";
case Edge::KeepAlive:
return "Keep-Alive";
default:
return "<Unrecognized edge kind>";
}
}
const char *getLinkageName(Linkage L) {
switch (L) {
case Linkage::Strong:
return "strong";
case Linkage::Weak:
return "weak";
}
llvm_unreachable("Unrecognized llvm.jitlink.Linkage enum");
}
const char *getScopeName(Scope S) {
switch (S) {
case Scope::Default:
return "default";
case Scope::Hidden:
return "hidden";
case Scope::Local:
return "local";
}
llvm_unreachable("Unrecognized llvm.jitlink.Scope enum");
}
raw_ostream &operator<<(raw_ostream &OS, const Block &B) {
return OS << formatv("{0:x16}", B.getAddress()) << " -- "
<< formatv("{0:x16}", B.getAddress() + B.getSize()) << ": "
<< "size = " << formatv("{0:x}", B.getSize()) << ", "
<< (B.isZeroFill() ? "zero-fill" : "content")
<< ", align = " << B.getAlignment()
<< ", align-ofs = " << B.getAlignmentOffset()
<< ", section = " << B.getSection().getName();
}
raw_ostream &operator<<(raw_ostream &OS, const Symbol &Sym) {
OS << "<";
if (Sym.getName().empty())
OS << "*anon*";
else
OS << Sym.getName();
OS << ": flags = ";
switch (Sym.getLinkage()) {
case Linkage::Strong:
OS << 'S';
break;
case Linkage::Weak:
OS << 'W';
break;
}
switch (Sym.getScope()) {
case Scope::Default:
OS << 'D';
break;
case Scope::Hidden:
OS << 'H';
break;
case Scope::Local:
OS << 'L';
break;
}
OS << (Sym.isLive() ? '+' : '-')
<< ", size = " << formatv("{0:x}", Sym.getSize())
<< ", addr = " << formatv("{0:x16}", Sym.getAddress()) << " ("
<< formatv("{0:x16}", Sym.getAddressable().getAddress()) << " + "
<< formatv("{0:x}", Sym.getOffset());
if (Sym.isDefined())
OS << " " << Sym.getBlock().getSection().getName();
OS << ")>";
return OS;
}
void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
StringRef EdgeKindName) {
OS << "edge@" << formatv("{0:x16}", B.getAddress() + E.getOffset()) << ": "
<< formatv("{0:x16}", B.getAddress()) << " + "
<< formatv("{0:x}", E.getOffset()) << " -- " << EdgeKindName << " -> ";
auto &TargetSym = E.getTarget();
if (TargetSym.hasName())
OS << TargetSym.getName();
else {
auto &TargetBlock = TargetSym.getBlock();
auto &TargetSec = TargetBlock.getSection();
JITTargetAddress SecAddress = ~JITTargetAddress(0);
for (auto *B : TargetSec.blocks())
if (B->getAddress() < SecAddress)
SecAddress = B->getAddress();
JITTargetAddress SecDelta = TargetSym.getAddress() - SecAddress;
OS << formatv("{0:x16}", TargetSym.getAddress()) << " (section "
<< TargetSec.getName();
if (SecDelta)
OS << " + " << formatv("{0:x}", SecDelta);
OS << " / block " << formatv("{0:x16}", TargetBlock.getAddress());
if (TargetSym.getOffset())
OS << " + " << formatv("{0:x}", TargetSym.getOffset());
OS << ")";
}
if (E.getAddend() != 0)
OS << " + " << E.getAddend();
}
Section::~Section() {
for (auto *Sym : Symbols)
Sym->~Symbol();
for (auto *B : Blocks)
B->~Block();
}
Block &LinkGraph::splitBlock(Block &B, size_t SplitIndex,
SplitBlockCache *Cache) {
assert(SplitIndex > 0 && "splitBlock can not be called with SplitIndex == 0");
// If the split point covers all of B then just return B.
if (SplitIndex == B.getSize())
return B;
assert(SplitIndex < B.getSize() && "SplitIndex out of range");
// Create the new block covering [ 0, SplitIndex ).
auto &NewBlock =
B.isZeroFill()
? createZeroFillBlock(B.getSection(), SplitIndex, B.getAddress(),
B.getAlignment(), B.getAlignmentOffset())
: createContentBlock(
B.getSection(), B.getContent().substr(0, SplitIndex),
B.getAddress(), B.getAlignment(), B.getAlignmentOffset());
// Modify B to cover [ SplitIndex, B.size() ).
B.setAddress(B.getAddress() + SplitIndex);
B.setContent(B.getContent().substr(SplitIndex));
B.setAlignmentOffset((B.getAlignmentOffset() + SplitIndex) %
B.getAlignment());
// Handle edge transfer/update.
{
// Copy edges to NewBlock (recording their iterators so that we can remove
// them from B), and update of Edges remaining on B.
std::vector<Block::edge_iterator> EdgesToRemove;
for (auto I = B.edges().begin(); I != B.edges().end();) {
if (I->getOffset() < SplitIndex) {
NewBlock.addEdge(*I);
I = B.removeEdge(I);
} else {
I->setOffset(I->getOffset() - SplitIndex);
++I;
}
}
}
// Handle symbol transfer/update.
{
// Initialize the symbols cache if necessary.
SplitBlockCache LocalBlockSymbolsCache;
if (!Cache)
Cache = &LocalBlockSymbolsCache;
if (*Cache == None) {
*Cache = SplitBlockCache::value_type();
for (auto *Sym : B.getSection().symbols())
if (&Sym->getBlock() == &B)
(*Cache)->push_back(Sym);
llvm::sort(**Cache, [](const Symbol *LHS, const Symbol *RHS) {
return LHS->getOffset() > RHS->getOffset();
});
}
auto &BlockSymbols = **Cache;
// Transfer all symbols with offset less than SplitIndex to NewBlock.
while (!BlockSymbols.empty() &&
BlockSymbols.back()->getOffset() < SplitIndex) {
BlockSymbols.back()->setBlock(NewBlock);
BlockSymbols.pop_back();
}
// Update offsets for all remaining symbols in B.
for (auto *Sym : BlockSymbols)
Sym->setOffset(Sym->getOffset() - SplitIndex);
}
return NewBlock;
}
void LinkGraph::dump(raw_ostream &OS,
std::function<StringRef(Edge::Kind)> EdgeKindToName) {
if (!EdgeKindToName)
EdgeKindToName = [](Edge::Kind K) { return StringRef(); };
OS << "Symbols:\n";
for (auto *Sym : defined_symbols()) {
OS << " " << format("0x%016" PRIx64, Sym->getAddress()) << ": " << *Sym
<< "\n";
if (Sym->isDefined()) {
for (auto &E : Sym->getBlock().edges()) {
OS << " ";
StringRef EdgeName = (E.getKind() < Edge::FirstRelocation
? getGenericEdgeKindName(E.getKind())
: EdgeKindToName(E.getKind()));
if (!EdgeName.empty())
printEdge(OS, Sym->getBlock(), E, EdgeName);
else {
auto EdgeNumberString = std::to_string(E.getKind());
printEdge(OS, Sym->getBlock(), E, EdgeNumberString);
}
OS << "\n";
}
}
}
OS << "Absolute symbols:\n";
for (auto *Sym : absolute_symbols())
OS << " " << format("0x%016" PRIx64, Sym->getAddress()) << ": " << *Sym
<< "\n";
OS << "External symbols:\n";
for (auto *Sym : external_symbols())
OS << " " << format("0x%016" PRIx64, Sym->getAddress()) << ": " << *Sym
<< "\n";
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF) {
switch (LF) {
case SymbolLookupFlags::RequiredSymbol:
return OS << "RequiredSymbol";
case SymbolLookupFlags::WeaklyReferencedSymbol:
return OS << "WeaklyReferencedSymbol";
}
llvm_unreachable("Unrecognized lookup flags");
}
void JITLinkAsyncLookupContinuation::anchor() {}
JITLinkContext::~JITLinkContext() {}
bool JITLinkContext::shouldAddDefaultTargetPasses(const Triple &TT) const {
return true;
}
LinkGraphPassFunction JITLinkContext::getMarkLivePass(const Triple &TT) const {
return LinkGraphPassFunction();
}
Error JITLinkContext::modifyPassConfig(const Triple &TT,
PassConfiguration &Config) {
return Error::success();
}
Error markAllSymbolsLive(LinkGraph &G) {
for (auto *Sym : G.defined_symbols())
Sym->setLive(true);
return Error::success();
}
Expected<std::unique_ptr<LinkGraph>>
createLinkGraphFromObject(MemoryBufferRef ObjectBuffer) {
auto Magic = identify_magic(ObjectBuffer.getBuffer());
switch (Magic) {
case file_magic::macho_object:
return createLinkGraphFromMachOObject(std::move(ObjectBuffer));
case file_magic::elf_relocatable:
return createLinkGraphFromELFObject(std::move(ObjectBuffer));
default:
return make_error<JITLinkError>("Unsupported file format");
};
}
void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx) {
switch (G->getTargetTriple().getObjectFormat()) {
case Triple::MachO:
return link_MachO(std::move(G), std::move(Ctx));
case Triple::ELF:
return link_ELF(std::move(G), std::move(Ctx));
default:
Ctx->notifyFailed(make_error<JITLinkError>("Unsupported object format"));
};
}
} // end namespace jitlink
} // end namespace llvm