llvm-for-llvmta/lib/Bitcode/Writer/BitcodeWriter.cpp

4936 lines
187 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/BitcodeWriter.h"
#include "ValueEnumerator.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/BitcodeCommon.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/Bitstream/BitCodes.h"
#include "llvm/Bitstream/BitstreamWriter.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/IRSymtab.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
static cl::opt<unsigned>
IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
cl::desc("Number of metadatas above which we emit an index "
"to enable lazy-loading"));
static cl::opt<uint32_t> FlushThreshold(
"bitcode-flush-threshold", cl::Hidden, cl::init(512),
cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
static cl::opt<bool> WriteRelBFToSummary(
"write-relbf-to-summary", cl::Hidden, cl::init(false),
cl::desc("Write relative block frequency to function summary "));
extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
namespace {
/// These are manifest constants used by the bitcode writer. They do not need to
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev,
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_UNOP_ABBREV,
FUNCTION_INST_UNOP_FLAGS_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
FUNCTION_INST_BINOP_FLAGS_ABBREV,
FUNCTION_INST_CAST_ABBREV,
FUNCTION_INST_RET_VOID_ABBREV,
FUNCTION_INST_RET_VAL_ABBREV,
FUNCTION_INST_UNREACHABLE_ABBREV,
FUNCTION_INST_GEP_ABBREV,
};
/// Abstract class to manage the bitcode writing, subclassed for each bitcode
/// file type.
class BitcodeWriterBase {
protected:
/// The stream created and owned by the client.
BitstreamWriter &Stream;
StringTableBuilder &StrtabBuilder;
public:
/// Constructs a BitcodeWriterBase object that writes to the provided
/// \p Stream.
BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
: Stream(Stream), StrtabBuilder(StrtabBuilder) {}
protected:
void writeBitcodeHeader();
void writeModuleVersion();
};
void BitcodeWriterBase::writeModuleVersion() {
// VERSION: [version#]
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
}
/// Base class to manage the module bitcode writing, currently subclassed for
/// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
class ModuleBitcodeWriterBase : public BitcodeWriterBase {
protected:
/// The Module to write to bitcode.
const Module &M;
/// Enumerates ids for all values in the module.
ValueEnumerator VE;
/// Optional per-module index to write for ThinLTO.
const ModuleSummaryIndex *Index;
/// Map that holds the correspondence between GUIDs in the summary index,
/// that came from indirect call profiles, and a value id generated by this
/// class to use in the VST and summary block records.
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
/// Tracks the last value id recorded in the GUIDToValueMap.
unsigned GlobalValueId;
/// Saves the offset of the VSTOffset record that must eventually be
/// backpatched with the offset of the actual VST.
uint64_t VSTOffsetPlaceholder = 0;
public:
/// Constructs a ModuleBitcodeWriterBase object for the given Module,
/// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
BitstreamWriter &Stream,
bool ShouldPreserveUseListOrder,
const ModuleSummaryIndex *Index)
: BitcodeWriterBase(Stream, StrtabBuilder), M(M),
VE(M, ShouldPreserveUseListOrder), Index(Index) {
// Assign ValueIds to any callee values in the index that came from
// indirect call profiles and were recorded as a GUID not a Value*
// (which would have been assigned an ID by the ValueEnumerator).
// The starting ValueId is just after the number of values in the
// ValueEnumerator, so that they can be emitted in the VST.
GlobalValueId = VE.getValues().size();
if (!Index)
return;
for (const auto &GUIDSummaryLists : *Index)
// Examine all summaries for this GUID.
for (auto &Summary : GUIDSummaryLists.second.SummaryList)
if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
// For each call in the function summary, see if the call
// is to a GUID (which means it is for an indirect call,
// otherwise we would have a Value for it). If so, synthesize
// a value id.
for (auto &CallEdge : FS->calls())
if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
assignValueId(CallEdge.first.getGUID());
}
protected:
void writePerModuleGlobalValueSummary();
private:
void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
GlobalValueSummary *Summary,
unsigned ValueID,
unsigned FSCallsAbbrev,
unsigned FSCallsProfileAbbrev,
const Function &F);
void writeModuleLevelReferences(const GlobalVariable &V,
SmallVector<uint64_t, 64> &NameVals,
unsigned FSModRefsAbbrev,
unsigned FSModVTableRefsAbbrev);
void assignValueId(GlobalValue::GUID ValGUID) {
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
}
unsigned getValueId(GlobalValue::GUID ValGUID) {
const auto &VMI = GUIDToValueIdMap.find(ValGUID);
// Expect that any GUID value had a value Id assigned by an
// earlier call to assignValueId.
assert(VMI != GUIDToValueIdMap.end() &&
"GUID does not have assigned value Id");
return VMI->second;
}
// Helper to get the valueId for the type of value recorded in VI.
unsigned getValueId(ValueInfo VI) {
if (!VI.haveGVs() || !VI.getValue())
return getValueId(VI.getGUID());
return VE.getValueID(VI.getValue());
}
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
};
/// Class to manage the bitcode writing for a module.
class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
/// Pointer to the buffer allocated by caller for bitcode writing.
const SmallVectorImpl<char> &Buffer;
/// True if a module hash record should be written.
bool GenerateHash;
/// If non-null, when GenerateHash is true, the resulting hash is written
/// into ModHash.
ModuleHash *ModHash;
SHA1 Hasher;
/// The start bit of the identification block.
uint64_t BitcodeStartBit;
public:
/// Constructs a ModuleBitcodeWriter object for the given Module,
/// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
StringTableBuilder &StrtabBuilder,
BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
const ModuleSummaryIndex *Index, bool GenerateHash,
ModuleHash *ModHash = nullptr)
: ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
ShouldPreserveUseListOrder, Index),
Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
BitcodeStartBit(Stream.GetCurrentBitNo()) {}
/// Emit the current module to the bitstream.
void write();
private:
uint64_t bitcodeStartBit() { return BitcodeStartBit; }
size_t addToStrtab(StringRef Str);
void writeAttributeGroupTable();
void writeAttributeTable();
void writeTypeTable();
void writeComdats();
void writeValueSymbolTableForwardDecl();
void writeModuleInfo();
void writeValueAsMetadata(const ValueAsMetadata *MD,
SmallVectorImpl<uint64_t> &Record);
void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
unsigned createDILocationAbbrev();
void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev);
unsigned createGenericDINodeAbbrev();
void writeGenericDINode(const GenericDINode *N,
SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIGenericSubrange(const DIGenericSubrange *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIEnumerator(const DIEnumerator *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIStringType(const DIStringType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIDerivedType(const DIDerivedType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDICompositeType(const DICompositeType *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDISubroutineType(const DISubroutineType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDICompileUnit(const DICompileUnit *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDISubprogram(const DISubprogram *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILexicalBlock(const DILexicalBlock *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILexicalBlockFile(const DILexicalBlockFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDICommonBlock(const DICommonBlock *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDITemplateValueParameter(const DITemplateValueParameter *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIGlobalVariable(const DIGlobalVariable *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDILocalVariable(const DILocalVariable *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDILabel(const DILabel *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIExpression(const DIExpression *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
void writeDIObjCProperty(const DIObjCProperty *N,
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
void writeDIImportedEntity(const DIImportedEntity *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev);
unsigned createNamedMetadataAbbrev();
void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
unsigned createMetadataStringsAbbrev();
void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
SmallVectorImpl<uint64_t> &Record);
void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
SmallVectorImpl<uint64_t> &Record,
std::vector<unsigned> *MDAbbrevs = nullptr,
std::vector<uint64_t> *IndexPos = nullptr);
void writeModuleMetadata();
void writeFunctionMetadata(const Function &F);
void writeFunctionMetadataAttachment(const Function &F);
void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
const GlobalObject &GO);
void writeModuleMetadataKinds();
void writeOperandBundleTags();
void writeSyncScopeNames();
void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
void writeModuleConstants();
bool pushValueAndType(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void writeOperandBundles(const CallBase &CB, unsigned InstID);
void pushValue(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void pushValueSigned(const Value *V, unsigned InstID,
SmallVectorImpl<uint64_t> &Vals);
void writeInstruction(const Instruction &I, unsigned InstID,
SmallVectorImpl<unsigned> &Vals);
void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
void writeGlobalValueSymbolTable(
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
void writeUseList(UseListOrder &&Order);
void writeUseListBlock(const Function *F);
void
writeFunction(const Function &F,
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
void writeBlockInfo();
void writeModuleHash(size_t BlockStartPos);
unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
return unsigned(SSID);
}
unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
};
/// Class to manage the bitcode writing for a combined index.
class IndexBitcodeWriter : public BitcodeWriterBase {
/// The combined index to write to bitcode.
const ModuleSummaryIndex &Index;
/// When writing a subset of the index for distributed backends, client
/// provides a map of modules to the corresponding GUIDs/summaries to write.
const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
/// Map that holds the correspondence between the GUID used in the combined
/// index and a value id generated by this class to use in references.
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
/// Tracks the last value id recorded in the GUIDToValueMap.
unsigned GlobalValueId = 0;
public:
/// Constructs a IndexBitcodeWriter object for the given combined index,
/// writing to the provided \p Buffer. When writing a subset of the index
/// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
const ModuleSummaryIndex &Index,
const std::map<std::string, GVSummaryMapTy>
*ModuleToSummariesForIndex = nullptr)
: BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
// Assign unique value ids to all summaries to be written, for use
// in writing out the call graph edges. Save the mapping from GUID
// to the new global value id to use when writing those edges, which
// are currently saved in the index in terms of GUID.
forEachSummary([&](GVInfo I, bool) {
GUIDToValueIdMap[I.first] = ++GlobalValueId;
});
}
/// The below iterator returns the GUID and associated summary.
using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
/// Calls the callback for each value GUID and summary to be written to
/// bitcode. This hides the details of whether they are being pulled from the
/// entire index or just those in a provided ModuleToSummariesForIndex map.
template<typename Functor>
void forEachSummary(Functor Callback) {
if (ModuleToSummariesForIndex) {
for (auto &M : *ModuleToSummariesForIndex)
for (auto &Summary : M.second) {
Callback(Summary, false);
// Ensure aliasee is handled, e.g. for assigning a valueId,
// even if we are not importing the aliasee directly (the
// imported alias will contain a copy of aliasee).
if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
}
} else {
for (auto &Summaries : Index)
for (auto &Summary : Summaries.second.SummaryList)
Callback({Summaries.first, Summary.get()}, false);
}
}
/// Calls the callback for each entry in the modulePaths StringMap that
/// should be written to the module path string table. This hides the details
/// of whether they are being pulled from the entire index or just those in a
/// provided ModuleToSummariesForIndex map.
template <typename Functor> void forEachModule(Functor Callback) {
if (ModuleToSummariesForIndex) {
for (const auto &M : *ModuleToSummariesForIndex) {
const auto &MPI = Index.modulePaths().find(M.first);
if (MPI == Index.modulePaths().end()) {
// This should only happen if the bitcode file was empty, in which
// case we shouldn't be importing (the ModuleToSummariesForIndex
// would only include the module we are writing and index for).
assert(ModuleToSummariesForIndex->size() == 1);
continue;
}
Callback(*MPI);
}
} else {
for (const auto &MPSE : Index.modulePaths())
Callback(MPSE);
}
}
/// Main entry point for writing a combined index to bitcode.
void write();
private:
void writeModStrings();
void writeCombinedGlobalValueSummary();
Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
auto VMI = GUIDToValueIdMap.find(ValGUID);
if (VMI == GUIDToValueIdMap.end())
return None;
return VMI->second;
}
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
};
} // end anonymous namespace
static unsigned getEncodedCastOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown cast instruction!");
case Instruction::Trunc : return bitc::CAST_TRUNC;
case Instruction::ZExt : return bitc::CAST_ZEXT;
case Instruction::SExt : return bitc::CAST_SEXT;
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
case Instruction::UIToFP : return bitc::CAST_UITOFP;
case Instruction::SIToFP : return bitc::CAST_SITOFP;
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
case Instruction::FPExt : return bitc::CAST_FPEXT;
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
case Instruction::BitCast : return bitc::CAST_BITCAST;
case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
}
}
static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown binary instruction!");
case Instruction::FNeg: return bitc::UNOP_FNEG;
}
}
static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unknown binary instruction!");
case Instruction::Add:
case Instruction::FAdd: return bitc::BINOP_ADD;
case Instruction::Sub:
case Instruction::FSub: return bitc::BINOP_SUB;
case Instruction::Mul:
case Instruction::FMul: return bitc::BINOP_MUL;
case Instruction::UDiv: return bitc::BINOP_UDIV;
case Instruction::FDiv:
case Instruction::SDiv: return bitc::BINOP_SDIV;
case Instruction::URem: return bitc::BINOP_UREM;
case Instruction::FRem:
case Instruction::SRem: return bitc::BINOP_SREM;
case Instruction::Shl: return bitc::BINOP_SHL;
case Instruction::LShr: return bitc::BINOP_LSHR;
case Instruction::AShr: return bitc::BINOP_ASHR;
case Instruction::And: return bitc::BINOP_AND;
case Instruction::Or: return bitc::BINOP_OR;
case Instruction::Xor: return bitc::BINOP_XOR;
}
}
static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
switch (Op) {
default: llvm_unreachable("Unknown RMW operation!");
case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
case AtomicRMWInst::Add: return bitc::RMW_ADD;
case AtomicRMWInst::Sub: return bitc::RMW_SUB;
case AtomicRMWInst::And: return bitc::RMW_AND;
case AtomicRMWInst::Nand: return bitc::RMW_NAND;
case AtomicRMWInst::Or: return bitc::RMW_OR;
case AtomicRMWInst::Xor: return bitc::RMW_XOR;
case AtomicRMWInst::Max: return bitc::RMW_MAX;
case AtomicRMWInst::Min: return bitc::RMW_MIN;
case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
}
}
static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
switch (Ordering) {
case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
}
llvm_unreachable("Invalid ordering");
}
static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
StringRef Str, unsigned AbbrevToUse) {
SmallVector<unsigned, 64> Vals;
// Code: [strchar x N]
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
AbbrevToUse = 0;
Vals.push_back(Str[i]);
}
// Emit the finished record.
Stream.EmitRecord(Code, Vals, AbbrevToUse);
}
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
switch (Kind) {
case Attribute::Alignment:
return bitc::ATTR_KIND_ALIGNMENT;
case Attribute::AllocSize:
return bitc::ATTR_KIND_ALLOC_SIZE;
case Attribute::AlwaysInline:
return bitc::ATTR_KIND_ALWAYS_INLINE;
case Attribute::ArgMemOnly:
return bitc::ATTR_KIND_ARGMEMONLY;
case Attribute::Builtin:
return bitc::ATTR_KIND_BUILTIN;
case Attribute::ByVal:
return bitc::ATTR_KIND_BY_VAL;
case Attribute::Convergent:
return bitc::ATTR_KIND_CONVERGENT;
case Attribute::InAlloca:
return bitc::ATTR_KIND_IN_ALLOCA;
case Attribute::Cold:
return bitc::ATTR_KIND_COLD;
case Attribute::Hot:
return bitc::ATTR_KIND_HOT;
case Attribute::InaccessibleMemOnly:
return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
case Attribute::InaccessibleMemOrArgMemOnly:
return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
case Attribute::InlineHint:
return bitc::ATTR_KIND_INLINE_HINT;
case Attribute::InReg:
return bitc::ATTR_KIND_IN_REG;
case Attribute::JumpTable:
return bitc::ATTR_KIND_JUMP_TABLE;
case Attribute::MinSize:
return bitc::ATTR_KIND_MIN_SIZE;
case Attribute::Naked:
return bitc::ATTR_KIND_NAKED;
case Attribute::Nest:
return bitc::ATTR_KIND_NEST;
case Attribute::NoAlias:
return bitc::ATTR_KIND_NO_ALIAS;
case Attribute::NoBuiltin:
return bitc::ATTR_KIND_NO_BUILTIN;
case Attribute::NoCallback:
return bitc::ATTR_KIND_NO_CALLBACK;
case Attribute::NoCapture:
return bitc::ATTR_KIND_NO_CAPTURE;
case Attribute::NoDuplicate:
return bitc::ATTR_KIND_NO_DUPLICATE;
case Attribute::NoFree:
return bitc::ATTR_KIND_NOFREE;
case Attribute::NoImplicitFloat:
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
case Attribute::NoInline:
return bitc::ATTR_KIND_NO_INLINE;
case Attribute::NoRecurse:
return bitc::ATTR_KIND_NO_RECURSE;
case Attribute::NoMerge:
return bitc::ATTR_KIND_NO_MERGE;
case Attribute::NonLazyBind:
return bitc::ATTR_KIND_NON_LAZY_BIND;
case Attribute::NonNull:
return bitc::ATTR_KIND_NON_NULL;
case Attribute::Dereferenceable:
return bitc::ATTR_KIND_DEREFERENCEABLE;
case Attribute::DereferenceableOrNull:
return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
case Attribute::NoRedZone:
return bitc::ATTR_KIND_NO_RED_ZONE;
case Attribute::NoReturn:
return bitc::ATTR_KIND_NO_RETURN;
case Attribute::NoSync:
return bitc::ATTR_KIND_NOSYNC;
case Attribute::NoCfCheck:
return bitc::ATTR_KIND_NOCF_CHECK;
case Attribute::NoProfile:
return bitc::ATTR_KIND_NO_PROFILE;
case Attribute::NoUnwind:
return bitc::ATTR_KIND_NO_UNWIND;
case Attribute::NullPointerIsValid:
return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
case Attribute::OptForFuzzing:
return bitc::ATTR_KIND_OPT_FOR_FUZZING;
case Attribute::OptimizeForSize:
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
case Attribute::OptimizeNone:
return bitc::ATTR_KIND_OPTIMIZE_NONE;
case Attribute::ReadNone:
return bitc::ATTR_KIND_READ_NONE;
case Attribute::ReadOnly:
return bitc::ATTR_KIND_READ_ONLY;
case Attribute::Returned:
return bitc::ATTR_KIND_RETURNED;
case Attribute::ReturnsTwice:
return bitc::ATTR_KIND_RETURNS_TWICE;
case Attribute::SExt:
return bitc::ATTR_KIND_S_EXT;
case Attribute::Speculatable:
return bitc::ATTR_KIND_SPECULATABLE;
case Attribute::StackAlignment:
return bitc::ATTR_KIND_STACK_ALIGNMENT;
case Attribute::StackProtect:
return bitc::ATTR_KIND_STACK_PROTECT;
case Attribute::StackProtectReq:
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
case Attribute::StackProtectStrong:
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
case Attribute::SafeStack:
return bitc::ATTR_KIND_SAFESTACK;
case Attribute::ShadowCallStack:
return bitc::ATTR_KIND_SHADOWCALLSTACK;
case Attribute::StrictFP:
return bitc::ATTR_KIND_STRICT_FP;
case Attribute::StructRet:
return bitc::ATTR_KIND_STRUCT_RET;
case Attribute::SanitizeAddress:
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
case Attribute::SanitizeHWAddress:
return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
case Attribute::SanitizeThread:
return bitc::ATTR_KIND_SANITIZE_THREAD;
case Attribute::SanitizeMemory:
return bitc::ATTR_KIND_SANITIZE_MEMORY;
case Attribute::SpeculativeLoadHardening:
return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
case Attribute::SwiftError:
return bitc::ATTR_KIND_SWIFT_ERROR;
case Attribute::SwiftSelf:
return bitc::ATTR_KIND_SWIFT_SELF;
case Attribute::UWTable:
return bitc::ATTR_KIND_UW_TABLE;
case Attribute::WillReturn:
return bitc::ATTR_KIND_WILLRETURN;
case Attribute::WriteOnly:
return bitc::ATTR_KIND_WRITEONLY;
case Attribute::ZExt:
return bitc::ATTR_KIND_Z_EXT;
case Attribute::ImmArg:
return bitc::ATTR_KIND_IMMARG;
case Attribute::SanitizeMemTag:
return bitc::ATTR_KIND_SANITIZE_MEMTAG;
case Attribute::Preallocated:
return bitc::ATTR_KIND_PREALLOCATED;
case Attribute::NoUndef:
return bitc::ATTR_KIND_NOUNDEF;
case Attribute::ByRef:
return bitc::ATTR_KIND_BYREF;
case Attribute::MustProgress:
return bitc::ATTR_KIND_MUSTPROGRESS;
case Attribute::EndAttrKinds:
llvm_unreachable("Can not encode end-attribute kinds marker.");
case Attribute::None:
llvm_unreachable("Can not encode none-attribute.");
case Attribute::EmptyKey:
case Attribute::TombstoneKey:
llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
}
llvm_unreachable("Trying to encode unknown attribute");
}
void ModuleBitcodeWriter::writeAttributeGroupTable() {
const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
VE.getAttributeGroups();
if (AttrGrps.empty()) return;
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
unsigned AttrListIndex = Pair.first;
AttributeSet AS = Pair.second;
Record.push_back(VE.getAttributeGroupID(Pair));
Record.push_back(AttrListIndex);
for (Attribute Attr : AS) {
if (Attr.isEnumAttribute()) {
Record.push_back(0);
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
} else if (Attr.isIntAttribute()) {
Record.push_back(1);
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
Record.push_back(Attr.getValueAsInt());
} else if (Attr.isStringAttribute()) {
StringRef Kind = Attr.getKindAsString();
StringRef Val = Attr.getValueAsString();
Record.push_back(Val.empty() ? 3 : 4);
Record.append(Kind.begin(), Kind.end());
Record.push_back(0);
if (!Val.empty()) {
Record.append(Val.begin(), Val.end());
Record.push_back(0);
}
} else {
assert(Attr.isTypeAttribute());
Type *Ty = Attr.getValueAsType();
Record.push_back(Ty ? 6 : 5);
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
if (Ty)
Record.push_back(VE.getTypeID(Attr.getValueAsType()));
}
}
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeAttributeTable() {
const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
if (Attrs.empty()) return;
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
AttributeList AL = Attrs[i];
for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
AttributeSet AS = AL.getAttributes(i);
if (AS.hasAttributes())
Record.push_back(VE.getAttributeGroupID({i, AS}));
}
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
Record.clear();
}
Stream.ExitBlock();
}
/// WriteTypeTable - Write out the type table for a module.
void ModuleBitcodeWriter::writeTypeTable() {
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
SmallVector<uint64_t, 64> TypeVals;
uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
// Abbrev for TYPE_CODE_POINTER.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_STRUCT_ANON.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_STRUCT_NAME.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_STRUCT_NAMED.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for TYPE_CODE_ARRAY.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
// Loop over all of the types, emitting each in turn.
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Type *T = TypeList[i];
int AbbrevToUse = 0;
unsigned Code = 0;
switch (T->getTypeID()) {
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
case Type::IntegerTyID:
// INTEGER: [width]
Code = bitc::TYPE_CODE_INTEGER;
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
break;
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(T);
// POINTER: [pointee type, address space]
Code = bitc::TYPE_CODE_POINTER;
TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
unsigned AddressSpace = PTy->getAddressSpace();
TypeVals.push_back(AddressSpace);
if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
break;
}
case Type::FunctionTyID: {
FunctionType *FT = cast<FunctionType>(T);
// FUNCTION: [isvararg, retty, paramty x N]
Code = bitc::TYPE_CODE_FUNCTION;
TypeVals.push_back(FT->isVarArg());
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
AbbrevToUse = FunctionAbbrev;
break;
}
case Type::StructTyID: {
StructType *ST = cast<StructType>(T);
// STRUCT: [ispacked, eltty x N]
TypeVals.push_back(ST->isPacked());
// Output all of the element types.
for (StructType::element_iterator I = ST->element_begin(),
E = ST->element_end(); I != E; ++I)
TypeVals.push_back(VE.getTypeID(*I));
if (ST->isLiteral()) {
Code = bitc::TYPE_CODE_STRUCT_ANON;
AbbrevToUse = StructAnonAbbrev;
} else {
if (ST->isOpaque()) {
Code = bitc::TYPE_CODE_OPAQUE;
} else {
Code = bitc::TYPE_CODE_STRUCT_NAMED;
AbbrevToUse = StructNamedAbbrev;
}
// Emit the name if it is present.
if (!ST->getName().empty())
writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
StructNameAbbrev);
}
break;
}
case Type::ArrayTyID: {
ArrayType *AT = cast<ArrayType>(T);
// ARRAY: [numelts, eltty]
Code = bitc::TYPE_CODE_ARRAY;
TypeVals.push_back(AT->getNumElements());
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
AbbrevToUse = ArrayAbbrev;
break;
}
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID: {
VectorType *VT = cast<VectorType>(T);
// VECTOR [numelts, eltty] or
// [numelts, eltty, scalable]
Code = bitc::TYPE_CODE_VECTOR;
TypeVals.push_back(VT->getElementCount().getKnownMinValue());
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
if (isa<ScalableVectorType>(VT))
TypeVals.push_back(true);
break;
}
}
// Emit the finished record.
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
Stream.ExitBlock();
}
static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
switch (Linkage) {
case GlobalValue::ExternalLinkage:
return 0;
case GlobalValue::WeakAnyLinkage:
return 16;
case GlobalValue::AppendingLinkage:
return 2;
case GlobalValue::InternalLinkage:
return 3;
case GlobalValue::LinkOnceAnyLinkage:
return 18;
case GlobalValue::ExternalWeakLinkage:
return 7;
case GlobalValue::CommonLinkage:
return 8;
case GlobalValue::PrivateLinkage:
return 9;
case GlobalValue::WeakODRLinkage:
return 17;
case GlobalValue::LinkOnceODRLinkage:
return 19;
case GlobalValue::AvailableExternallyLinkage:
return 12;
}
llvm_unreachable("Invalid linkage");
}
static unsigned getEncodedLinkage(const GlobalValue &GV) {
return getEncodedLinkage(GV.getLinkage());
}
static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
uint64_t RawFlags = 0;
RawFlags |= Flags.ReadNone;
RawFlags |= (Flags.ReadOnly << 1);
RawFlags |= (Flags.NoRecurse << 2);
RawFlags |= (Flags.ReturnDoesNotAlias << 3);
RawFlags |= (Flags.NoInline << 4);
RawFlags |= (Flags.AlwaysInline << 5);
return RawFlags;
}
// Decode the flags for GlobalValue in the summary
static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
uint64_t RawFlags = 0;
RawFlags |= Flags.NotEligibleToImport; // bool
RawFlags |= (Flags.Live << 1);
RawFlags |= (Flags.DSOLocal << 2);
RawFlags |= (Flags.CanAutoHide << 3);
// Linkage don't need to be remapped at that time for the summary. Any future
// change to the getEncodedLinkage() function will need to be taken into
// account here as well.
RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
return RawFlags;
}
static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
(Flags.Constant << 2) | Flags.VCallVisibility << 3;
return RawFlags;
}
static unsigned getEncodedVisibility(const GlobalValue &GV) {
switch (GV.getVisibility()) {
case GlobalValue::DefaultVisibility: return 0;
case GlobalValue::HiddenVisibility: return 1;
case GlobalValue::ProtectedVisibility: return 2;
}
llvm_unreachable("Invalid visibility");
}
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
switch (GV.getDLLStorageClass()) {
case GlobalValue::DefaultStorageClass: return 0;
case GlobalValue::DLLImportStorageClass: return 1;
case GlobalValue::DLLExportStorageClass: return 2;
}
llvm_unreachable("Invalid DLL storage class");
}
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
switch (GV.getThreadLocalMode()) {
case GlobalVariable::NotThreadLocal: return 0;
case GlobalVariable::GeneralDynamicTLSModel: return 1;
case GlobalVariable::LocalDynamicTLSModel: return 2;
case GlobalVariable::InitialExecTLSModel: return 3;
case GlobalVariable::LocalExecTLSModel: return 4;
}
llvm_unreachable("Invalid TLS model");
}
static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
switch (C.getSelectionKind()) {
case Comdat::Any:
return bitc::COMDAT_SELECTION_KIND_ANY;
case Comdat::ExactMatch:
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
case Comdat::Largest:
return bitc::COMDAT_SELECTION_KIND_LARGEST;
case Comdat::NoDuplicates:
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
case Comdat::SameSize:
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
}
llvm_unreachable("Invalid selection kind");
}
static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
switch (GV.getUnnamedAddr()) {
case GlobalValue::UnnamedAddr::None: return 0;
case GlobalValue::UnnamedAddr::Local: return 2;
case GlobalValue::UnnamedAddr::Global: return 1;
}
llvm_unreachable("Invalid unnamed_addr");
}
size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
if (GenerateHash)
Hasher.update(Str);
return StrtabBuilder.add(Str);
}
void ModuleBitcodeWriter::writeComdats() {
SmallVector<unsigned, 64> Vals;
for (const Comdat *C : VE.getComdats()) {
// COMDAT: [strtab offset, strtab size, selection_kind]
Vals.push_back(addToStrtab(C->getName()));
Vals.push_back(C->getName().size());
Vals.push_back(getEncodedComdatSelectionKind(*C));
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
Vals.clear();
}
}
/// Write a record that will eventually hold the word offset of the
/// module-level VST. For now the offset is 0, which will be backpatched
/// after the real VST is written. Saves the bit offset to backpatch.
void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
// Write a placeholder value in for the offset of the real VST,
// which is written after the function blocks so that it can include
// the offset of each function. The placeholder offset will be
// updated when the real VST is written.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
// Blocks are 32-bit aligned, so we can use a 32-bit word offset to
// hold the real VST offset. Must use fixed instead of VBR as we don't
// know how many VBR chunks to reserve ahead of time.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Emit the placeholder
uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
// Compute and save the bit offset to the placeholder, which will be
// patched when the real VST is written. We can simply subtract the 32-bit
// fixed size from the current bit number to get the location to backpatch.
VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
}
enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
/// Determine the encoding to use for the given string name and length.
static StringEncoding getStringEncoding(StringRef Str) {
bool isChar6 = true;
for (char C : Str) {
if (isChar6)
isChar6 = BitCodeAbbrevOp::isChar6(C);
if ((unsigned char)C & 128)
// don't bother scanning the rest.
return SE_Fixed8;
}
if (isChar6)
return SE_Char6;
return SE_Fixed7;
}
/// Emit top-level description of module, including target triple, inline asm,
/// descriptors for global variables, and function prototype info.
/// Returns the bit offset to backpatch with the location of the real VST.
void ModuleBitcodeWriter::writeModuleInfo() {
// Emit various pieces of data attached to a module.
if (!M.getTargetTriple().empty())
writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
0 /*TODO*/);
const std::string &DL = M.getDataLayoutStr();
if (!DL.empty())
writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
if (!M.getModuleInlineAsm().empty())
writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
0 /*TODO*/);
// Emit information about sections and GC, computing how many there are. Also
// compute the maximum alignment value.
std::map<std::string, unsigned> SectionMap;
std::map<std::string, unsigned> GCMap;
MaybeAlign MaxAlignment;
unsigned MaxGlobalType = 0;
const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
if (A)
MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
};
for (const GlobalVariable &GV : M.globals()) {
UpdateMaxAlignment(GV.getAlign());
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
if (GV.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[std::string(GV.getSection())];
if (!Entry) {
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
0 /*TODO*/);
Entry = SectionMap.size();
}
}
}
for (const Function &F : M) {
UpdateMaxAlignment(F.getAlign());
if (F.hasSection()) {
// Give section names unique ID's.
unsigned &Entry = SectionMap[std::string(F.getSection())];
if (!Entry) {
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
0 /*TODO*/);
Entry = SectionMap.size();
}
}
if (F.hasGC()) {
// Same for GC names.
unsigned &Entry = GCMap[F.getGC()];
if (!Entry) {
writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
0 /*TODO*/);
Entry = GCMap.size();
}
}
}
// Emit abbrev for globals, now that we know # sections and max alignment.
unsigned SimpleGVarAbbrev = 0;
if (!M.global_empty()) {
// Add an abbrev for common globals with no visibility or thread localness.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxGlobalType+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
//| explicitType << 1
//| constant
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
if (!MaxAlignment) // Alignment.
Abbv->Add(BitCodeAbbrevOp(0));
else {
unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(MaxEncAlignment+1)));
}
if (SectionMap.empty()) // Section.
Abbv->Add(BitCodeAbbrevOp(0));
else
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(SectionMap.size()+1)));
// Don't bother emitting vis + thread local.
SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
}
SmallVector<unsigned, 64> Vals;
// Emit the module's source file name.
{
StringEncoding Bits = getStringEncoding(M.getSourceFileName());
BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
if (Bits == SE_Char6)
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
else if (Bits == SE_Fixed7)
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(AbbrevOpToUse);
unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
for (const auto P : M.getSourceFileName())
Vals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
Vals.clear();
}
// Emit the global variable information.
for (const GlobalVariable &GV : M.globals()) {
unsigned AbbrevToUse = 0;
// GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal,
// unnamed_addr, externally_initialized, dllstorageclass,
// comdat, attributes, DSO_Local]
Vals.push_back(addToStrtab(GV.getName()));
Vals.push_back(GV.getName().size());
Vals.push_back(VE.getTypeID(GV.getValueType()));
Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
Vals.push_back(GV.isDeclaration() ? 0 :
(VE.getValueID(GV.getInitializer()) + 1));
Vals.push_back(getEncodedLinkage(GV));
Vals.push_back(getEncodedAlign(GV.getAlign()));
Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
: 0);
if (GV.isThreadLocal() ||
GV.getVisibility() != GlobalValue::DefaultVisibility ||
GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
GV.isExternallyInitialized() ||
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
GV.hasComdat() ||
GV.hasAttributes() ||
GV.isDSOLocal() ||
GV.hasPartition()) {
Vals.push_back(getEncodedVisibility(GV));
Vals.push_back(getEncodedThreadLocalMode(GV));
Vals.push_back(getEncodedUnnamedAddr(GV));
Vals.push_back(GV.isExternallyInitialized());
Vals.push_back(getEncodedDLLStorageClass(GV));
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
Vals.push_back(VE.getAttributeListID(AL));
Vals.push_back(GV.isDSOLocal());
Vals.push_back(addToStrtab(GV.getPartition()));
Vals.push_back(GV.getPartition().size());
} else {
AbbrevToUse = SimpleGVarAbbrev;
}
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the function proto information.
for (const Function &F : M) {
// FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
// linkage, paramattrs, alignment, section, visibility, gc,
// unnamed_addr, prologuedata, dllstorageclass, comdat,
// prefixdata, personalityfn, DSO_Local, addrspace]
Vals.push_back(addToStrtab(F.getName()));
Vals.push_back(F.getName().size());
Vals.push_back(VE.getTypeID(F.getFunctionType()));
Vals.push_back(F.getCallingConv());
Vals.push_back(F.isDeclaration());
Vals.push_back(getEncodedLinkage(F));
Vals.push_back(VE.getAttributeListID(F.getAttributes()));
Vals.push_back(getEncodedAlign(F.getAlign()));
Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
: 0);
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
Vals.push_back(getEncodedUnnamedAddr(F));
Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
: 0);
Vals.push_back(getEncodedDLLStorageClass(F));
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
: 0);
Vals.push_back(
F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
Vals.push_back(F.isDSOLocal());
Vals.push_back(F.getAddressSpace());
Vals.push_back(addToStrtab(F.getPartition()));
Vals.push_back(F.getPartition().size());
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the alias information.
for (const GlobalAlias &A : M.aliases()) {
// ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
// visibility, dllstorageclass, threadlocal, unnamed_addr,
// DSO_Local]
Vals.push_back(addToStrtab(A.getName()));
Vals.push_back(A.getName().size());
Vals.push_back(VE.getTypeID(A.getValueType()));
Vals.push_back(A.getType()->getAddressSpace());
Vals.push_back(VE.getValueID(A.getAliasee()));
Vals.push_back(getEncodedLinkage(A));
Vals.push_back(getEncodedVisibility(A));
Vals.push_back(getEncodedDLLStorageClass(A));
Vals.push_back(getEncodedThreadLocalMode(A));
Vals.push_back(getEncodedUnnamedAddr(A));
Vals.push_back(A.isDSOLocal());
Vals.push_back(addToStrtab(A.getPartition()));
Vals.push_back(A.getPartition().size());
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the ifunc information.
for (const GlobalIFunc &I : M.ifuncs()) {
// IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
// val#, linkage, visibility, DSO_Local]
Vals.push_back(addToStrtab(I.getName()));
Vals.push_back(I.getName().size());
Vals.push_back(VE.getTypeID(I.getValueType()));
Vals.push_back(I.getType()->getAddressSpace());
Vals.push_back(VE.getValueID(I.getResolver()));
Vals.push_back(getEncodedLinkage(I));
Vals.push_back(getEncodedVisibility(I));
Vals.push_back(I.isDSOLocal());
Vals.push_back(addToStrtab(I.getPartition()));
Vals.push_back(I.getPartition().size());
Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
Vals.clear();
}
writeValueSymbolTableForwardDecl();
}
static uint64_t getOptimizationFlags(const Value *V) {
uint64_t Flags = 0;
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
if (OBO->hasNoSignedWrap())
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
if (OBO->hasNoUnsignedWrap())
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
if (PEO->isExact())
Flags |= 1 << bitc::PEO_EXACT;
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
if (FPMO->hasAllowReassoc())
Flags |= bitc::AllowReassoc;
if (FPMO->hasNoNaNs())
Flags |= bitc::NoNaNs;
if (FPMO->hasNoInfs())
Flags |= bitc::NoInfs;
if (FPMO->hasNoSignedZeros())
Flags |= bitc::NoSignedZeros;
if (FPMO->hasAllowReciprocal())
Flags |= bitc::AllowReciprocal;
if (FPMO->hasAllowContract())
Flags |= bitc::AllowContract;
if (FPMO->hasApproxFunc())
Flags |= bitc::ApproxFunc;
}
return Flags;
}
void ModuleBitcodeWriter::writeValueAsMetadata(
const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
// Mimic an MDNode with a value as one operand.
Value *V = MD->getValue();
Record.push_back(VE.getTypeID(V->getType()));
Record.push_back(VE.getValueID(V));
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
Record.clear();
}
void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
Metadata *MD = N->getOperand(i);
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
"Unexpected function-local metadata");
Record.push_back(VE.getMetadataOrNullID(MD));
}
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
: bitc::METADATA_NODE,
Record, Abbrev);
Record.clear();
}
unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
return Stream.EmitAbbrev(std::move(Abbv));
}
void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev) {
if (!Abbrev)
Abbrev = createDILocationAbbrev();
Record.push_back(N->isDistinct());
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Record.push_back(VE.getMetadataID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
Record.push_back(N->isImplicitCode());
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
Record.clear();
}
unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
// Assume the column is usually under 128, and always output the inlined-at
// location (it's never more expensive than building an array size 1).
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
return Stream.EmitAbbrev(std::move(Abbv));
}
void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
SmallVectorImpl<uint64_t> &Record,
unsigned &Abbrev) {
if (!Abbrev)
Abbrev = createGenericDINodeAbbrev();
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(0); // Per-tag version field; unused for now.
for (auto &I : N->operands())
Record.push_back(VE.getMetadataOrNullID(I));
Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const uint64_t Version = 2 << 1;
Record.push_back((uint64_t)N->isDistinct() | Version);
Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIGenericSubrange(
const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back((uint64_t)N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
Record.clear();
}
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
if ((int64_t)V >= 0)
Vals.push_back(V << 1);
else
Vals.push_back((-V << 1) | 1);
}
static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
// We have an arbitrary precision integer value to write whose
// bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
unsigned NumWords = A.getActiveWords();
const uint64_t *RawData = A.getRawData();
for (unsigned i = 0; i < NumWords; i++)
emitSignedInt64(Vals, RawData[i]);
}
void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const uint64_t IsBigInt = 1 << 2;
Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
Record.push_back(N->getValue().getBitWidth());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
emitWideAPInt(Record, N->getValue());
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getEncoding());
Record.push_back(N->getFlags());
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getEncoding());
Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
// DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
// that there is no DWARF address space associated with DIDerivedType.
if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
Record.push_back(*DWARFAddressSpace + 1);
else
Record.push_back(0);
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDICompositeType(
const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const unsigned IsNotUsedInOldTypeRef = 0x2;
Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
Record.push_back(N->getSizeInBits());
Record.push_back(N->getAlignInBits());
Record.push_back(N->getOffsetInBits());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
Record.push_back(N->getRuntimeLang());
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDISubroutineType(
const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const unsigned HasNoOldTypeRefs = 0x2;
Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
Record.push_back(N->getCC());
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
if (N->getRawChecksum()) {
Record.push_back(N->getRawChecksum()->Kind);
Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
} else {
// Maintain backwards compatibility with the old internal representation of
// CSK_None in ChecksumKind by writing nulls here when Checksum is None.
Record.push_back(0);
Record.push_back(VE.getMetadataOrNullID(nullptr));
}
auto Source = N->getRawSource();
if (Source)
Record.push_back(VE.getMetadataOrNullID(*Source));
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
assert(N->isDistinct() && "Expected distinct compile units");
Record.push_back(/* IsDistinct */ true);
Record.push_back(N->getSourceLanguage());
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
Record.push_back(N->isOptimized());
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
Record.push_back(N->getRuntimeVersion());
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
Record.push_back(N->getEmissionKind());
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
Record.push_back(/* subprograms */ 0);
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
Record.push_back(N->getDWOId());
Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
Record.push_back(N->getSplitDebugInlining());
Record.push_back(N->getDebugInfoForProfiling());
Record.push_back((unsigned)N->getNameTableKind());
Record.push_back(N->getRangesBaseAddress());
Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const uint64_t HasUnitFlag = 1 << 1;
const uint64_t HasSPFlagsFlag = 1 << 2;
Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->getScopeLine());
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
Record.push_back(N->getSPFlags());
Record.push_back(N->getVirtualIndex());
Record.push_back(N->getFlags());
Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
Record.push_back(N->getThisAdjustment());
Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(N->getColumn());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDILexicalBlockFile(
const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getDiscriminator());
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLineNo());
Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getMacinfoType());
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getMacinfoType());
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
for (auto &I : N->operands())
Record.push_back(VE.getMetadataOrNullID(I));
Record.push_back(N->getLineNo());
Record.push_back(N->getIsDecl());
Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDITemplateTypeParameter(
const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isDefault());
Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDITemplateValueParameter(
const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isDefault());
Record.push_back(VE.getMetadataOrNullID(N->getValue()));
Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIGlobalVariable(
const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
const uint64_t Version = 2 << 1;
Record.push_back((uint64_t)N->isDistinct() | Version);
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->isLocalToUnit());
Record.push_back(N->isDefinition());
Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
Record.push_back(N->getAlignInBits());
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDILocalVariable(
const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
// In order to support all possible bitcode formats in BitcodeReader we need
// to distinguish the following cases:
// 1) Record has no artificial tag (Record[1]),
// has no obsolete inlinedAt field (Record[9]).
// In this case Record size will be 8, HasAlignment flag is false.
// 2) Record has artificial tag (Record[1]),
// has no obsolete inlignedAt field (Record[9]).
// In this case Record size will be 9, HasAlignment flag is false.
// 3) Record has both artificial tag (Record[1]) and
// obsolete inlignedAt field (Record[9]).
// In this case Record size will be 10, HasAlignment flag is false.
// 4) Record has neither artificial tag, nor inlignedAt field, but
// HasAlignment flag is true and Record[8] contains alignment value.
const uint64_t HasAlignmentFlag = 1 << 1;
Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Record.push_back(N->getArg());
Record.push_back(N->getFlags());
Record.push_back(N->getAlignInBits());
Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDILabel(
const DILabel *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back((uint64_t)N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.reserve(N->getElements().size() + 1);
const uint64_t Version = 3 << 1;
Record.push_back((uint64_t)N->isDistinct() | Version);
Record.append(N->elements_begin(), N->elements_end());
Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
Record.push_back(N->getAttributes());
Record.push_back(VE.getMetadataOrNullID(N->getType()));
Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
Record.clear();
}
void ModuleBitcodeWriter::writeDIImportedEntity(
const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
unsigned Abbrev) {
Record.push_back(N->isDistinct());
Record.push_back(N->getTag());
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
Record.push_back(N->getLine());
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
Record.clear();
}
unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
return Stream.EmitAbbrev(std::move(Abbv));
}
void ModuleBitcodeWriter::writeNamedMetadata(
SmallVectorImpl<uint64_t> &Record) {
if (M.named_metadata_empty())
return;
unsigned Abbrev = createNamedMetadataAbbrev();
for (const NamedMDNode &NMD : M.named_metadata()) {
// Write name.
StringRef Str = NMD.getName();
Record.append(Str.bytes_begin(), Str.bytes_end());
Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
Record.clear();
// Write named metadata operands.
for (const MDNode *N : NMD.operands())
Record.push_back(VE.getMetadataID(N));
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
Record.clear();
}
}
unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
return Stream.EmitAbbrev(std::move(Abbv));
}
/// Write out a record for MDString.
///
/// All the metadata strings in a metadata block are emitted in a single
/// record. The sizes and strings themselves are shoved into a blob.
void ModuleBitcodeWriter::writeMetadataStrings(
ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
if (Strings.empty())
return;
// Start the record with the number of strings.
Record.push_back(bitc::METADATA_STRINGS);
Record.push_back(Strings.size());
// Emit the sizes of the strings in the blob.
SmallString<256> Blob;
{
BitstreamWriter W(Blob);
for (const Metadata *MD : Strings)
W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
W.FlushToWord();
}
// Add the offset to the strings to the record.
Record.push_back(Blob.size());
// Add the strings to the blob.
for (const Metadata *MD : Strings)
Blob.append(cast<MDString>(MD)->getString());
// Emit the final record.
Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
Record.clear();
}
// Generates an enum to use as an index in the Abbrev array of Metadata record.
enum MetadataAbbrev : unsigned {
#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
#include "llvm/IR/Metadata.def"
LastPlusOne
};
void ModuleBitcodeWriter::writeMetadataRecords(
ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
if (MDs.empty())
return;
// Initialize MDNode abbreviations.
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
#include "llvm/IR/Metadata.def"
for (const Metadata *MD : MDs) {
if (IndexPos)
IndexPos->push_back(Stream.GetCurrentBitNo());
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
assert(N->isResolved() && "Expected forward references to be resolved");
switch (N->getMetadataID()) {
default:
llvm_unreachable("Invalid MDNode subclass");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
if (MDAbbrevs) \
write##CLASS(cast<CLASS>(N), Record, \
(*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
else \
write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
continue;
#include "llvm/IR/Metadata.def"
}
}
writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
}
}
void ModuleBitcodeWriter::writeModuleMetadata() {
if (!VE.hasMDs() && M.named_metadata_empty())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
SmallVector<uint64_t, 64> Record;
// Emit all abbrevs upfront, so that the reader can jump in the middle of the
// block and load any metadata.
std::vector<unsigned> MDAbbrevs;
MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
createGenericDINodeAbbrev();
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Emit MDStrings together upfront.
writeMetadataStrings(VE.getMDStrings(), Record);
// We only emit an index for the metadata record if we have more than a given
// (naive) threshold of metadatas, otherwise it is not worth it.
if (VE.getNonMDStrings().size() > IndexThreshold) {
// Write a placeholder value in for the offset of the metadata index,
// which is written after the records, so that it can include
// the offset of each entry. The placeholder offset will be
// updated after all records are emitted.
uint64_t Vals[] = {0, 0};
Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
}
// Compute and save the bit offset to the current position, which will be
// patched when we emit the index later. We can simply subtract the 64-bit
// fixed size from the current bit number to get the location to backpatch.
uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
// This index will contain the bitpos for each individual record.
std::vector<uint64_t> IndexPos;
IndexPos.reserve(VE.getNonMDStrings().size());
// Write all the records
writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
if (VE.getNonMDStrings().size() > IndexThreshold) {
// Now that we have emitted all the records we will emit the index. But
// first
// backpatch the forward reference so that the reader can skip the records
// efficiently.
Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
// Delta encode the index.
uint64_t PreviousValue = IndexOffsetRecordBitPos;
for (auto &Elt : IndexPos) {
auto EltDelta = Elt - PreviousValue;
PreviousValue = Elt;
Elt = EltDelta;
}
// Emit the index record.
Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
IndexPos.clear();
}
// Write the named metadata now.
writeNamedMetadata(Record);
auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
SmallVector<uint64_t, 4> Record;
Record.push_back(VE.getValueID(&GO));
pushGlobalMetadataAttachment(Record, GO);
Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
};
for (const Function &F : M)
if (F.isDeclaration() && F.hasMetadata())
AddDeclAttachedMetadata(F);
// FIXME: Only store metadata for declarations here, and move data for global
// variable definitions to a separate block (PR28134).
for (const GlobalVariable &GV : M.globals())
if (GV.hasMetadata())
AddDeclAttachedMetadata(GV);
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
if (!VE.hasMDs())
return;
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
writeMetadataStrings(VE.getMDStrings(), Record);
writeMetadataRecords(VE.getNonMDStrings(), Record);
Stream.ExitBlock();
}
void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
// [n x [id, mdnode]]
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
GO.getAllMetadata(MDs);
for (const auto &I : MDs) {
Record.push_back(I.first);
Record.push_back(VE.getMetadataID(I.second));
}
}
void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
SmallVector<uint64_t, 64> Record;
if (F.hasMetadata()) {
pushGlobalMetadataAttachment(Record, F);
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
// Write metadata attachments
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
for (const BasicBlock &BB : F)
for (const Instruction &I : BB) {
MDs.clear();
I.getAllMetadataOtherThanDebugLoc(MDs);
// If no metadata, ignore instruction.
if (MDs.empty()) continue;
Record.push_back(VE.getInstructionID(&I));
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
Record.push_back(MDs[i].first);
Record.push_back(VE.getMetadataID(MDs[i].second));
}
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeModuleMetadataKinds() {
SmallVector<uint64_t, 64> Record;
// Write metadata kinds
// METADATA_KIND - [n x [id, name]]
SmallVector<StringRef, 8> Names;
M.getMDKindNames(Names);
if (Names.empty()) return;
Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
Record.push_back(MDKindID);
StringRef KName = Names[MDKindID];
Record.append(KName.begin(), KName.end());
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeOperandBundleTags() {
// Write metadata kinds
//
// OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
//
// OPERAND_BUNDLE_TAG - [strchr x N]
SmallVector<StringRef, 8> Tags;
M.getOperandBundleTags(Tags);
if (Tags.empty())
return;
Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
for (auto Tag : Tags) {
Record.append(Tag.begin(), Tag.end());
Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeSyncScopeNames() {
SmallVector<StringRef, 8> SSNs;
M.getContext().getSyncScopeNames(SSNs);
if (SSNs.empty())
return;
Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
SmallVector<uint64_t, 64> Record;
for (auto SSN : SSNs) {
Record.append(SSN.begin(), SSN.end());
Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
bool isGlobal) {
if (FirstVal == LastVal) return;
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
unsigned String8Abbrev = 0;
unsigned CString7Abbrev = 0;
unsigned CString6Abbrev = 0;
// If this is a constant pool for the module, emit module-specific abbrevs.
if (isGlobal) {
// Abbrev for CST_CODE_AGGREGATE.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for CST_CODE_STRING.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for CST_CODE_CSTRING.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for CST_CODE_CSTRING.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
}
SmallVector<uint64_t, 64> Record;
const ValueEnumerator::ValueList &Vals = VE.getValues();
Type *LastTy = nullptr;
for (unsigned i = FirstVal; i != LastVal; ++i) {
const Value *V = Vals[i].first;
// If we need to switch types, do so now.
if (V->getType() != LastTy) {
LastTy = V->getType();
Record.push_back(VE.getTypeID(LastTy));
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Record.push_back(unsigned(IA->hasSideEffects()) |
unsigned(IA->isAlignStack()) << 1 |
unsigned(IA->getDialect()&1) << 2);
// Add the asm string.
const std::string &AsmStr = IA->getAsmString();
Record.push_back(AsmStr.size());
Record.append(AsmStr.begin(), AsmStr.end());
// Add the constraint string.
const std::string &ConstraintStr = IA->getConstraintString();
Record.push_back(ConstraintStr.size());
Record.append(ConstraintStr.begin(), ConstraintStr.end());
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
Record.clear();
continue;
}
const Constant *C = cast<Constant>(V);
unsigned Code = -1U;
unsigned AbbrevToUse = 0;
if (C->isNullValue()) {
Code = bitc::CST_CODE_NULL;
} else if (isa<PoisonValue>(C)) {
Code = bitc::CST_CODE_POISON;
} else if (isa<UndefValue>(C)) {
Code = bitc::CST_CODE_UNDEF;
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
if (IV->getBitWidth() <= 64) {
uint64_t V = IV->getSExtValue();
emitSignedInt64(Record, V);
Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size.
emitWideAPInt(Record, IV->getValue());
Code = bitc::CST_CODE_WIDE_INTEGER;
}
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Code = bitc::CST_CODE_FLOAT;
Type *Ty = CFP->getType();
if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
Ty->isDoubleTy()) {
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
} else if (Ty->isX86_FP80Ty()) {
// api needed to prevent premature destruction
// bits are not in the same order as a normal i80 APInt, compensate.
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back((p[1] << 48) | (p[0] >> 16));
Record.push_back(p[0] & 0xffffLL);
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back(p[1]);
} else {
assert(0 && "Unknown FP type!");
}
} else if (isa<ConstantDataSequential>(C) &&
cast<ConstantDataSequential>(C)->isString()) {
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
// Emit constant strings specially.
unsigned NumElts = Str->getNumElements();
// If this is a null-terminated string, use the denser CSTRING encoding.
if (Str->isCString()) {
Code = bitc::CST_CODE_CSTRING;
--NumElts; // Don't encode the null, which isn't allowed by char6.
} else {
Code = bitc::CST_CODE_STRING;
AbbrevToUse = String8Abbrev;
}
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
for (unsigned i = 0; i != NumElts; ++i) {
unsigned char V = Str->getElementAsInteger(i);
Record.push_back(V);
isCStr7 &= (V & 128) == 0;
if (isCStrChar6)
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
}
if (isCStrChar6)
AbbrevToUse = CString6Abbrev;
else if (isCStr7)
AbbrevToUse = CString7Abbrev;
} else if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(C)) {
Code = bitc::CST_CODE_DATA;
Type *EltTy = CDS->getElementType();
if (isa<IntegerType>(EltTy)) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
Record.push_back(CDS->getElementAsInteger(i));
} else {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
Record.push_back(
CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
}
} else if (isa<ConstantAggregate>(C)) {
Code = bitc::CST_CODE_AGGREGATE;
for (const Value *Op : C->operands())
Record.push_back(VE.getValueID(Op));
AbbrevToUse = AggregateAbbrev;
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
default:
if (Instruction::isCast(CE->getOpcode())) {
Code = bitc::CST_CODE_CE_CAST;
Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
} else {
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_BINOP;
Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
uint64_t Flags = getOptimizationFlags(CE);
if (Flags != 0)
Record.push_back(Flags);
}
break;
case Instruction::FNeg: {
assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_UNOP;
Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
uint64_t Flags = getOptimizationFlags(CE);
if (Flags != 0)
Record.push_back(Flags);
break;
}
case Instruction::GetElementPtr: {
Code = bitc::CST_CODE_CE_GEP;
const auto *GO = cast<GEPOperator>(C);
Record.push_back(VE.getTypeID(GO->getSourceElementType()));
if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
Record.push_back((*Idx << 1) | GO->isInBounds());
} else if (GO->isInBounds())
Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
Record.push_back(VE.getValueID(C->getOperand(i)));
}
break;
}
case Instruction::Select:
Code = bitc::CST_CODE_CE_SELECT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ExtractElement:
Code = bitc::CST_CODE_CE_EXTRACTELT;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
Record.push_back(VE.getValueID(C->getOperand(1)));
break;
case Instruction::InsertElement:
Code = bitc::CST_CODE_CE_INSERTELT;
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
Record.push_back(VE.getValueID(C->getOperand(2)));
break;
case Instruction::ShuffleVector:
// If the return type and argument types are the same, this is a
// standard shufflevector instruction. If the types are different,
// then the shuffle is widening or truncating the input vectors, and
// the argument type must also be encoded.
if (C->getType() == C->getOperand(0)->getType()) {
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
} else {
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
}
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
break;
case Instruction::ICmp:
case Instruction::FCmp:
Code = bitc::CST_CODE_CE_CMP;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(CE->getPredicate());
break;
}
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
Code = bitc::CST_CODE_BLOCKADDRESS;
Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
Record.push_back(VE.getValueID(BA->getFunction()));
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
} else {
#ifndef NDEBUG
C->dump();
#endif
llvm_unreachable("Unknown constant!");
}
Stream.EmitRecord(Code, Record, AbbrevToUse);
Record.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeModuleConstants() {
const ValueEnumerator::ValueList &Vals = VE.getValues();
// Find the first constant to emit, which is the first non-globalvalue value.
// We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
if (!isa<GlobalValue>(Vals[i].first)) {
writeConstants(i, Vals.size(), true);
return;
}
}
}
/// pushValueAndType - The file has to encode both the value and type id for
/// many values, because we need to know what type to create for forward
/// references. However, most operands are not forward references, so this type
/// field is not needed.
///
/// This function adds V's value ID to Vals. If the value ID is higher than the
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID. The value ID that is written is encoded relative to the InstID.
bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned ValID = VE.getValueID(V);
// Make encoding relative to the InstID.
Vals.push_back(InstID - ValID);
if (ValID >= InstID) {
Vals.push_back(VE.getTypeID(V->getType()));
return true;
}
return false;
}
void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
unsigned InstID) {
SmallVector<unsigned, 64> Record;
LLVMContext &C = CS.getContext();
for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
const auto &Bundle = CS.getOperandBundleAt(i);
Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
for (auto &Input : Bundle.Inputs)
pushValueAndType(Input, InstID, Record);
Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
Record.clear();
}
}
/// pushValue - Like pushValueAndType, but where the type of the value is
/// omitted (perhaps it was already encoded in an earlier operand).
void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned ValID = VE.getValueID(V);
Vals.push_back(InstID - ValID);
}
void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
SmallVectorImpl<uint64_t> &Vals) {
unsigned ValID = VE.getValueID(V);
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
emitSignedInt64(Vals, diff);
}
/// WriteInstruction - Emit an instruction to the specified stream.
void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
unsigned InstID,
SmallVectorImpl<unsigned> &Vals) {
unsigned Code = 0;
unsigned AbbrevToUse = 0;
VE.setInstructionID(&I);
switch (I.getOpcode()) {
default:
if (Instruction::isCast(I.getOpcode())) {
Code = bitc::FUNC_CODE_INST_CAST;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
} else {
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
Code = bitc::FUNC_CODE_INST_BINOP;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
pushValue(I.getOperand(1), InstID, Vals);
Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0) {
if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
Vals.push_back(Flags);
}
}
break;
case Instruction::FNeg: {
Code = bitc::FUNC_CODE_INST_UNOP;
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0) {
if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
Vals.push_back(Flags);
}
break;
}
case Instruction::GetElementPtr: {
Code = bitc::FUNC_CODE_INST_GEP;
AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
auto &GEPInst = cast<GetElementPtrInst>(I);
Vals.push_back(GEPInst.isInBounds());
Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals);
break;
}
case Instruction::ExtractValue: {
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
pushValueAndType(I.getOperand(0), InstID, Vals);
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
Vals.append(EVI->idx_begin(), EVI->idx_end());
break;
}
case Instruction::InsertValue: {
Code = bitc::FUNC_CODE_INST_INSERTVAL;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValueAndType(I.getOperand(1), InstID, Vals);
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
Vals.append(IVI->idx_begin(), IVI->idx_end());
break;
}
case Instruction::Select: {
Code = bitc::FUNC_CODE_INST_VSELECT;
pushValueAndType(I.getOperand(1), InstID, Vals);
pushValue(I.getOperand(2), InstID, Vals);
pushValueAndType(I.getOperand(0), InstID, Vals);
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0)
Vals.push_back(Flags);
break;
}
case Instruction::ExtractElement:
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValueAndType(I.getOperand(1), InstID, Vals);
break;
case Instruction::InsertElement:
Code = bitc::FUNC_CODE_INST_INSERTELT;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
pushValueAndType(I.getOperand(2), InstID, Vals);
break;
case Instruction::ShuffleVector:
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
Vals);
break;
case Instruction::ICmp:
case Instruction::FCmp: {
// compare returning Int1Ty or vector of Int1Ty
Code = bitc::FUNC_CODE_INST_CMP2;
pushValueAndType(I.getOperand(0), InstID, Vals);
pushValue(I.getOperand(1), InstID, Vals);
Vals.push_back(cast<CmpInst>(I).getPredicate());
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0)
Vals.push_back(Flags);
break;
}
case Instruction::Ret:
{
Code = bitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
if (NumOperands == 0)
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
else if (NumOperands == 1) {
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
} else {
for (unsigned i = 0, e = NumOperands; i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals);
}
}
break;
case Instruction::Br:
{
Code = bitc::FUNC_CODE_INST_BR;
const BranchInst &II = cast<BranchInst>(I);
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
if (II.isConditional()) {
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
pushValue(II.getCondition(), InstID, Vals);
}
}
break;
case Instruction::Switch:
{
Code = bitc::FUNC_CODE_INST_SWITCH;
const SwitchInst &SI = cast<SwitchInst>(I);
Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
pushValue(SI.getCondition(), InstID, Vals);
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
for (auto Case : SI.cases()) {
Vals.push_back(VE.getValueID(Case.getCaseValue()));
Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
}
}
break;
case Instruction::IndirectBr:
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
// Encode the address operand as relative, but not the basic blocks.
pushValue(I.getOperand(0), InstID, Vals);
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
case Instruction::Invoke: {
const InvokeInst *II = cast<InvokeInst>(&I);
const Value *Callee = II->getCalledOperand();
FunctionType *FTy = II->getFunctionType();
if (II->hasOperandBundles())
writeOperandBundles(*II, InstID);
Code = bitc::FUNC_CODE_INST_INVOKE;
Vals.push_back(VE.getAttributeListID(II->getAttributes()));
Vals.push_back(II->getCallingConv() | 1 << 13);
Vals.push_back(VE.getValueID(II->getNormalDest()));
Vals.push_back(VE.getValueID(II->getUnwindDest()));
Vals.push_back(VE.getTypeID(FTy));
pushValueAndType(Callee, InstID, Vals);
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
pushValue(I.getOperand(i), InstID, Vals); // fixed param.
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
}
break;
}
case Instruction::Resume:
Code = bitc::FUNC_CODE_INST_RESUME;
pushValueAndType(I.getOperand(0), InstID, Vals);
break;
case Instruction::CleanupRet: {
Code = bitc::FUNC_CODE_INST_CLEANUPRET;
const auto &CRI = cast<CleanupReturnInst>(I);
pushValue(CRI.getCleanupPad(), InstID, Vals);
if (CRI.hasUnwindDest())
Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
break;
}
case Instruction::CatchRet: {
Code = bitc::FUNC_CODE_INST_CATCHRET;
const auto &CRI = cast<CatchReturnInst>(I);
pushValue(CRI.getCatchPad(), InstID, Vals);
Vals.push_back(VE.getValueID(CRI.getSuccessor()));
break;
}
case Instruction::CleanupPad:
case Instruction::CatchPad: {
const auto &FuncletPad = cast<FuncletPadInst>(I);
Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
: bitc::FUNC_CODE_INST_CLEANUPPAD;
pushValue(FuncletPad.getParentPad(), InstID, Vals);
unsigned NumArgOperands = FuncletPad.getNumArgOperands();
Vals.push_back(NumArgOperands);
for (unsigned Op = 0; Op != NumArgOperands; ++Op)
pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
break;
}
case Instruction::CatchSwitch: {
Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
const auto &CatchSwitch = cast<CatchSwitchInst>(I);
pushValue(CatchSwitch.getParentPad(), InstID, Vals);
unsigned NumHandlers = CatchSwitch.getNumHandlers();
Vals.push_back(NumHandlers);
for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
Vals.push_back(VE.getValueID(CatchPadBB));
if (CatchSwitch.hasUnwindDest())
Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
break;
}
case Instruction::CallBr: {
const CallBrInst *CBI = cast<CallBrInst>(&I);
const Value *Callee = CBI->getCalledOperand();
FunctionType *FTy = CBI->getFunctionType();
if (CBI->hasOperandBundles())
writeOperandBundles(*CBI, InstID);
Code = bitc::FUNC_CODE_INST_CALLBR;
Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
1 << bitc::CALL_EXPLICIT_TYPE);
Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
Vals.push_back(CBI->getNumIndirectDests());
for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
Vals.push_back(VE.getTypeID(FTy));
pushValueAndType(Callee, InstID, Vals);
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
pushValue(I.getOperand(i), InstID, Vals); // fixed param.
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
i != e; ++i)
pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
}
break;
}
case Instruction::Unreachable:
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
break;
case Instruction::PHI: {
const PHINode &PN = cast<PHINode>(I);
Code = bitc::FUNC_CODE_INST_PHI;
// With the newer instruction encoding, forward references could give
// negative valued IDs. This is most common for PHIs, so we use
// signed VBRs.
SmallVector<uint64_t, 128> Vals64;
Vals64.push_back(VE.getTypeID(PN.getType()));
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
}
uint64_t Flags = getOptimizationFlags(&I);
if (Flags != 0)
Vals64.push_back(Flags);
// Emit a Vals64 vector and exit.
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
Vals64.clear();
return;
}
case Instruction::LandingPad: {
const LandingPadInst &LP = cast<LandingPadInst>(I);
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
Vals.push_back(VE.getTypeID(LP.getType()));
Vals.push_back(LP.isCleanup());
Vals.push_back(LP.getNumClauses());
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
if (LP.isCatch(I))
Vals.push_back(LandingPadInst::Catch);
else
Vals.push_back(LandingPadInst::Filter);
pushValueAndType(LP.getClause(I), InstID, Vals);
}
break;
}
case Instruction::Alloca: {
Code = bitc::FUNC_CODE_INST_ALLOCA;
const AllocaInst &AI = cast<AllocaInst>(I);
Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
using APV = AllocaPackedValues;
unsigned Record = 0;
Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign()));
Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
Bitfield::set<APV::ExplicitType>(Record, true);
Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
Vals.push_back(Record);
break;
}
case Instruction::Load:
if (cast<LoadInst>(I).isAtomic()) {
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
pushValueAndType(I.getOperand(0), InstID, Vals);
} else {
Code = bitc::FUNC_CODE_INST_LOAD;
if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
}
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
Vals.push_back(cast<LoadInst>(I).isVolatile());
if (cast<LoadInst>(I).isAtomic()) {
Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
}
break;
case Instruction::Store:
if (cast<StoreInst>(I).isAtomic())
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
else
Code = bitc::FUNC_CODE_INST_STORE;
pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
Vals.push_back(cast<StoreInst>(I).isVolatile());
if (cast<StoreInst>(I).isAtomic()) {
Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
Vals.push_back(
getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
}
break;
case Instruction::AtomicCmpXchg:
Code = bitc::FUNC_CODE_INST_CMPXCHG;
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
pushValue(I.getOperand(2), InstID, Vals); // newval.
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
Vals.push_back(
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
Vals.push_back(
getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
Vals.push_back(
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
break;
case Instruction::AtomicRMW:
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
pushValue(I.getOperand(1), InstID, Vals); // val.
Vals.push_back(
getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
Vals.push_back(
getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
break;
case Instruction::Fence:
Code = bitc::FUNC_CODE_INST_FENCE;
Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
break;
case Instruction::Call: {
const CallInst &CI = cast<CallInst>(I);
FunctionType *FTy = CI.getFunctionType();
if (CI.hasOperandBundles())
writeOperandBundles(CI, InstID);
Code = bitc::FUNC_CODE_INST_CALL;
Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
unsigned Flags = getOptimizationFlags(&I);
Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
1 << bitc::CALL_EXPLICIT_TYPE |
unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
unsigned(Flags != 0) << bitc::CALL_FMF);
if (Flags != 0)
Vals.push_back(Flags);
Vals.push_back(VE.getTypeID(FTy));
pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
// Check for labels (can happen with asm labels).
if (FTy->getParamType(i)->isLabelTy())
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
else
pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
}
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
i != e; ++i)
pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
}
break;
}
case Instruction::VAArg:
Code = bitc::FUNC_CODE_INST_VAARG;
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
pushValue(I.getOperand(0), InstID, Vals); // valist.
Vals.push_back(VE.getTypeID(I.getType())); // restype.
break;
case Instruction::Freeze:
Code = bitc::FUNC_CODE_INST_FREEZE;
pushValueAndType(I.getOperand(0), InstID, Vals);
break;
}
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
}
/// Write a GlobalValue VST to the module. The purpose of this data structure is
/// to allow clients to efficiently find the function body.
void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
// Get the offset of the VST we are writing, and backpatch it into
// the VST forward declaration record.
uint64_t VSTOffset = Stream.GetCurrentBitNo();
// The BitcodeStartBit was the stream offset of the identification block.
VSTOffset -= bitcodeStartBit();
assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
// Note that we add 1 here because the offset is relative to one word
// before the start of the identification block, which was historically
// always the start of the regular bitcode header.
Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
for (const Function &F : M) {
uint64_t Record[2];
if (F.isDeclaration())
continue;
Record[0] = VE.getValueID(&F);
// Save the word offset of the function (from the start of the
// actual bitcode written to the stream).
uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
// Note that we add 1 here because the offset is relative to one word
// before the start of the identification block, which was historically
// always the start of the regular bitcode header.
Record[1] = BitcodeIndex / 32 + 1;
Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
}
Stream.ExitBlock();
}
/// Emit names for arguments, instructions and basic blocks in a function.
void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
const ValueSymbolTable &VST) {
if (VST.empty())
return;
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
// FIXME: Set up the abbrev, we know how many values there are!
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<uint64_t, 64> NameVals;
for (const ValueName &Name : VST) {
// Figure out the encoding to use for the name.
StringEncoding Bits = getStringEncoding(Name.getKey());
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
NameVals.push_back(VE.getValueID(Name.getValue()));
// VST_CODE_ENTRY: [valueid, namechar x N]
// VST_CODE_BBENTRY: [bbid, namechar x N]
unsigned Code;
if (isa<BasicBlock>(Name.getValue())) {
Code = bitc::VST_CODE_BBENTRY;
if (Bits == SE_Char6)
AbbrevToUse = VST_BBENTRY_6_ABBREV;
} else {
Code = bitc::VST_CODE_ENTRY;
if (Bits == SE_Char6)
AbbrevToUse = VST_ENTRY_6_ABBREV;
else if (Bits == SE_Fixed7)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
for (const auto P : Name.getKey())
NameVals.push_back((unsigned char)P);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
}
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
unsigned Code;
if (isa<BasicBlock>(Order.V))
Code = bitc::USELIST_CODE_BB;
else
Code = bitc::USELIST_CODE_DEFAULT;
SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
Record.push_back(VE.getValueID(Order.V));
Stream.EmitRecord(Code, Record);
}
void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
assert(VE.shouldPreserveUseListOrder() &&
"Expected to be preserving use-list order");
auto hasMore = [&]() {
return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
};
if (!hasMore())
// Nothing to do.
return;
Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
while (hasMore()) {
writeUseList(std::move(VE.UseListOrders.back()));
VE.UseListOrders.pop_back();
}
Stream.ExitBlock();
}
/// Emit a function body to the module stream.
void ModuleBitcodeWriter::writeFunction(
const Function &F,
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
// Save the bitcode index of the start of this function block for recording
// in the VST.
FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
writeConstants(CstStart, CstEnd, false);
// If there is function-local metadata, emit it now.
writeFunctionMetadata(F);
// Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
bool NeedsMetadataAttachment = F.hasMetadata();
DILocation *LastDL = nullptr;
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
writeInstruction(*I, InstID, Vals);
if (!I->getType()->isVoidTy())
++InstID;
// If the instruction has metadata, write a metadata attachment later.
NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
// If the instruction has a debug location, emit it.
DILocation *DL = I->getDebugLoc();
if (!DL)
continue;
if (DL == LastDL) {
// Just repeat the same debug loc as last time.
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
continue;
}
Vals.push_back(DL->getLine());
Vals.push_back(DL->getColumn());
Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
Vals.push_back(DL->isImplicitCode());
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
Vals.clear();
LastDL = DL;
}
// Emit names for all the instructions etc.
if (auto *Symtab = F.getValueSymbolTable())
writeFunctionLevelValueSymbolTable(*Symtab);
if (NeedsMetadataAttachment)
writeFunctionMetadataAttachment(F);
if (VE.shouldPreserveUseListOrder())
writeUseListBlock(&F);
VE.purgeFunction();
Stream.ExitBlock();
}
// Emit blockinfo, which defines the standard abbreviations etc.
void ModuleBitcodeWriter::writeBlockInfo() {
// We only want to emit block info records for blocks that have multiple
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
// Other blocks can define their abbrevs inline.
Stream.EnterBlockInfoBlock();
{ // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_ENTRY_8_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 7-bit fixed width VST_CODE_ENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_ENTRY_7_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_CODE_ENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_ENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_CODE_BBENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
VST_BBENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
VE.computeBitsRequiredForTypeIndicies()));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_SETTYPE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INTEGER abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_INTEGER_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_CE_CAST_Abbrev)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // NULL abbrev for CONSTANTS_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
CONSTANTS_NULL_Abbrev)
llvm_unreachable("Unexpected abbrev ordering!");
}
// FIXME: This should only use space for first class types!
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_LOAD_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_UNOP abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_UNOP_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_UNOP_FLAGS_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_BINOP_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_BINOP_FLAGS_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_CAST abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
VE.computeBitsRequiredForTypeIndicies()));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_CAST_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_RET_VOID_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_RET_VAL_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_UNREACHABLE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
Log2_32_Ceil(VE.getTypes().size() + 1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
FUNCTION_INST_GEP_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
Stream.ExitBlock();
}
/// Write the module path strings, currently only used when generating
/// a combined index file.
void IndexBitcodeWriter::writeModStrings() {
Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
// TODO: See which abbrev sizes we actually need to emit
// 8-bit fixed-width MST_ENTRY strings.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
// 7-bit fixed width MST_ENTRY strings.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
// 6-bit char6 MST_ENTRY strings.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
// Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
SmallVector<unsigned, 64> Vals;
forEachModule(
[&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
StringRef Key = MPSE.getKey();
const auto &Value = MPSE.getValue();
StringEncoding Bits = getStringEncoding(Key);
unsigned AbbrevToUse = Abbrev8Bit;
if (Bits == SE_Char6)
AbbrevToUse = Abbrev6Bit;
else if (Bits == SE_Fixed7)
AbbrevToUse = Abbrev7Bit;
Vals.push_back(Value.first);
Vals.append(Key.begin(), Key.end());
// Emit the finished record.
Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
// Emit an optional hash for the module now
const auto &Hash = Value.second;
if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
Vals.assign(Hash.begin(), Hash.end());
// Emit the hash record.
Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
}
Vals.clear();
});
Stream.ExitBlock();
}
/// Write the function type metadata related records that need to appear before
/// a function summary entry (whether per-module or combined).
template <typename Fn>
static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
FunctionSummary *FS,
Fn GetValueID) {
if (!FS->type_tests().empty())
Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
SmallVector<uint64_t, 64> Record;
auto WriteVFuncIdVec = [&](uint64_t Ty,
ArrayRef<FunctionSummary::VFuncId> VFs) {
if (VFs.empty())
return;
Record.clear();
for (auto &VF : VFs) {
Record.push_back(VF.GUID);
Record.push_back(VF.Offset);
}
Stream.EmitRecord(Ty, Record);
};
WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
FS->type_test_assume_vcalls());
WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
FS->type_checked_load_vcalls());
auto WriteConstVCallVec = [&](uint64_t Ty,
ArrayRef<FunctionSummary::ConstVCall> VCs) {
for (auto &VC : VCs) {
Record.clear();
Record.push_back(VC.VFunc.GUID);
Record.push_back(VC.VFunc.Offset);
llvm::append_range(Record, VC.Args);
Stream.EmitRecord(Ty, Record);
}
};
WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
FS->type_test_assume_const_vcalls());
WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
FS->type_checked_load_const_vcalls());
auto WriteRange = [&](ConstantRange Range) {
Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
assert(Range.getLower().getNumWords() == 1);
assert(Range.getUpper().getNumWords() == 1);
emitSignedInt64(Record, *Range.getLower().getRawData());
emitSignedInt64(Record, *Range.getUpper().getRawData());
};
if (!FS->paramAccesses().empty()) {
Record.clear();
for (auto &Arg : FS->paramAccesses()) {
size_t UndoSize = Record.size();
Record.push_back(Arg.ParamNo);
WriteRange(Arg.Use);
Record.push_back(Arg.Calls.size());
for (auto &Call : Arg.Calls) {
Record.push_back(Call.ParamNo);
Optional<unsigned> ValueID = GetValueID(Call.Callee);
if (!ValueID) {
// If ValueID is unknown we can't drop just this call, we must drop
// entire parameter.
Record.resize(UndoSize);
break;
}
Record.push_back(*ValueID);
WriteRange(Call.Offsets);
}
}
if (!Record.empty())
Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
}
}
/// Collect type IDs from type tests used by function.
static void
getReferencedTypeIds(FunctionSummary *FS,
std::set<GlobalValue::GUID> &ReferencedTypeIds) {
if (!FS->type_tests().empty())
for (auto &TT : FS->type_tests())
ReferencedTypeIds.insert(TT);
auto GetReferencedTypesFromVFuncIdVec =
[&](ArrayRef<FunctionSummary::VFuncId> VFs) {
for (auto &VF : VFs)
ReferencedTypeIds.insert(VF.GUID);
};
GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
auto GetReferencedTypesFromConstVCallVec =
[&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
for (auto &VC : VCs)
ReferencedTypeIds.insert(VC.VFunc.GUID);
};
GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
}
static void writeWholeProgramDevirtResolutionByArg(
SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
const WholeProgramDevirtResolution::ByArg &ByArg) {
NameVals.push_back(args.size());
llvm::append_range(NameVals, args);
NameVals.push_back(ByArg.TheKind);
NameVals.push_back(ByArg.Info);
NameVals.push_back(ByArg.Byte);
NameVals.push_back(ByArg.Bit);
}
static void writeWholeProgramDevirtResolution(
SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
NameVals.push_back(Id);
NameVals.push_back(Wpd.TheKind);
NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
NameVals.push_back(Wpd.SingleImplName.size());
NameVals.push_back(Wpd.ResByArg.size());
for (auto &A : Wpd.ResByArg)
writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
}
static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
StringTableBuilder &StrtabBuilder,
const std::string &Id,
const TypeIdSummary &Summary) {
NameVals.push_back(StrtabBuilder.add(Id));
NameVals.push_back(Id.size());
NameVals.push_back(Summary.TTRes.TheKind);
NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
NameVals.push_back(Summary.TTRes.AlignLog2);
NameVals.push_back(Summary.TTRes.SizeM1);
NameVals.push_back(Summary.TTRes.BitMask);
NameVals.push_back(Summary.TTRes.InlineBits);
for (auto &W : Summary.WPDRes)
writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
W.second);
}
static void writeTypeIdCompatibleVtableSummaryRecord(
SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
ValueEnumerator &VE) {
NameVals.push_back(StrtabBuilder.add(Id));
NameVals.push_back(Id.size());
for (auto &P : Summary) {
NameVals.push_back(P.AddressPointOffset);
NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
}
}
// Helper to emit a single function summary record.
void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
const Function &F) {
NameVals.push_back(ValueID);
FunctionSummary *FS = cast<FunctionSummary>(Summary);
writeFunctionTypeMetadataRecords(
Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> {
return {VE.getValueID(VI.getValue())};
});
auto SpecialRefCnts = FS->specialRefCounts();
NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
NameVals.push_back(FS->instCount());
NameVals.push_back(getEncodedFFlags(FS->fflags()));
NameVals.push_back(FS->refs().size());
NameVals.push_back(SpecialRefCnts.first); // rorefcnt
NameVals.push_back(SpecialRefCnts.second); // worefcnt
for (auto &RI : FS->refs())
NameVals.push_back(VE.getValueID(RI.getValue()));
bool HasProfileData =
F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
for (auto &ECI : FS->calls()) {
NameVals.push_back(getValueId(ECI.first));
if (HasProfileData)
NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
else if (WriteRelBFToSummary)
NameVals.push_back(ECI.second.RelBlockFreq);
}
unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
unsigned Code =
(HasProfileData ? bitc::FS_PERMODULE_PROFILE
: (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
: bitc::FS_PERMODULE));
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, FSAbbrev);
NameVals.clear();
}
// Collect the global value references in the given variable's initializer,
// and emit them in a summary record.
void ModuleBitcodeWriterBase::writeModuleLevelReferences(
const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
auto VI = Index->getValueInfo(V.getGUID());
if (!VI || VI.getSummaryList().empty()) {
// Only declarations should not have a summary (a declaration might however
// have a summary if the def was in module level asm).
assert(V.isDeclaration());
return;
}
auto *Summary = VI.getSummaryList()[0].get();
NameVals.push_back(VE.getValueID(&V));
GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
auto VTableFuncs = VS->vTableFuncs();
if (!VTableFuncs.empty())
NameVals.push_back(VS->refs().size());
unsigned SizeBeforeRefs = NameVals.size();
for (auto &RI : VS->refs())
NameVals.push_back(VE.getValueID(RI.getValue()));
// Sort the refs for determinism output, the vector returned by FS->refs() has
// been initialized from a DenseSet.
llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
if (VTableFuncs.empty())
Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
FSModRefsAbbrev);
else {
// VTableFuncs pairs should already be sorted by offset.
for (auto &P : VTableFuncs) {
NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
NameVals.push_back(P.VTableOffset);
}
Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
FSModVTableRefsAbbrev);
}
NameVals.clear();
}
/// Emit the per-module summary section alongside the rest of
/// the module's bitcode.
void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
// By default we compile with ThinLTO if the module has a summary, but the
// client can request full LTO with a module flag.
bool IsThinLTO = true;
if (auto *MD =
mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
IsThinLTO = MD->getZExtValue();
Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
: bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4);
Stream.EmitRecord(
bitc::FS_VERSION,
ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
// Write the index flags.
uint64_t Flags = 0;
// Bits 1-3 are set only in the combined index, skip them.
if (Index->enableSplitLTOUnit())
Flags |= 0x8;
Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
if (Index->begin() == Index->end()) {
Stream.ExitBlock();
return;
}
for (const auto &GVI : valueIds()) {
Stream.EmitRecord(bitc::FS_VALUE_GUID,
ArrayRef<uint64_t>{GVI.second, GVI.first});
}
// Abbrev for FS_PERMODULE_PROFILE.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
// numrefs x valueid, n x (valueid, hotness)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
Abbv = std::make_shared<BitCodeAbbrev>();
if (WriteRelBFToSummary)
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
else
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
// numrefs x valueid, n x (valueid [, rel_block_freq])
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
// numrefs x valueid, n x (valueid , offset)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_ALIAS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_TYPE_ID_METADATA
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
// n x (valueid , offset)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
SmallVector<uint64_t, 64> NameVals;
// Iterate over the list of functions instead of the Index to
// ensure the ordering is stable.
for (const Function &F : M) {
// Summary emission does not support anonymous functions, they have to
// renamed using the anonymous function renaming pass.
if (!F.hasName())
report_fatal_error("Unexpected anonymous function when writing summary");
ValueInfo VI = Index->getValueInfo(F.getGUID());
if (!VI || VI.getSummaryList().empty()) {
// Only declarations should not have a summary (a declaration might
// however have a summary if the def was in module level asm).
assert(F.isDeclaration());
continue;
}
auto *Summary = VI.getSummaryList()[0].get();
writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
FSCallsAbbrev, FSCallsProfileAbbrev, F);
}
// Capture references from GlobalVariable initializers, which are outside
// of a function scope.
for (const GlobalVariable &G : M.globals())
writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
FSModVTableRefsAbbrev);
for (const GlobalAlias &A : M.aliases()) {
auto *Aliasee = A.getBaseObject();
if (!Aliasee->hasName())
// Nameless function don't have an entry in the summary, skip it.
continue;
auto AliasId = VE.getValueID(&A);
auto AliaseeId = VE.getValueID(Aliasee);
NameVals.push_back(AliasId);
auto *Summary = Index->getGlobalValueSummary(A);
AliasSummary *AS = cast<AliasSummary>(Summary);
NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
NameVals.push_back(AliaseeId);
Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
NameVals.clear();
}
for (auto &S : Index->typeIdCompatibleVtableMap()) {
writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
S.second, VE);
Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
TypeIdCompatibleVtableAbbrev);
NameVals.clear();
}
Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
ArrayRef<uint64_t>{Index->getBlockCount()});
Stream.ExitBlock();
}
/// Emit the combined summary section into the combined index file.
void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
Stream.EmitRecord(
bitc::FS_VERSION,
ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
// Write the index flags.
Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
for (const auto &GVI : valueIds()) {
Stream.EmitRecord(bitc::FS_VALUE_GUID,
ArrayRef<uint64_t>{GVI.second, GVI.first});
}
// Abbrev for FS_COMBINED.
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
// numrefs x valueid, n x (valueid)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_COMBINED_PROFILE.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
// numrefs x valueid, n x (valueid, hotness)
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// Abbrev for FS_COMBINED_ALIAS.
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
// The aliases are emitted as a post-pass, and will point to the value
// id of the aliasee. Save them in a vector for post-processing.
SmallVector<AliasSummary *, 64> Aliases;
// Save the value id for each summary for alias emission.
DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
SmallVector<uint64_t, 64> NameVals;
// Set that will be populated during call to writeFunctionTypeMetadataRecords
// with the type ids referenced by this index file.
std::set<GlobalValue::GUID> ReferencedTypeIds;
// For local linkage, we also emit the original name separately
// immediately after the record.
auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
if (!GlobalValue::isLocalLinkage(S.linkage()))
return;
NameVals.push_back(S.getOriginalName());
Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
NameVals.clear();
};
std::set<GlobalValue::GUID> DefOrUseGUIDs;
forEachSummary([&](GVInfo I, bool IsAliasee) {
GlobalValueSummary *S = I.second;
assert(S);
DefOrUseGUIDs.insert(I.first);
for (const ValueInfo &VI : S->refs())
DefOrUseGUIDs.insert(VI.getGUID());
auto ValueId = getValueId(I.first);
assert(ValueId);
SummaryToValueIdMap[S] = *ValueId;
// If this is invoked for an aliasee, we want to record the above
// mapping, but then not emit a summary entry (if the aliasee is
// to be imported, we will invoke this separately with IsAliasee=false).
if (IsAliasee)
return;
if (auto *AS = dyn_cast<AliasSummary>(S)) {
// Will process aliases as a post-pass because the reader wants all
// global to be loaded first.
Aliases.push_back(AS);
return;
}
if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
NameVals.push_back(*ValueId);
NameVals.push_back(Index.getModuleId(VS->modulePath()));
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
for (auto &RI : VS->refs()) {
auto RefValueId = getValueId(RI.getGUID());
if (!RefValueId)
continue;
NameVals.push_back(*RefValueId);
}
// Emit the finished record.
Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
FSModRefsAbbrev);
NameVals.clear();
MaybeEmitOriginalName(*S);
return;
}
auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> {
GlobalValue::GUID GUID = VI.getGUID();
Optional<unsigned> CallValueId = getValueId(GUID);
if (CallValueId)
return CallValueId;
// For SamplePGO, the indirect call targets for local functions will
// have its original name annotated in profile. We try to find the
// corresponding PGOFuncName as the GUID.
GUID = Index.getGUIDFromOriginalID(GUID);
if (!GUID)
return None;
CallValueId = getValueId(GUID);
if (!CallValueId)
return None;
// The mapping from OriginalId to GUID may return a GUID
// that corresponds to a static variable. Filter it out here.
// This can happen when
// 1) There is a call to a library function which does not have
// a CallValidId;
// 2) There is a static variable with the OriginalGUID identical
// to the GUID of the library function in 1);
// When this happens, the logic for SamplePGO kicks in and
// the static variable in 2) will be found, which needs to be
// filtered out.
auto *GVSum = Index.getGlobalValueSummary(GUID, false);
if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
return None;
return CallValueId;
};
auto *FS = cast<FunctionSummary>(S);
writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
getReferencedTypeIds(FS, ReferencedTypeIds);
NameVals.push_back(*ValueId);
NameVals.push_back(Index.getModuleId(FS->modulePath()));
NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
NameVals.push_back(FS->instCount());
NameVals.push_back(getEncodedFFlags(FS->fflags()));
NameVals.push_back(FS->entryCount());
// Fill in below
NameVals.push_back(0); // numrefs
NameVals.push_back(0); // rorefcnt
NameVals.push_back(0); // worefcnt
unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
for (auto &RI : FS->refs()) {
auto RefValueId = getValueId(RI.getGUID());
if (!RefValueId)
continue;
NameVals.push_back(*RefValueId);
if (RI.isReadOnly())
RORefCnt++;
else if (RI.isWriteOnly())
WORefCnt++;
Count++;
}
NameVals[6] = Count;
NameVals[7] = RORefCnt;
NameVals[8] = WORefCnt;
bool HasProfileData = false;
for (auto &EI : FS->calls()) {
HasProfileData |=
EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
if (HasProfileData)
break;
}
for (auto &EI : FS->calls()) {
// If this GUID doesn't have a value id, it doesn't have a function
// summary and we don't need to record any calls to it.
Optional<unsigned> CallValueId = GetValueId(EI.first);
if (!CallValueId)
continue;
NameVals.push_back(*CallValueId);
if (HasProfileData)
NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
}
unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
unsigned Code =
(HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, FSAbbrev);
NameVals.clear();
MaybeEmitOriginalName(*S);
});
for (auto *AS : Aliases) {
auto AliasValueId = SummaryToValueIdMap[AS];
assert(AliasValueId);
NameVals.push_back(AliasValueId);
NameVals.push_back(Index.getModuleId(AS->modulePath()));
NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
assert(AliaseeValueId);
NameVals.push_back(AliaseeValueId);
// Emit the finished record.
Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
NameVals.clear();
MaybeEmitOriginalName(*AS);
if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
getReferencedTypeIds(FS, ReferencedTypeIds);
}
if (!Index.cfiFunctionDefs().empty()) {
for (auto &S : Index.cfiFunctionDefs()) {
if (DefOrUseGUIDs.count(
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
NameVals.push_back(StrtabBuilder.add(S));
NameVals.push_back(S.size());
}
}
if (!NameVals.empty()) {
Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
NameVals.clear();
}
}
if (!Index.cfiFunctionDecls().empty()) {
for (auto &S : Index.cfiFunctionDecls()) {
if (DefOrUseGUIDs.count(
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
NameVals.push_back(StrtabBuilder.add(S));
NameVals.push_back(S.size());
}
}
if (!NameVals.empty()) {
Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
NameVals.clear();
}
}
// Walk the GUIDs that were referenced, and write the
// corresponding type id records.
for (auto &T : ReferencedTypeIds) {
auto TidIter = Index.typeIds().equal_range(T);
for (auto It = TidIter.first; It != TidIter.second; ++It) {
writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
It->second.second);
Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
NameVals.clear();
}
}
Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
ArrayRef<uint64_t>{Index.getBlockCount()});
Stream.ExitBlock();
}
/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
/// current llvm version, and a record for the epoch number.
static void writeIdentificationBlock(BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
// Write the "user readable" string identifying the bitcode producer
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
"LLVM" LLVM_VERSION_STRING, StringAbbrev);
// Write the epoch version
Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
Stream.ExitBlock();
}
void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
// Emit the module's hash.
// MODULE_CODE_HASH: [5*i32]
if (GenerateHash) {
uint32_t Vals[5];
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
Buffer.size() - BlockStartPos));
StringRef Hash = Hasher.result();
for (int Pos = 0; Pos < 20; Pos += 4) {
Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
}
// Emit the finished record.
Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
if (ModHash)
// Save the written hash value.
llvm::copy(Vals, std::begin(*ModHash));
}
}
void ModuleBitcodeWriter::write() {
writeIdentificationBlock(Stream);
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
size_t BlockStartPos = Buffer.size();
writeModuleVersion();
// Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo();
// Emit information describing all of the types in the module.
writeTypeTable();
// Emit information about attribute groups.
writeAttributeGroupTable();
// Emit information about parameter attributes.
writeAttributeTable();
writeComdats();
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
writeModuleInfo();
// Emit constants.
writeModuleConstants();
// Emit metadata kind names.
writeModuleMetadataKinds();
// Emit metadata.
writeModuleMetadata();
// Emit module-level use-lists.
if (VE.shouldPreserveUseListOrder())
writeUseListBlock(nullptr);
writeOperandBundleTags();
writeSyncScopeNames();
// Emit function bodies.
DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
if (!F->isDeclaration())
writeFunction(*F, FunctionToBitcodeIndex);
// Need to write after the above call to WriteFunction which populates
// the summary information in the index.
if (Index)
writePerModuleGlobalValueSummary();
writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
writeModuleHash(BlockStartPos);
Stream.ExitBlock();
}
static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
uint32_t &Position) {
support::endian::write32le(&Buffer[Position], Value);
Position += 4;
}
/// If generating a bc file on darwin, we have to emit a
/// header and trailer to make it compatible with the system archiver. To do
/// this we emit the following header, and then emit a trailer that pads the
/// file out to be a multiple of 16 bytes.
///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
/// uint32_t CPUType; // CPU specifier.
/// ... potentially more later ...
/// };
static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
const Triple &TT) {
unsigned CPUType = ~0U;
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
// armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
// number from /usr/include/mach/machine.h. It is ok to reproduce the
// specific constants here because they are implicitly part of the Darwin ABI.
enum {
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
DARWIN_CPU_TYPE_X86 = 7,
DARWIN_CPU_TYPE_ARM = 12,
DARWIN_CPU_TYPE_POWERPC = 18
};
Triple::ArchType Arch = TT.getArch();
if (Arch == Triple::x86_64)
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
else if (Arch == Triple::x86)
CPUType = DARWIN_CPU_TYPE_X86;
else if (Arch == Triple::ppc)
CPUType = DARWIN_CPU_TYPE_POWERPC;
else if (Arch == Triple::ppc64)
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
else if (Arch == Triple::arm || Arch == Triple::thumb)
CPUType = DARWIN_CPU_TYPE_ARM;
// Traditional Bitcode starts after header.
assert(Buffer.size() >= BWH_HeaderSize &&
"Expected header size to be reserved");
unsigned BCOffset = BWH_HeaderSize;
unsigned BCSize = Buffer.size() - BWH_HeaderSize;
// Write the magic and version.
unsigned Position = 0;
writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
writeInt32ToBuffer(0, Buffer, Position); // Version.
writeInt32ToBuffer(BCOffset, Buffer, Position);
writeInt32ToBuffer(BCSize, Buffer, Position);
writeInt32ToBuffer(CPUType, Buffer, Position);
// If the file is not a multiple of 16 bytes, insert dummy padding.
while (Buffer.size() & 15)
Buffer.push_back(0);
}
/// Helper to write the header common to all bitcode files.
static void writeBitcodeHeader(BitstreamWriter &Stream) {
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit(0x0, 4);
Stream.Emit(0xC, 4);
Stream.Emit(0xE, 4);
Stream.Emit(0xD, 4);
}
BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
: Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
writeBitcodeHeader(*Stream);
}
BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
Stream->EnterSubblock(Block, 3);
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(Record));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
Stream->ExitBlock();
}
void BitcodeWriter::writeSymtab() {
assert(!WroteStrtab && !WroteSymtab);
// If any module has module-level inline asm, we will require a registered asm
// parser for the target so that we can create an accurate symbol table for
// the module.
for (Module *M : Mods) {
if (M->getModuleInlineAsm().empty())
continue;
std::string Err;
const Triple TT(M->getTargetTriple());
const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
if (!T || !T->hasMCAsmParser())
return;
}
WroteSymtab = true;
SmallVector<char, 0> Symtab;
// The irsymtab::build function may be unable to create a symbol table if the
// module is malformed (e.g. it contains an invalid alias). Writing a symbol
// table is not required for correctness, but we still want to be able to
// write malformed modules to bitcode files, so swallow the error.
if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
consumeError(std::move(E));
return;
}
writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
{Symtab.data(), Symtab.size()});
}
void BitcodeWriter::writeStrtab() {
assert(!WroteStrtab);
std::vector<char> Strtab;
StrtabBuilder.finalizeInOrder();
Strtab.resize(StrtabBuilder.getSize());
StrtabBuilder.write((uint8_t *)Strtab.data());
writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
{Strtab.data(), Strtab.size()});
WroteStrtab = true;
}
void BitcodeWriter::copyStrtab(StringRef Strtab) {
writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
WroteStrtab = true;
}
void BitcodeWriter::writeModule(const Module &M,
bool ShouldPreserveUseListOrder,
const ModuleSummaryIndex *Index,
bool GenerateHash, ModuleHash *ModHash) {
assert(!WroteStrtab);
// The Mods vector is used by irsymtab::build, which requires non-const
// Modules in case it needs to materialize metadata. But the bitcode writer
// requires that the module is materialized, so we can cast to non-const here,
// after checking that it is in fact materialized.
assert(M.isMaterialized());
Mods.push_back(const_cast<Module *>(&M));
ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
ShouldPreserveUseListOrder, Index,
GenerateHash, ModHash);
ModuleWriter.write();
}
void BitcodeWriter::writeIndex(
const ModuleSummaryIndex *Index,
const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
ModuleToSummariesForIndex);
IndexWriter.write();
}
/// Write the specified module to the specified output stream.
void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
bool ShouldPreserveUseListOrder,
const ModuleSummaryIndex *Index,
bool GenerateHash, ModuleHash *ModHash) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256*1024);
// If this is darwin or another generic macho target, reserve space for the
// header.
Triple TT(M.getTargetTriple());
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
ModHash);
Writer.writeSymtab();
Writer.writeStrtab();
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
emitDarwinBCHeaderAndTrailer(Buffer, TT);
// Write the generated bitstream to "Out".
if (!Buffer.empty())
Out.write((char *)&Buffer.front(), Buffer.size());
}
void IndexBitcodeWriter::write() {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
writeModuleVersion();
// Write the module paths in the combined index.
writeModStrings();
// Write the summary combined index records.
writeCombinedGlobalValueSummary();
Stream.ExitBlock();
}
// Write the specified module summary index to the given raw output stream,
// where it will be written in a new bitcode block. This is used when
// writing the combined index file for ThinLTO. When writing a subset of the
// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
void llvm::WriteIndexToFile(
const ModuleSummaryIndex &Index, raw_ostream &Out,
const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256 * 1024);
BitcodeWriter Writer(Buffer);
Writer.writeIndex(&Index, ModuleToSummariesForIndex);
Writer.writeStrtab();
Out.write((char *)&Buffer.front(), Buffer.size());
}
namespace {
/// Class to manage the bitcode writing for a thin link bitcode file.
class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
/// ModHash is for use in ThinLTO incremental build, generated while writing
/// the module bitcode file.
const ModuleHash *ModHash;
public:
ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
BitstreamWriter &Stream,
const ModuleSummaryIndex &Index,
const ModuleHash &ModHash)
: ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
/*ShouldPreserveUseListOrder=*/false, &Index),
ModHash(&ModHash) {}
void write();
private:
void writeSimplifiedModuleInfo();
};
} // end anonymous namespace
// This function writes a simpilified module info for thin link bitcode file.
// It only contains the source file name along with the name(the offset and
// size in strtab) and linkage for global values. For the global value info
// entry, in order to keep linkage at offset 5, there are three zeros used
// as padding.
void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
SmallVector<unsigned, 64> Vals;
// Emit the module's source file name.
{
StringEncoding Bits = getStringEncoding(M.getSourceFileName());
BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
if (Bits == SE_Char6)
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
else if (Bits == SE_Fixed7)
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
auto Abbv = std::make_shared<BitCodeAbbrev>();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(AbbrevOpToUse);
unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
for (const auto P : M.getSourceFileName())
Vals.push_back((unsigned char)P);
Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
Vals.clear();
}
// Emit the global variable information.
for (const GlobalVariable &GV : M.globals()) {
// GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
Vals.push_back(StrtabBuilder.add(GV.getName()));
Vals.push_back(GV.getName().size());
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(getEncodedLinkage(GV));
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
Vals.clear();
}
// Emit the function proto information.
for (const Function &F : M) {
// FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
Vals.push_back(StrtabBuilder.add(F.getName()));
Vals.push_back(F.getName().size());
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(getEncodedLinkage(F));
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
Vals.clear();
}
// Emit the alias information.
for (const GlobalAlias &A : M.aliases()) {
// ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
Vals.push_back(StrtabBuilder.add(A.getName()));
Vals.push_back(A.getName().size());
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(getEncodedLinkage(A));
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
Vals.clear();
}
// Emit the ifunc information.
for (const GlobalIFunc &I : M.ifuncs()) {
// IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
Vals.push_back(StrtabBuilder.add(I.getName()));
Vals.push_back(I.getName().size());
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(0);
Vals.push_back(getEncodedLinkage(I));
Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
Vals.clear();
}
}
void ThinLinkBitcodeWriter::write() {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
writeModuleVersion();
writeSimplifiedModuleInfo();
writePerModuleGlobalValueSummary();
// Write module hash.
Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
Stream.ExitBlock();
}
void BitcodeWriter::writeThinLinkBitcode(const Module &M,
const ModuleSummaryIndex &Index,
const ModuleHash &ModHash) {
assert(!WroteStrtab);
// The Mods vector is used by irsymtab::build, which requires non-const
// Modules in case it needs to materialize metadata. But the bitcode writer
// requires that the module is materialized, so we can cast to non-const here,
// after checking that it is in fact materialized.
assert(M.isMaterialized());
Mods.push_back(const_cast<Module *>(&M));
ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
ModHash);
ThinLinkWriter.write();
}
// Write the specified thin link bitcode file to the given raw output stream,
// where it will be written in a new bitcode block. This is used when
// writing the per-module index file for ThinLTO.
void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
const ModuleSummaryIndex &Index,
const ModuleHash &ModHash) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256 * 1024);
BitcodeWriter Writer(Buffer);
Writer.writeThinLinkBitcode(M, Index, ModHash);
Writer.writeSymtab();
Writer.writeStrtab();
Out.write((char *)&Buffer.front(), Buffer.size());
}
static const char *getSectionNameForBitcode(const Triple &T) {
switch (T.getObjectFormat()) {
case Triple::MachO:
return "__LLVM,__bitcode";
case Triple::COFF:
case Triple::ELF:
case Triple::Wasm:
case Triple::UnknownObjectFormat:
return ".llvmbc";
case Triple::GOFF:
llvm_unreachable("GOFF is not yet implemented");
break;
case Triple::XCOFF:
llvm_unreachable("XCOFF is not yet implemented");
break;
}
llvm_unreachable("Unimplemented ObjectFormatType");
}
static const char *getSectionNameForCommandline(const Triple &T) {
switch (T.getObjectFormat()) {
case Triple::MachO:
return "__LLVM,__cmdline";
case Triple::COFF:
case Triple::ELF:
case Triple::Wasm:
case Triple::UnknownObjectFormat:
return ".llvmcmd";
case Triple::GOFF:
llvm_unreachable("GOFF is not yet implemented");
break;
case Triple::XCOFF:
llvm_unreachable("XCOFF is not yet implemented");
break;
}
llvm_unreachable("Unimplemented ObjectFormatType");
}
void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
bool EmbedBitcode, bool EmbedCmdline,
const std::vector<uint8_t> &CmdArgs) {
// Save llvm.compiler.used and remove it.
SmallVector<Constant *, 2> UsedArray;
SmallPtrSet<GlobalValue *, 4> UsedGlobals;
Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
for (auto *GV : UsedGlobals) {
if (GV->getName() != "llvm.embedded.module" &&
GV->getName() != "llvm.cmdline")
UsedArray.push_back(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
}
if (Used)
Used->eraseFromParent();
// Embed the bitcode for the llvm module.
std::string Data;
ArrayRef<uint8_t> ModuleData;
Triple T(M.getTargetTriple());
if (EmbedBitcode) {
if (Buf.getBufferSize() == 0 ||
!isBitcode((const unsigned char *)Buf.getBufferStart(),
(const unsigned char *)Buf.getBufferEnd())) {
// If the input is LLVM Assembly, bitcode is produced by serializing
// the module. Use-lists order need to be preserved in this case.
llvm::raw_string_ostream OS(Data);
llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
ModuleData =
ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
} else
// If the input is LLVM bitcode, write the input byte stream directly.
ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
Buf.getBufferSize());
}
llvm::Constant *ModuleConstant =
llvm::ConstantDataArray::get(M.getContext(), ModuleData);
llvm::GlobalVariable *GV = new llvm::GlobalVariable(
M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
ModuleConstant);
GV->setSection(getSectionNameForBitcode(T));
// Set alignment to 1 to prevent padding between two contributions from input
// sections after linking.
GV->setAlignment(Align(1));
UsedArray.push_back(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
if (llvm::GlobalVariable *Old =
M.getGlobalVariable("llvm.embedded.module", true)) {
assert(Old->hasOneUse() &&
"llvm.embedded.module can only be used once in llvm.compiler.used");
GV->takeName(Old);
Old->eraseFromParent();
} else {
GV->setName("llvm.embedded.module");
}
// Skip if only bitcode needs to be embedded.
if (EmbedCmdline) {
// Embed command-line options.
ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
CmdArgs.size());
llvm::Constant *CmdConstant =
llvm::ConstantDataArray::get(M.getContext(), CmdData);
GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
llvm::GlobalValue::PrivateLinkage,
CmdConstant);
GV->setSection(getSectionNameForCommandline(T));
GV->setAlignment(Align(1));
UsedArray.push_back(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
assert(Old->hasOneUse() &&
"llvm.cmdline can only be used once in llvm.compiler.used");
GV->takeName(Old);
Old->eraseFromParent();
} else {
GV->setName("llvm.cmdline");
}
}
if (UsedArray.empty())
return;
// Recreate llvm.compiler.used.
ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
auto *NewUsed = new GlobalVariable(
M, ATy, false, llvm::GlobalValue::AppendingLinkage,
llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
NewUsed->setSection("llvm.metadata");
}