189 lines
7.0 KiB
C
189 lines
7.0 KiB
C
|
//===- NaryReassociate.h - Reassociate n-ary expressions --------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This pass reassociates n-ary add expressions and eliminates the redundancy
|
||
|
// exposed by the reassociation.
|
||
|
//
|
||
|
// A motivating example:
|
||
|
//
|
||
|
// void foo(int a, int b) {
|
||
|
// bar(a + b);
|
||
|
// bar((a + 2) + b);
|
||
|
// }
|
||
|
//
|
||
|
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
|
||
|
// the above code to
|
||
|
//
|
||
|
// int t = a + b;
|
||
|
// bar(t);
|
||
|
// bar(t + 2);
|
||
|
//
|
||
|
// However, the Reassociate pass is unable to do that because it processes each
|
||
|
// instruction individually and believes (a + 2) + b is the best form according
|
||
|
// to its rank system.
|
||
|
//
|
||
|
// To address this limitation, NaryReassociate reassociates an expression in a
|
||
|
// form that reuses existing instructions. As a result, NaryReassociate can
|
||
|
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
|
||
|
// (a + b) is computed before.
|
||
|
//
|
||
|
// NaryReassociate works as follows. For every instruction in the form of (a +
|
||
|
// b) + c, it checks whether a + c or b + c is already computed by a dominating
|
||
|
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
|
||
|
// c) + a and removes the redundancy accordingly. To efficiently look up whether
|
||
|
// an expression is computed before, we store each instruction seen and its SCEV
|
||
|
// into an SCEV-to-instruction map.
|
||
|
//
|
||
|
// Although the algorithm pattern-matches only ternary additions, it
|
||
|
// automatically handles many >3-ary expressions by walking through the function
|
||
|
// in the depth-first order. For example, given
|
||
|
//
|
||
|
// (a + c) + d
|
||
|
// ((a + b) + c) + d
|
||
|
//
|
||
|
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
|
||
|
// ((a + c) + b) + d into ((a + c) + d) + b.
|
||
|
//
|
||
|
// Finally, the above dominator-based algorithm may need to be run multiple
|
||
|
// iterations before emitting optimal code. One source of this need is that we
|
||
|
// only split an operand when it is used only once. The above algorithm can
|
||
|
// eliminate an instruction and decrease the usage count of its operands. As a
|
||
|
// result, an instruction that previously had multiple uses may become a
|
||
|
// single-use instruction and thus eligible for split consideration. For
|
||
|
// example,
|
||
|
//
|
||
|
// ac = a + c
|
||
|
// ab = a + b
|
||
|
// abc = ab + c
|
||
|
// ab2 = ab + b
|
||
|
// ab2c = ab2 + c
|
||
|
//
|
||
|
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
|
||
|
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
|
||
|
// result, ab2 becomes dead and ab will be used only once in the second
|
||
|
// iteration.
|
||
|
//
|
||
|
// Limitations and TODO items:
|
||
|
//
|
||
|
// 1) We only considers n-ary adds and muls for now. This should be extended
|
||
|
// and generalized.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
|
||
|
#define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
|
||
|
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/IR/PassManager.h"
|
||
|
#include "llvm/IR/ValueHandle.h"
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
class AssumptionCache;
|
||
|
class BinaryOperator;
|
||
|
class DataLayout;
|
||
|
class DominatorTree;
|
||
|
class Function;
|
||
|
class GetElementPtrInst;
|
||
|
class Instruction;
|
||
|
class ScalarEvolution;
|
||
|
class SCEV;
|
||
|
class TargetLibraryInfo;
|
||
|
class TargetTransformInfo;
|
||
|
class Type;
|
||
|
class Value;
|
||
|
|
||
|
class NaryReassociatePass : public PassInfoMixin<NaryReassociatePass> {
|
||
|
public:
|
||
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
||
|
|
||
|
// Glue for old PM.
|
||
|
bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_,
|
||
|
ScalarEvolution *SE_, TargetLibraryInfo *TLI_,
|
||
|
TargetTransformInfo *TTI_);
|
||
|
|
||
|
private:
|
||
|
// Runs only one iteration of the dominator-based algorithm. See the header
|
||
|
// comments for why we need multiple iterations.
|
||
|
bool doOneIteration(Function &F);
|
||
|
|
||
|
// Reassociates I for better CSE.
|
||
|
Instruction *tryReassociate(Instruction *I, const SCEV *&OrigSCEV);
|
||
|
|
||
|
// Reassociate GEP for better CSE.
|
||
|
Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
|
||
|
|
||
|
// Try splitting GEP at the I-th index and see whether either part can be
|
||
|
// CSE'ed. This is a helper function for tryReassociateGEP.
|
||
|
//
|
||
|
// \p IndexedType The element type indexed by GEP's I-th index. This is
|
||
|
// equivalent to
|
||
|
// GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
|
||
|
// ..., i-th index).
|
||
|
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||
|
unsigned I, Type *IndexedType);
|
||
|
|
||
|
// Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
|
||
|
// &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
|
||
|
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
||
|
unsigned I, Value *LHS,
|
||
|
Value *RHS, Type *IndexedType);
|
||
|
|
||
|
// Reassociate binary operators for better CSE.
|
||
|
Instruction *tryReassociateBinaryOp(BinaryOperator *I);
|
||
|
|
||
|
// A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
|
||
|
// passed.
|
||
|
Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
||
|
BinaryOperator *I);
|
||
|
// Rewrites I to (LHS op RHS) if LHS is computed already.
|
||
|
Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
|
||
|
BinaryOperator *I);
|
||
|
|
||
|
// Tries to match Op1 and Op2 by using V.
|
||
|
bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);
|
||
|
|
||
|
// Gets SCEV for (LHS op RHS).
|
||
|
const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
|
||
|
const SCEV *RHS);
|
||
|
|
||
|
// Returns the closest dominator of \c Dominatee that computes
|
||
|
// \c CandidateExpr. Returns null if not found.
|
||
|
Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
|
||
|
Instruction *Dominatee);
|
||
|
|
||
|
// GetElementPtrInst implicitly sign-extends an index if the index is shorter
|
||
|
// than the pointer size. This function returns whether Index is shorter than
|
||
|
// GEP's pointer size, i.e., whether Index needs to be sign-extended in order
|
||
|
// to be an index of GEP.
|
||
|
bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
|
||
|
|
||
|
AssumptionCache *AC;
|
||
|
const DataLayout *DL;
|
||
|
DominatorTree *DT;
|
||
|
ScalarEvolution *SE;
|
||
|
TargetLibraryInfo *TLI;
|
||
|
TargetTransformInfo *TTI;
|
||
|
|
||
|
// A lookup table quickly telling which instructions compute the given SCEV.
|
||
|
// Note that there can be multiple instructions at different locations
|
||
|
// computing to the same SCEV, so we map a SCEV to an instruction list. For
|
||
|
// example,
|
||
|
//
|
||
|
// if (p1)
|
||
|
// foo(a + b);
|
||
|
// if (p2)
|
||
|
// bar(a + b);
|
||
|
DenseMap<const SCEV *, SmallVector<WeakTrackingVH, 2>> SeenExprs;
|
||
|
};
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
|