llvm-for-llvmta/include/llvm/Transforms/IPO/Attributor.h

3798 lines
145 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Attributor: An inter procedural (abstract) "attribute" deduction framework.
//
// The Attributor framework is an inter procedural abstract analysis (fixpoint
// iteration analysis). The goal is to allow easy deduction of new attributes as
// well as information exchange between abstract attributes in-flight.
//
// The Attributor class is the driver and the link between the various abstract
// attributes. The Attributor will iterate until a fixpoint state is reached by
// all abstract attributes in-flight, or until it will enforce a pessimistic fix
// point because an iteration limit is reached.
//
// Abstract attributes, derived from the AbstractAttribute class, actually
// describe properties of the code. They can correspond to actual LLVM-IR
// attributes, or they can be more general, ultimately unrelated to LLVM-IR
// attributes. The latter is useful when an abstract attributes provides
// information to other abstract attributes in-flight but we might not want to
// manifest the information. The Attributor allows to query in-flight abstract
// attributes through the `Attributor::getAAFor` method (see the method
// description for an example). If the method is used by an abstract attribute
// P, and it results in an abstract attribute Q, the Attributor will
// automatically capture a potential dependence from Q to P. This dependence
// will cause P to be reevaluated whenever Q changes in the future.
//
// The Attributor will only reevaluate abstract attributes that might have
// changed since the last iteration. That means that the Attribute will not
// revisit all instructions/blocks/functions in the module but only query
// an update from a subset of the abstract attributes.
//
// The update method `AbstractAttribute::updateImpl` is implemented by the
// specific "abstract attribute" subclasses. The method is invoked whenever the
// currently assumed state (see the AbstractState class) might not be valid
// anymore. This can, for example, happen if the state was dependent on another
// abstract attribute that changed. In every invocation, the update method has
// to adjust the internal state of an abstract attribute to a point that is
// justifiable by the underlying IR and the current state of abstract attributes
// in-flight. Since the IR is given and assumed to be valid, the information
// derived from it can be assumed to hold. However, information derived from
// other abstract attributes is conditional on various things. If the justifying
// state changed, the `updateImpl` has to revisit the situation and potentially
// find another justification or limit the optimistic assumes made.
//
// Change is the key in this framework. Until a state of no-change, thus a
// fixpoint, is reached, the Attributor will query the abstract attributes
// in-flight to re-evaluate their state. If the (current) state is too
// optimistic, hence it cannot be justified anymore through other abstract
// attributes or the state of the IR, the state of the abstract attribute will
// have to change. Generally, we assume abstract attribute state to be a finite
// height lattice and the update function to be monotone. However, these
// conditions are not enforced because the iteration limit will guarantee
// termination. If an optimistic fixpoint is reached, or a pessimistic fix
// point is enforced after a timeout, the abstract attributes are tasked to
// manifest their result in the IR for passes to come.
//
// Attribute manifestation is not mandatory. If desired, there is support to
// generate a single or multiple LLVM-IR attributes already in the helper struct
// IRAttribute. In the simplest case, a subclass inherits from IRAttribute with
// a proper Attribute::AttrKind as template parameter. The Attributor
// manifestation framework will then create and place a new attribute if it is
// allowed to do so (based on the abstract state). Other use cases can be
// achieved by overloading AbstractAttribute or IRAttribute methods.
//
//
// The "mechanics" of adding a new "abstract attribute":
// - Define a class (transitively) inheriting from AbstractAttribute and one
// (which could be the same) that (transitively) inherits from AbstractState.
// For the latter, consider the already available BooleanState and
// {Inc,Dec,Bit}IntegerState if they fit your needs, e.g., you require only a
// number tracking or bit-encoding.
// - Implement all pure methods. Also use overloading if the attribute is not
// conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for
// an argument, call site argument, function return value, or function. See
// the class and method descriptions for more information on the two
// "Abstract" classes and their respective methods.
// - Register opportunities for the new abstract attribute in the
// `Attributor::identifyDefaultAbstractAttributes` method if it should be
// counted as a 'default' attribute.
// - Add sufficient tests.
// - Add a Statistics object for bookkeeping. If it is a simple (set of)
// attribute(s) manifested through the Attributor manifestation framework, see
// the bookkeeping function in Attributor.cpp.
// - If instructions with a certain opcode are interesting to the attribute, add
// that opcode to the switch in `Attributor::identifyAbstractAttributes`. This
// will make it possible to query all those instructions through the
// `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the
// need to traverse the IR repeatedly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
#define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/AbstractCallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
namespace llvm {
struct AADepGraphNode;
struct AADepGraph;
struct Attributor;
struct AbstractAttribute;
struct InformationCache;
struct AAIsDead;
class AAManager;
class AAResults;
class Function;
/// The value passed to the line option that defines the maximal initialization
/// chain length.
extern unsigned MaxInitializationChainLength;
///{
enum class ChangeStatus {
CHANGED,
UNCHANGED,
};
ChangeStatus operator|(ChangeStatus l, ChangeStatus r);
ChangeStatus operator&(ChangeStatus l, ChangeStatus r);
enum class DepClassTy {
REQUIRED,
OPTIONAL,
};
///}
/// The data structure for the nodes of a dependency graph
struct AADepGraphNode {
public:
virtual ~AADepGraphNode(){};
using DepTy = PointerIntPair<AADepGraphNode *, 1>;
protected:
/// Set of dependency graph nodes which should be updated if this one
/// is updated. The bit encodes if it is optional.
TinyPtrVector<DepTy> Deps;
static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); }
static AbstractAttribute *DepGetValAA(DepTy &DT) {
return cast<AbstractAttribute>(DT.getPointer());
}
operator AbstractAttribute *() { return cast<AbstractAttribute>(this); }
public:
using iterator =
mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
using aaiterator =
mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetValAA)>;
aaiterator begin() { return aaiterator(Deps.begin(), &DepGetValAA); }
aaiterator end() { return aaiterator(Deps.end(), &DepGetValAA); }
iterator child_begin() { return iterator(Deps.begin(), &DepGetVal); }
iterator child_end() { return iterator(Deps.end(), &DepGetVal); }
virtual void print(raw_ostream &OS) const { OS << "AADepNode Impl\n"; }
TinyPtrVector<DepTy> &getDeps() { return Deps; }
friend struct Attributor;
friend struct AADepGraph;
};
/// The data structure for the dependency graph
///
/// Note that in this graph if there is an edge from A to B (A -> B),
/// then it means that B depends on A, and when the state of A is
/// updated, node B should also be updated
struct AADepGraph {
AADepGraph() {}
~AADepGraph() {}
using DepTy = AADepGraphNode::DepTy;
static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); }
using iterator =
mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
/// There is no root node for the dependency graph. But the SCCIterator
/// requires a single entry point, so we maintain a fake("synthetic") root
/// node that depends on every node.
AADepGraphNode SyntheticRoot;
AADepGraphNode *GetEntryNode() { return &SyntheticRoot; }
iterator begin() { return SyntheticRoot.child_begin(); }
iterator end() { return SyntheticRoot.child_end(); }
void viewGraph();
/// Dump graph to file
void dumpGraph();
/// Print dependency graph
void print();
};
/// Helper to describe and deal with positions in the LLVM-IR.
///
/// A position in the IR is described by an anchor value and an "offset" that
/// could be the argument number, for call sites and arguments, or an indicator
/// of the "position kind". The kinds, specified in the Kind enum below, include
/// the locations in the attribute list, i.a., function scope and return value,
/// as well as a distinction between call sites and functions. Finally, there
/// are floating values that do not have a corresponding attribute list
/// position.
struct IRPosition {
/// The positions we distinguish in the IR.
enum Kind : char {
IRP_INVALID, ///< An invalid position.
IRP_FLOAT, ///< A position that is not associated with a spot suitable
///< for attributes. This could be any value or instruction.
IRP_RETURNED, ///< An attribute for the function return value.
IRP_CALL_SITE_RETURNED, ///< An attribute for a call site return value.
IRP_FUNCTION, ///< An attribute for a function (scope).
IRP_CALL_SITE, ///< An attribute for a call site (function scope).
IRP_ARGUMENT, ///< An attribute for a function argument.
IRP_CALL_SITE_ARGUMENT, ///< An attribute for a call site argument.
};
/// Default constructor available to create invalid positions implicitly. All
/// other positions need to be created explicitly through the appropriate
/// static member function.
IRPosition() : Enc(nullptr, ENC_VALUE) { verify(); }
/// Create a position describing the value of \p V.
static const IRPosition value(const Value &V) {
if (auto *Arg = dyn_cast<Argument>(&V))
return IRPosition::argument(*Arg);
if (auto *CB = dyn_cast<CallBase>(&V))
return IRPosition::callsite_returned(*CB);
return IRPosition(const_cast<Value &>(V), IRP_FLOAT);
}
/// Create a position describing the function scope of \p F.
static const IRPosition function(const Function &F) {
return IRPosition(const_cast<Function &>(F), IRP_FUNCTION);
}
/// Create a position describing the returned value of \p F.
static const IRPosition returned(const Function &F) {
return IRPosition(const_cast<Function &>(F), IRP_RETURNED);
}
/// Create a position describing the argument \p Arg.
static const IRPosition argument(const Argument &Arg) {
return IRPosition(const_cast<Argument &>(Arg), IRP_ARGUMENT);
}
/// Create a position describing the function scope of \p CB.
static const IRPosition callsite_function(const CallBase &CB) {
return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE);
}
/// Create a position describing the returned value of \p CB.
static const IRPosition callsite_returned(const CallBase &CB) {
return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE_RETURNED);
}
/// Create a position describing the argument of \p CB at position \p ArgNo.
static const IRPosition callsite_argument(const CallBase &CB,
unsigned ArgNo) {
return IRPosition(const_cast<Use &>(CB.getArgOperandUse(ArgNo)),
IRP_CALL_SITE_ARGUMENT);
}
/// Create a position describing the argument of \p ACS at position \p ArgNo.
static const IRPosition callsite_argument(AbstractCallSite ACS,
unsigned ArgNo) {
if (ACS.getNumArgOperands() <= ArgNo)
return IRPosition();
int CSArgNo = ACS.getCallArgOperandNo(ArgNo);
if (CSArgNo >= 0)
return IRPosition::callsite_argument(
cast<CallBase>(*ACS.getInstruction()), CSArgNo);
return IRPosition();
}
/// Create a position with function scope matching the "context" of \p IRP.
/// If \p IRP is a call site (see isAnyCallSitePosition()) then the result
/// will be a call site position, otherwise the function position of the
/// associated function.
static const IRPosition function_scope(const IRPosition &IRP) {
if (IRP.isAnyCallSitePosition()) {
return IRPosition::callsite_function(
cast<CallBase>(IRP.getAnchorValue()));
}
assert(IRP.getAssociatedFunction());
return IRPosition::function(*IRP.getAssociatedFunction());
}
bool operator==(const IRPosition &RHS) const { return Enc == RHS.Enc; }
bool operator!=(const IRPosition &RHS) const { return !(*this == RHS); }
/// Return the value this abstract attribute is anchored with.
///
/// The anchor value might not be the associated value if the latter is not
/// sufficient to determine where arguments will be manifested. This is, so
/// far, only the case for call site arguments as the value is not sufficient
/// to pinpoint them. Instead, we can use the call site as an anchor.
Value &getAnchorValue() const {
switch (getEncodingBits()) {
case ENC_VALUE:
case ENC_RETURNED_VALUE:
case ENC_FLOATING_FUNCTION:
return *getAsValuePtr();
case ENC_CALL_SITE_ARGUMENT_USE:
return *(getAsUsePtr()->getUser());
default:
llvm_unreachable("Unkown encoding!");
};
}
/// Return the associated function, if any.
Function *getAssociatedFunction() const {
if (auto *CB = dyn_cast<CallBase>(&getAnchorValue())) {
// We reuse the logic that associates callback calles to arguments of a
// call site here to identify the callback callee as the associated
// function.
if (Argument *Arg = getAssociatedArgument())
return Arg->getParent();
return CB->getCalledFunction();
}
return getAnchorScope();
}
/// Return the associated argument, if any.
Argument *getAssociatedArgument() const;
/// Return true if the position refers to a function interface, that is the
/// function scope, the function return, or an argument.
bool isFnInterfaceKind() const {
switch (getPositionKind()) {
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_RETURNED:
case IRPosition::IRP_ARGUMENT:
return true;
default:
return false;
}
}
/// Return the Function surrounding the anchor value.
Function *getAnchorScope() const {
Value &V = getAnchorValue();
if (isa<Function>(V))
return &cast<Function>(V);
if (isa<Argument>(V))
return cast<Argument>(V).getParent();
if (isa<Instruction>(V))
return cast<Instruction>(V).getFunction();
return nullptr;
}
/// Return the context instruction, if any.
Instruction *getCtxI() const {
Value &V = getAnchorValue();
if (auto *I = dyn_cast<Instruction>(&V))
return I;
if (auto *Arg = dyn_cast<Argument>(&V))
if (!Arg->getParent()->isDeclaration())
return &Arg->getParent()->getEntryBlock().front();
if (auto *F = dyn_cast<Function>(&V))
if (!F->isDeclaration())
return &(F->getEntryBlock().front());
return nullptr;
}
/// Return the value this abstract attribute is associated with.
Value &getAssociatedValue() const {
if (getCallSiteArgNo() < 0 || isa<Argument>(&getAnchorValue()))
return getAnchorValue();
assert(isa<CallBase>(&getAnchorValue()) && "Expected a call base!");
return *cast<CallBase>(&getAnchorValue())
->getArgOperand(getCallSiteArgNo());
}
/// Return the type this abstract attribute is associated with.
Type *getAssociatedType() const {
if (getPositionKind() == IRPosition::IRP_RETURNED)
return getAssociatedFunction()->getReturnType();
return getAssociatedValue().getType();
}
/// Return the callee argument number of the associated value if it is an
/// argument or call site argument, otherwise a negative value. In contrast to
/// `getCallSiteArgNo` this method will always return the "argument number"
/// from the perspective of the callee. This may not the same as the call site
/// if this is a callback call.
int getCalleeArgNo() const {
return getArgNo(/* CallbackCalleeArgIfApplicable */ true);
}
/// Return the call site argument number of the associated value if it is an
/// argument or call site argument, otherwise a negative value. In contrast to
/// `getCalleArgNo` this method will always return the "operand number" from
/// the perspective of the call site. This may not the same as the callee
/// perspective if this is a callback call.
int getCallSiteArgNo() const {
return getArgNo(/* CallbackCalleeArgIfApplicable */ false);
}
/// Return the index in the attribute list for this position.
unsigned getAttrIdx() const {
switch (getPositionKind()) {
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
break;
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_CALL_SITE:
return AttributeList::FunctionIndex;
case IRPosition::IRP_RETURNED:
case IRPosition::IRP_CALL_SITE_RETURNED:
return AttributeList::ReturnIndex;
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
return getCallSiteArgNo() + AttributeList::FirstArgIndex;
}
llvm_unreachable(
"There is no attribute index for a floating or invalid position!");
}
/// Return the associated position kind.
Kind getPositionKind() const {
char EncodingBits = getEncodingBits();
if (EncodingBits == ENC_CALL_SITE_ARGUMENT_USE)
return IRP_CALL_SITE_ARGUMENT;
if (EncodingBits == ENC_FLOATING_FUNCTION)
return IRP_FLOAT;
Value *V = getAsValuePtr();
if (!V)
return IRP_INVALID;
if (isa<Argument>(V))
return IRP_ARGUMENT;
if (isa<Function>(V))
return isReturnPosition(EncodingBits) ? IRP_RETURNED : IRP_FUNCTION;
if (isa<CallBase>(V))
return isReturnPosition(EncodingBits) ? IRP_CALL_SITE_RETURNED
: IRP_CALL_SITE;
return IRP_FLOAT;
}
/// TODO: Figure out if the attribute related helper functions should live
/// here or somewhere else.
/// Return true if any kind in \p AKs existing in the IR at a position that
/// will affect this one. See also getAttrs(...).
/// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
/// e.g., the function position if this is an
/// argument position, should be ignored.
bool hasAttr(ArrayRef<Attribute::AttrKind> AKs,
bool IgnoreSubsumingPositions = false,
Attributor *A = nullptr) const;
/// Return the attributes of any kind in \p AKs existing in the IR at a
/// position that will affect this one. While each position can only have a
/// single attribute of any kind in \p AKs, there are "subsuming" positions
/// that could have an attribute as well. This method returns all attributes
/// found in \p Attrs.
/// \param IgnoreSubsumingPositions Flag to determine if subsuming positions,
/// e.g., the function position if this is an
/// argument position, should be ignored.
void getAttrs(ArrayRef<Attribute::AttrKind> AKs,
SmallVectorImpl<Attribute> &Attrs,
bool IgnoreSubsumingPositions = false,
Attributor *A = nullptr) const;
/// Remove the attribute of kind \p AKs existing in the IR at this position.
void removeAttrs(ArrayRef<Attribute::AttrKind> AKs) const {
if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
return;
AttributeList AttrList;
auto *CB = dyn_cast<CallBase>(&getAnchorValue());
if (CB)
AttrList = CB->getAttributes();
else
AttrList = getAssociatedFunction()->getAttributes();
LLVMContext &Ctx = getAnchorValue().getContext();
for (Attribute::AttrKind AK : AKs)
AttrList = AttrList.removeAttribute(Ctx, getAttrIdx(), AK);
if (CB)
CB->setAttributes(AttrList);
else
getAssociatedFunction()->setAttributes(AttrList);
}
bool isAnyCallSitePosition() const {
switch (getPositionKind()) {
case IRPosition::IRP_CALL_SITE:
case IRPosition::IRP_CALL_SITE_RETURNED:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
return true;
default:
return false;
}
}
/// Return true if the position is an argument or call site argument.
bool isArgumentPosition() const {
switch (getPositionKind()) {
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
return true;
default:
return false;
}
}
/// Special DenseMap key values.
///
///{
static const IRPosition EmptyKey;
static const IRPosition TombstoneKey;
///}
/// Conversion into a void * to allow reuse of pointer hashing.
operator void *() const { return Enc.getOpaqueValue(); }
private:
/// Private constructor for special values only!
explicit IRPosition(void *Ptr) { Enc.setFromOpaqueValue(Ptr); }
/// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK.
explicit IRPosition(Value &AnchorVal, Kind PK) {
switch (PK) {
case IRPosition::IRP_INVALID:
llvm_unreachable("Cannot create invalid IRP with an anchor value!");
break;
case IRPosition::IRP_FLOAT:
// Special case for floating functions.
if (isa<Function>(AnchorVal))
Enc = {&AnchorVal, ENC_FLOATING_FUNCTION};
else
Enc = {&AnchorVal, ENC_VALUE};
break;
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_CALL_SITE:
Enc = {&AnchorVal, ENC_VALUE};
break;
case IRPosition::IRP_RETURNED:
case IRPosition::IRP_CALL_SITE_RETURNED:
Enc = {&AnchorVal, ENC_RETURNED_VALUE};
break;
case IRPosition::IRP_ARGUMENT:
Enc = {&AnchorVal, ENC_VALUE};
break;
case IRPosition::IRP_CALL_SITE_ARGUMENT:
llvm_unreachable(
"Cannot create call site argument IRP with an anchor value!");
break;
}
verify();
}
/// Return the callee argument number of the associated value if it is an
/// argument or call site argument. See also `getCalleeArgNo` and
/// `getCallSiteArgNo`.
int getArgNo(bool CallbackCalleeArgIfApplicable) const {
if (CallbackCalleeArgIfApplicable)
if (Argument *Arg = getAssociatedArgument())
return Arg->getArgNo();
switch (getPositionKind()) {
case IRPosition::IRP_ARGUMENT:
return cast<Argument>(getAsValuePtr())->getArgNo();
case IRPosition::IRP_CALL_SITE_ARGUMENT: {
Use &U = *getAsUsePtr();
return cast<CallBase>(U.getUser())->getArgOperandNo(&U);
}
default:
return -1;
}
}
/// IRPosition for the use \p U. The position kind \p PK needs to be
/// IRP_CALL_SITE_ARGUMENT, the anchor value is the user, the associated value
/// the used value.
explicit IRPosition(Use &U, Kind PK) {
assert(PK == IRP_CALL_SITE_ARGUMENT &&
"Use constructor is for call site arguments only!");
Enc = {&U, ENC_CALL_SITE_ARGUMENT_USE};
verify();
}
/// Verify internal invariants.
void verify();
/// Return the attributes of kind \p AK existing in the IR as attribute.
bool getAttrsFromIRAttr(Attribute::AttrKind AK,
SmallVectorImpl<Attribute> &Attrs) const;
/// Return the attributes of kind \p AK existing in the IR as operand bundles
/// of an llvm.assume.
bool getAttrsFromAssumes(Attribute::AttrKind AK,
SmallVectorImpl<Attribute> &Attrs,
Attributor &A) const;
/// Return the underlying pointer as Value *, valid for all positions but
/// IRP_CALL_SITE_ARGUMENT.
Value *getAsValuePtr() const {
assert(getEncodingBits() != ENC_CALL_SITE_ARGUMENT_USE &&
"Not a value pointer!");
return reinterpret_cast<Value *>(Enc.getPointer());
}
/// Return the underlying pointer as Use *, valid only for
/// IRP_CALL_SITE_ARGUMENT positions.
Use *getAsUsePtr() const {
assert(getEncodingBits() == ENC_CALL_SITE_ARGUMENT_USE &&
"Not a value pointer!");
return reinterpret_cast<Use *>(Enc.getPointer());
}
/// Return true if \p EncodingBits describe a returned or call site returned
/// position.
static bool isReturnPosition(char EncodingBits) {
return EncodingBits == ENC_RETURNED_VALUE;
}
/// Return true if the encoding bits describe a returned or call site returned
/// position.
bool isReturnPosition() const { return isReturnPosition(getEncodingBits()); }
/// The encoding of the IRPosition is a combination of a pointer and two
/// encoding bits. The values of the encoding bits are defined in the enum
/// below. The pointer is either a Value* (for the first three encoding bit
/// combinations) or Use* (for ENC_CALL_SITE_ARGUMENT_USE).
///
///{
enum {
ENC_VALUE = 0b00,
ENC_RETURNED_VALUE = 0b01,
ENC_FLOATING_FUNCTION = 0b10,
ENC_CALL_SITE_ARGUMENT_USE = 0b11,
};
// Reserve the maximal amount of bits so there is no need to mask out the
// remaining ones. We will not encode anything else in the pointer anyway.
static constexpr int NumEncodingBits =
PointerLikeTypeTraits<void *>::NumLowBitsAvailable;
static_assert(NumEncodingBits >= 2, "At least two bits are required!");
/// The pointer with the encoding bits.
PointerIntPair<void *, NumEncodingBits, char> Enc;
///}
/// Return the encoding bits.
char getEncodingBits() const { return Enc.getInt(); }
};
/// Helper that allows IRPosition as a key in a DenseMap.
template <> struct DenseMapInfo<IRPosition> : DenseMapInfo<void *> {
static inline IRPosition getEmptyKey() { return IRPosition::EmptyKey; }
static inline IRPosition getTombstoneKey() {
return IRPosition::TombstoneKey;
}
};
/// A visitor class for IR positions.
///
/// Given a position P, the SubsumingPositionIterator allows to visit "subsuming
/// positions" wrt. attributes/information. Thus, if a piece of information
/// holds for a subsuming position, it also holds for the position P.
///
/// The subsuming positions always include the initial position and then,
/// depending on the position kind, additionally the following ones:
/// - for IRP_RETURNED:
/// - the function (IRP_FUNCTION)
/// - for IRP_ARGUMENT:
/// - the function (IRP_FUNCTION)
/// - for IRP_CALL_SITE:
/// - the callee (IRP_FUNCTION), if known
/// - for IRP_CALL_SITE_RETURNED:
/// - the callee (IRP_RETURNED), if known
/// - the call site (IRP_FUNCTION)
/// - the callee (IRP_FUNCTION), if known
/// - for IRP_CALL_SITE_ARGUMENT:
/// - the argument of the callee (IRP_ARGUMENT), if known
/// - the callee (IRP_FUNCTION), if known
/// - the position the call site argument is associated with if it is not
/// anchored to the call site, e.g., if it is an argument then the argument
/// (IRP_ARGUMENT)
class SubsumingPositionIterator {
SmallVector<IRPosition, 4> IRPositions;
using iterator = decltype(IRPositions)::iterator;
public:
SubsumingPositionIterator(const IRPosition &IRP);
iterator begin() { return IRPositions.begin(); }
iterator end() { return IRPositions.end(); }
};
/// Wrapper for FunctoinAnalysisManager.
struct AnalysisGetter {
template <typename Analysis>
typename Analysis::Result *getAnalysis(const Function &F) {
if (!FAM || !F.getParent())
return nullptr;
return &FAM->getResult<Analysis>(const_cast<Function &>(F));
}
AnalysisGetter(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
AnalysisGetter() {}
private:
FunctionAnalysisManager *FAM = nullptr;
};
/// Data structure to hold cached (LLVM-IR) information.
///
/// All attributes are given an InformationCache object at creation time to
/// avoid inspection of the IR by all of them individually. This default
/// InformationCache will hold information required by 'default' attributes,
/// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..)
/// is called.
///
/// If custom abstract attributes, registered manually through
/// Attributor::registerAA(...), need more information, especially if it is not
/// reusable, it is advised to inherit from the InformationCache and cast the
/// instance down in the abstract attributes.
struct InformationCache {
InformationCache(const Module &M, AnalysisGetter &AG,
BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC)
: DL(M.getDataLayout()), Allocator(Allocator),
Explorer(
/* ExploreInterBlock */ true, /* ExploreCFGForward */ true,
/* ExploreCFGBackward */ true,
/* LIGetter */
[&](const Function &F) { return AG.getAnalysis<LoopAnalysis>(F); },
/* DTGetter */
[&](const Function &F) {
return AG.getAnalysis<DominatorTreeAnalysis>(F);
},
/* PDTGetter */
[&](const Function &F) {
return AG.getAnalysis<PostDominatorTreeAnalysis>(F);
}),
AG(AG), CGSCC(CGSCC) {
if (CGSCC)
initializeModuleSlice(*CGSCC);
}
~InformationCache() {
// The FunctionInfo objects are allocated via a BumpPtrAllocator, we call
// the destructor manually.
for (auto &It : FuncInfoMap)
It.getSecond()->~FunctionInfo();
}
/// Apply \p CB to all uses of \p F. If \p LookThroughConstantExprUses is
/// true, constant expression users are not given to \p CB but their uses are
/// traversed transitively.
template <typename CBTy>
static void foreachUse(Function &F, CBTy CB,
bool LookThroughConstantExprUses = true) {
SmallVector<Use *, 8> Worklist(make_pointer_range(F.uses()));
for (unsigned Idx = 0; Idx < Worklist.size(); ++Idx) {
Use &U = *Worklist[Idx];
// Allow use in constant bitcasts and simply look through them.
if (LookThroughConstantExprUses && isa<ConstantExpr>(U.getUser())) {
for (Use &CEU : cast<ConstantExpr>(U.getUser())->uses())
Worklist.push_back(&CEU);
continue;
}
CB(U);
}
}
/// Initialize the ModuleSlice member based on \p SCC. ModuleSlices contains
/// (a subset of) all functions that we can look at during this SCC traversal.
/// This includes functions (transitively) called from the SCC and the
/// (transitive) callers of SCC functions. We also can look at a function if
/// there is a "reference edge", i.a., if the function somehow uses (!=calls)
/// a function in the SCC or a caller of a function in the SCC.
void initializeModuleSlice(SetVector<Function *> &SCC) {
ModuleSlice.insert(SCC.begin(), SCC.end());
SmallPtrSet<Function *, 16> Seen;
SmallVector<Function *, 16> Worklist(SCC.begin(), SCC.end());
while (!Worklist.empty()) {
Function *F = Worklist.pop_back_val();
ModuleSlice.insert(F);
for (Instruction &I : instructions(*F))
if (auto *CB = dyn_cast<CallBase>(&I))
if (Function *Callee = CB->getCalledFunction())
if (Seen.insert(Callee).second)
Worklist.push_back(Callee);
}
Seen.clear();
Worklist.append(SCC.begin(), SCC.end());
while (!Worklist.empty()) {
Function *F = Worklist.pop_back_val();
ModuleSlice.insert(F);
// Traverse all transitive uses.
foreachUse(*F, [&](Use &U) {
if (auto *UsrI = dyn_cast<Instruction>(U.getUser()))
if (Seen.insert(UsrI->getFunction()).second)
Worklist.push_back(UsrI->getFunction());
});
}
}
/// The slice of the module we are allowed to look at.
SmallPtrSet<Function *, 8> ModuleSlice;
/// A vector type to hold instructions.
using InstructionVectorTy = SmallVector<Instruction *, 8>;
/// A map type from opcodes to instructions with this opcode.
using OpcodeInstMapTy = DenseMap<unsigned, InstructionVectorTy *>;
/// Return the map that relates "interesting" opcodes with all instructions
/// with that opcode in \p F.
OpcodeInstMapTy &getOpcodeInstMapForFunction(const Function &F) {
return getFunctionInfo(F).OpcodeInstMap;
}
/// Return the instructions in \p F that may read or write memory.
InstructionVectorTy &getReadOrWriteInstsForFunction(const Function &F) {
return getFunctionInfo(F).RWInsts;
}
/// Return MustBeExecutedContextExplorer
MustBeExecutedContextExplorer &getMustBeExecutedContextExplorer() {
return Explorer;
}
/// Return TargetLibraryInfo for function \p F.
TargetLibraryInfo *getTargetLibraryInfoForFunction(const Function &F) {
return AG.getAnalysis<TargetLibraryAnalysis>(F);
}
/// Return AliasAnalysis Result for function \p F.
AAResults *getAAResultsForFunction(const Function &F);
/// Return true if \p Arg is involved in a must-tail call, thus the argument
/// of the caller or callee.
bool isInvolvedInMustTailCall(const Argument &Arg) {
FunctionInfo &FI = getFunctionInfo(*Arg.getParent());
return FI.CalledViaMustTail || FI.ContainsMustTailCall;
}
/// Return the analysis result from a pass \p AP for function \p F.
template <typename AP>
typename AP::Result *getAnalysisResultForFunction(const Function &F) {
return AG.getAnalysis<AP>(F);
}
/// Return SCC size on call graph for function \p F or 0 if unknown.
unsigned getSccSize(const Function &F) {
if (CGSCC && CGSCC->count(const_cast<Function *>(&F)))
return CGSCC->size();
return 0;
}
/// Return datalayout used in the module.
const DataLayout &getDL() { return DL; }
/// Return the map conaining all the knowledge we have from `llvm.assume`s.
const RetainedKnowledgeMap &getKnowledgeMap() const { return KnowledgeMap; }
/// Return if \p To is potentially reachable form \p From or not
/// If the same query was answered, return cached result
bool getPotentiallyReachable(const Instruction &From, const Instruction &To) {
auto KeyPair = std::make_pair(&From, &To);
auto Iter = PotentiallyReachableMap.find(KeyPair);
if (Iter != PotentiallyReachableMap.end())
return Iter->second;
const Function &F = *From.getFunction();
bool Result = isPotentiallyReachable(
&From, &To, nullptr, AG.getAnalysis<DominatorTreeAnalysis>(F),
AG.getAnalysis<LoopAnalysis>(F));
PotentiallyReachableMap.insert(std::make_pair(KeyPair, Result));
return Result;
}
/// Check whether \p F is part of module slice.
bool isInModuleSlice(const Function &F) {
return ModuleSlice.count(const_cast<Function *>(&F));
}
private:
struct FunctionInfo {
~FunctionInfo();
/// A nested map that remembers all instructions in a function with a
/// certain instruction opcode (Instruction::getOpcode()).
OpcodeInstMapTy OpcodeInstMap;
/// A map from functions to their instructions that may read or write
/// memory.
InstructionVectorTy RWInsts;
/// Function is called by a `musttail` call.
bool CalledViaMustTail;
/// Function contains a `musttail` call.
bool ContainsMustTailCall;
};
/// A map type from functions to informatio about it.
DenseMap<const Function *, FunctionInfo *> FuncInfoMap;
/// Return information about the function \p F, potentially by creating it.
FunctionInfo &getFunctionInfo(const Function &F) {
FunctionInfo *&FI = FuncInfoMap[&F];
if (!FI) {
FI = new (Allocator) FunctionInfo();
initializeInformationCache(F, *FI);
}
return *FI;
}
/// Initialize the function information cache \p FI for the function \p F.
///
/// This method needs to be called for all function that might be looked at
/// through the information cache interface *prior* to looking at them.
void initializeInformationCache(const Function &F, FunctionInfo &FI);
/// The datalayout used in the module.
const DataLayout &DL;
/// The allocator used to allocate memory, e.g. for `FunctionInfo`s.
BumpPtrAllocator &Allocator;
/// MustBeExecutedContextExplorer
MustBeExecutedContextExplorer Explorer;
/// A map with knowledge retained in `llvm.assume` instructions.
RetainedKnowledgeMap KnowledgeMap;
/// Getters for analysis.
AnalysisGetter &AG;
/// The underlying CGSCC, or null if not available.
SetVector<Function *> *CGSCC;
/// Set of inlineable functions
SmallPtrSet<const Function *, 8> InlineableFunctions;
/// A map for caching results of queries for isPotentiallyReachable
DenseMap<std::pair<const Instruction *, const Instruction *>, bool>
PotentiallyReachableMap;
/// Give the Attributor access to the members so
/// Attributor::identifyDefaultAbstractAttributes(...) can initialize them.
friend struct Attributor;
};
/// The fixpoint analysis framework that orchestrates the attribute deduction.
///
/// The Attributor provides a general abstract analysis framework (guided
/// fixpoint iteration) as well as helper functions for the deduction of
/// (LLVM-IR) attributes. However, also other code properties can be deduced,
/// propagated, and ultimately manifested through the Attributor framework. This
/// is particularly useful if these properties interact with attributes and a
/// co-scheduled deduction allows to improve the solution. Even if not, thus if
/// attributes/properties are completely isolated, they should use the
/// Attributor framework to reduce the number of fixpoint iteration frameworks
/// in the code base. Note that the Attributor design makes sure that isolated
/// attributes are not impacted, in any way, by others derived at the same time
/// if there is no cross-reasoning performed.
///
/// The public facing interface of the Attributor is kept simple and basically
/// allows abstract attributes to one thing, query abstract attributes
/// in-flight. There are two reasons to do this:
/// a) The optimistic state of one abstract attribute can justify an
/// optimistic state of another, allowing to framework to end up with an
/// optimistic (=best possible) fixpoint instead of one based solely on
/// information in the IR.
/// b) This avoids reimplementing various kinds of lookups, e.g., to check
/// for existing IR attributes, in favor of a single lookups interface
/// provided by an abstract attribute subclass.
///
/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
/// described in the file comment.
struct Attributor {
/// Constructor
///
/// \param Functions The set of functions we are deriving attributes for.
/// \param InfoCache Cache to hold various information accessible for
/// the abstract attributes.
/// \param CGUpdater Helper to update an underlying call graph.
/// \param Allowed If not null, a set limiting the attribute opportunities.
Attributor(SetVector<Function *> &Functions, InformationCache &InfoCache,
CallGraphUpdater &CGUpdater,
DenseSet<const char *> *Allowed = nullptr)
: Allocator(InfoCache.Allocator), Functions(Functions),
InfoCache(InfoCache), CGUpdater(CGUpdater), Allowed(Allowed) {}
~Attributor();
/// Run the analyses until a fixpoint is reached or enforced (timeout).
///
/// The attributes registered with this Attributor can be used after as long
/// as the Attributor is not destroyed (it owns the attributes now).
///
/// \Returns CHANGED if the IR was changed, otherwise UNCHANGED.
ChangeStatus run();
/// Lookup an abstract attribute of type \p AAType at position \p IRP. While
/// no abstract attribute is found equivalent positions are checked, see
/// SubsumingPositionIterator. Thus, the returned abstract attribute
/// might be anchored at a different position, e.g., the callee if \p IRP is a
/// call base.
///
/// This method is the only (supported) way an abstract attribute can retrieve
/// information from another abstract attribute. As an example, take an
/// abstract attribute that determines the memory access behavior for a
/// argument (readnone, readonly, ...). It should use `getAAFor` to get the
/// most optimistic information for other abstract attributes in-flight, e.g.
/// the one reasoning about the "captured" state for the argument or the one
/// reasoning on the memory access behavior of the function as a whole.
///
/// If the flag \p TrackDependence is set to false the dependence from
/// \p QueryingAA to the return abstract attribute is not automatically
/// recorded. This should only be used if the caller will record the
/// dependence explicitly if necessary, thus if it the returned abstract
/// attribute is used for reasoning. To record the dependences explicitly use
/// the `Attributor::recordDependence` method.
template <typename AAType>
const AAType &getAAFor(const AbstractAttribute &QueryingAA,
const IRPosition &IRP, bool TrackDependence = true,
DepClassTy DepClass = DepClassTy::REQUIRED) {
return getOrCreateAAFor<AAType>(IRP, &QueryingAA, TrackDependence, DepClass,
/* ForceUpdate */ false);
}
/// Similar to getAAFor but the return abstract attribute will be updated (via
/// `AbstractAttribute::update`) even if it is found in the cache. This is
/// especially useful for AAIsDead as changes in liveness can make updates
/// possible/useful that were not happening before as the abstract attribute
/// was assumed dead.
template <typename AAType>
const AAType &getAndUpdateAAFor(const AbstractAttribute &QueryingAA,
const IRPosition &IRP,
bool TrackDependence = true,
DepClassTy DepClass = DepClassTy::REQUIRED) {
return getOrCreateAAFor<AAType>(IRP, &QueryingAA, TrackDependence, DepClass,
/* ForceUpdate */ true);
}
/// The version of getAAFor that allows to omit a querying abstract
/// attribute. Using this after Attributor started running is restricted to
/// only the Attributor itself. Initial seeding of AAs can be done via this
/// function.
/// NOTE: ForceUpdate is ignored in any stage other than the update stage.
template <typename AAType>
const AAType &getOrCreateAAFor(const IRPosition &IRP,
const AbstractAttribute *QueryingAA = nullptr,
bool TrackDependence = false,
DepClassTy DepClass = DepClassTy::OPTIONAL,
bool ForceUpdate = false) {
if (AAType *AAPtr = lookupAAFor<AAType>(IRP, QueryingAA, TrackDependence)) {
if (ForceUpdate && Phase == AttributorPhase::UPDATE)
updateAA(*AAPtr);
return *AAPtr;
}
// No matching attribute found, create one.
// Use the static create method.
auto &AA = AAType::createForPosition(IRP, *this);
// If we are currenty seeding attributes, enforce seeding rules.
if (Phase == AttributorPhase::SEEDING && !shouldSeedAttribute(AA)) {
AA.getState().indicatePessimisticFixpoint();
return AA;
}
registerAA(AA);
// For now we ignore naked and optnone functions.
bool Invalidate = Allowed && !Allowed->count(&AAType::ID);
const Function *FnScope = IRP.getAnchorScope();
if (FnScope)
Invalidate |= FnScope->hasFnAttribute(Attribute::Naked) ||
FnScope->hasFnAttribute(Attribute::OptimizeNone);
// Avoid too many nested initializations to prevent a stack overflow.
Invalidate |= InitializationChainLength > MaxInitializationChainLength;
// Bootstrap the new attribute with an initial update to propagate
// information, e.g., function -> call site. If it is not on a given
// Allowed we will not perform updates at all.
if (Invalidate) {
AA.getState().indicatePessimisticFixpoint();
return AA;
}
{
TimeTraceScope TimeScope(AA.getName() + "::initialize");
++InitializationChainLength;
AA.initialize(*this);
--InitializationChainLength;
}
// Initialize and update is allowed for code outside of the current function
// set, but only if it is part of module slice we are allowed to look at.
// Only exception is AAIsDeadFunction whose initialization is prevented
// directly, since we don't to compute it twice.
if (FnScope && !Functions.count(const_cast<Function *>(FnScope))) {
if (!getInfoCache().isInModuleSlice(*FnScope)) {
AA.getState().indicatePessimisticFixpoint();
return AA;
}
}
// If this is queried in the manifest stage, we force the AA to indicate
// pessimistic fixpoint immediately.
if (Phase == AttributorPhase::MANIFEST) {
AA.getState().indicatePessimisticFixpoint();
return AA;
}
// Allow seeded attributes to declare dependencies.
// Remember the seeding state.
AttributorPhase OldPhase = Phase;
Phase = AttributorPhase::UPDATE;
updateAA(AA);
Phase = OldPhase;
if (TrackDependence && AA.getState().isValidState())
recordDependence(AA, const_cast<AbstractAttribute &>(*QueryingAA),
DepClass);
return AA;
}
/// Return the attribute of \p AAType for \p IRP if existing. This also allows
/// non-AA users lookup.
template <typename AAType>
AAType *lookupAAFor(const IRPosition &IRP,
const AbstractAttribute *QueryingAA = nullptr,
bool TrackDependence = false,
DepClassTy DepClass = DepClassTy::OPTIONAL) {
static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
"Cannot query an attribute with a type not derived from "
"'AbstractAttribute'!");
assert((QueryingAA || !TrackDependence) &&
"Cannot track dependences without a QueryingAA!");
// Lookup the abstract attribute of type AAType. If found, return it after
// registering a dependence of QueryingAA on the one returned attribute.
AbstractAttribute *AAPtr = AAMap.lookup({&AAType::ID, IRP});
if (!AAPtr)
return nullptr;
AAType *AA = static_cast<AAType *>(AAPtr);
// Do not register a dependence on an attribute with an invalid state.
if (TrackDependence && AA->getState().isValidState())
recordDependence(*AA, const_cast<AbstractAttribute &>(*QueryingAA),
DepClass);
return AA;
}
/// Explicitly record a dependence from \p FromAA to \p ToAA, that is if
/// \p FromAA changes \p ToAA should be updated as well.
///
/// This method should be used in conjunction with the `getAAFor` method and
/// with the TrackDependence flag passed to the method set to false. This can
/// be beneficial to avoid false dependences but it requires the users of
/// `getAAFor` to explicitly record true dependences through this method.
/// The \p DepClass flag indicates if the dependence is striclty necessary.
/// That means for required dependences, if \p FromAA changes to an invalid
/// state, \p ToAA can be moved to a pessimistic fixpoint because it required
/// information from \p FromAA but none are available anymore.
void recordDependence(const AbstractAttribute &FromAA,
const AbstractAttribute &ToAA, DepClassTy DepClass);
/// Introduce a new abstract attribute into the fixpoint analysis.
///
/// Note that ownership of the attribute is given to the Attributor. It will
/// invoke delete for the Attributor on destruction of the Attributor.
///
/// Attributes are identified by their IR position (AAType::getIRPosition())
/// and the address of their static member (see AAType::ID).
template <typename AAType> AAType &registerAA(AAType &AA) {
static_assert(std::is_base_of<AbstractAttribute, AAType>::value,
"Cannot register an attribute with a type not derived from "
"'AbstractAttribute'!");
// Put the attribute in the lookup map structure and the container we use to
// keep track of all attributes.
const IRPosition &IRP = AA.getIRPosition();
AbstractAttribute *&AAPtr = AAMap[{&AAType::ID, IRP}];
assert(!AAPtr && "Attribute already in map!");
AAPtr = &AA;
// Register AA with the synthetic root only before the manifest stage.
if (Phase == AttributorPhase::SEEDING || Phase == AttributorPhase::UPDATE)
DG.SyntheticRoot.Deps.push_back(
AADepGraphNode::DepTy(&AA, unsigned(DepClassTy::REQUIRED)));
return AA;
}
/// Return the internal information cache.
InformationCache &getInfoCache() { return InfoCache; }
/// Return true if this is a module pass, false otherwise.
bool isModulePass() const {
return !Functions.empty() &&
Functions.size() == Functions.front()->getParent()->size();
}
/// Return true if we derive attributes for \p Fn
bool isRunOn(Function &Fn) const {
return Functions.empty() || Functions.count(&Fn);
}
/// Determine opportunities to derive 'default' attributes in \p F and create
/// abstract attribute objects for them.
///
/// \param F The function that is checked for attribute opportunities.
///
/// Note that abstract attribute instances are generally created even if the
/// IR already contains the information they would deduce. The most important
/// reason for this is the single interface, the one of the abstract attribute
/// instance, which can be queried without the need to look at the IR in
/// various places.
void identifyDefaultAbstractAttributes(Function &F);
/// Determine whether the function \p F is IPO amendable
///
/// If a function is exactly defined or it has alwaysinline attribute
/// and is viable to be inlined, we say it is IPO amendable
bool isFunctionIPOAmendable(const Function &F) {
return F.hasExactDefinition() || InfoCache.InlineableFunctions.count(&F);
}
/// Mark the internal function \p F as live.
///
/// This will trigger the identification and initialization of attributes for
/// \p F.
void markLiveInternalFunction(const Function &F) {
assert(F.hasLocalLinkage() &&
"Only local linkage is assumed dead initially.");
identifyDefaultAbstractAttributes(const_cast<Function &>(F));
}
/// Helper function to remove callsite.
void removeCallSite(CallInst *CI) {
if (!CI)
return;
CGUpdater.removeCallSite(*CI);
}
/// Record that \p U is to be replaces with \p NV after information was
/// manifested. This also triggers deletion of trivially dead istructions.
bool changeUseAfterManifest(Use &U, Value &NV) {
Value *&V = ToBeChangedUses[&U];
if (V && (V->stripPointerCasts() == NV.stripPointerCasts() ||
isa_and_nonnull<UndefValue>(V)))
return false;
assert((!V || V == &NV || isa<UndefValue>(NV)) &&
"Use was registered twice for replacement with different values!");
V = &NV;
return true;
}
/// Helper function to replace all uses of \p V with \p NV. Return true if
/// there is any change. The flag \p ChangeDroppable indicates if dropppable
/// uses should be changed too.
bool changeValueAfterManifest(Value &V, Value &NV,
bool ChangeDroppable = true) {
bool Changed = false;
for (auto &U : V.uses())
if (ChangeDroppable || !U.getUser()->isDroppable())
Changed |= changeUseAfterManifest(U, NV);
return Changed;
}
/// Record that \p I is to be replaced with `unreachable` after information
/// was manifested.
void changeToUnreachableAfterManifest(Instruction *I) {
ToBeChangedToUnreachableInsts.insert(I);
}
/// Record that \p II has at least one dead successor block. This information
/// is used, e.g., to replace \p II with a call, after information was
/// manifested.
void registerInvokeWithDeadSuccessor(InvokeInst &II) {
InvokeWithDeadSuccessor.push_back(&II);
}
/// Record that \p I is deleted after information was manifested. This also
/// triggers deletion of trivially dead istructions.
void deleteAfterManifest(Instruction &I) { ToBeDeletedInsts.insert(&I); }
/// Record that \p BB is deleted after information was manifested. This also
/// triggers deletion of trivially dead istructions.
void deleteAfterManifest(BasicBlock &BB) { ToBeDeletedBlocks.insert(&BB); }
/// Record that \p F is deleted after information was manifested.
void deleteAfterManifest(Function &F) { ToBeDeletedFunctions.insert(&F); }
/// If \p V is assumed to be a constant, return it, if it is unclear yet,
/// return None, otherwise return `nullptr`.
Optional<Constant *> getAssumedConstant(const Value &V,
const AbstractAttribute &AA,
bool &UsedAssumedInformation);
/// Return true if \p AA (or its context instruction) is assumed dead.
///
/// If \p LivenessAA is not provided it is queried.
bool isAssumedDead(const AbstractAttribute &AA, const AAIsDead *LivenessAA,
bool CheckBBLivenessOnly = false,
DepClassTy DepClass = DepClassTy::OPTIONAL);
/// Return true if \p I is assumed dead.
///
/// If \p LivenessAA is not provided it is queried.
bool isAssumedDead(const Instruction &I, const AbstractAttribute *QueryingAA,
const AAIsDead *LivenessAA,
bool CheckBBLivenessOnly = false,
DepClassTy DepClass = DepClassTy::OPTIONAL);
/// Return true if \p U is assumed dead.
///
/// If \p FnLivenessAA is not provided it is queried.
bool isAssumedDead(const Use &U, const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool CheckBBLivenessOnly = false,
DepClassTy DepClass = DepClassTy::OPTIONAL);
/// Return true if \p IRP is assumed dead.
///
/// If \p FnLivenessAA is not provided it is queried.
bool isAssumedDead(const IRPosition &IRP, const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool CheckBBLivenessOnly = false,
DepClassTy DepClass = DepClassTy::OPTIONAL);
/// Check \p Pred on all (transitive) uses of \p V.
///
/// This method will evaluate \p Pred on all (transitive) uses of the
/// associated value and return true if \p Pred holds every time.
bool checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
const AbstractAttribute &QueryingAA, const Value &V,
DepClassTy LivenessDepClass = DepClassTy::OPTIONAL);
/// Helper struct used in the communication between an abstract attribute (AA)
/// that wants to change the signature of a function and the Attributor which
/// applies the changes. The struct is partially initialized with the
/// information from the AA (see the constructor). All other members are
/// provided by the Attributor prior to invoking any callbacks.
struct ArgumentReplacementInfo {
/// Callee repair callback type
///
/// The function repair callback is invoked once to rewire the replacement
/// arguments in the body of the new function. The argument replacement info
/// is passed, as build from the registerFunctionSignatureRewrite call, as
/// well as the replacement function and an iteratore to the first
/// replacement argument.
using CalleeRepairCBTy = std::function<void(
const ArgumentReplacementInfo &, Function &, Function::arg_iterator)>;
/// Abstract call site (ACS) repair callback type
///
/// The abstract call site repair callback is invoked once on every abstract
/// call site of the replaced function (\see ReplacedFn). The callback needs
/// to provide the operands for the call to the new replacement function.
/// The number and type of the operands appended to the provided vector
/// (second argument) is defined by the number and types determined through
/// the replacement type vector (\see ReplacementTypes). The first argument
/// is the ArgumentReplacementInfo object registered with the Attributor
/// through the registerFunctionSignatureRewrite call.
using ACSRepairCBTy =
std::function<void(const ArgumentReplacementInfo &, AbstractCallSite,
SmallVectorImpl<Value *> &)>;
/// Simple getters, see the corresponding members for details.
///{
Attributor &getAttributor() const { return A; }
const Function &getReplacedFn() const { return ReplacedFn; }
const Argument &getReplacedArg() const { return ReplacedArg; }
unsigned getNumReplacementArgs() const { return ReplacementTypes.size(); }
const SmallVectorImpl<Type *> &getReplacementTypes() const {
return ReplacementTypes;
}
///}
private:
/// Constructor that takes the argument to be replaced, the types of
/// the replacement arguments, as well as callbacks to repair the call sites
/// and new function after the replacement happened.
ArgumentReplacementInfo(Attributor &A, Argument &Arg,
ArrayRef<Type *> ReplacementTypes,
CalleeRepairCBTy &&CalleeRepairCB,
ACSRepairCBTy &&ACSRepairCB)
: A(A), ReplacedFn(*Arg.getParent()), ReplacedArg(Arg),
ReplacementTypes(ReplacementTypes.begin(), ReplacementTypes.end()),
CalleeRepairCB(std::move(CalleeRepairCB)),
ACSRepairCB(std::move(ACSRepairCB)) {}
/// Reference to the attributor to allow access from the callbacks.
Attributor &A;
/// The "old" function replaced by ReplacementFn.
const Function &ReplacedFn;
/// The "old" argument replaced by new ones defined via ReplacementTypes.
const Argument &ReplacedArg;
/// The types of the arguments replacing ReplacedArg.
const SmallVector<Type *, 8> ReplacementTypes;
/// Callee repair callback, see CalleeRepairCBTy.
const CalleeRepairCBTy CalleeRepairCB;
/// Abstract call site (ACS) repair callback, see ACSRepairCBTy.
const ACSRepairCBTy ACSRepairCB;
/// Allow access to the private members from the Attributor.
friend struct Attributor;
};
/// Check if we can rewrite a function signature.
///
/// The argument \p Arg is replaced with new ones defined by the number,
/// order, and types in \p ReplacementTypes.
///
/// \returns True, if the replacement can be registered, via
/// registerFunctionSignatureRewrite, false otherwise.
bool isValidFunctionSignatureRewrite(Argument &Arg,
ArrayRef<Type *> ReplacementTypes);
/// Register a rewrite for a function signature.
///
/// The argument \p Arg is replaced with new ones defined by the number,
/// order, and types in \p ReplacementTypes. The rewiring at the call sites is
/// done through \p ACSRepairCB and at the callee site through
/// \p CalleeRepairCB.
///
/// \returns True, if the replacement was registered, false otherwise.
bool registerFunctionSignatureRewrite(
Argument &Arg, ArrayRef<Type *> ReplacementTypes,
ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB);
/// Check \p Pred on all function call sites.
///
/// This method will evaluate \p Pred on call sites and return
/// true if \p Pred holds in every call sites. However, this is only possible
/// all call sites are known, hence the function has internal linkage.
/// If true is returned, \p AllCallSitesKnown is set if all possible call
/// sites of the function have been visited.
bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
const AbstractAttribute &QueryingAA,
bool RequireAllCallSites, bool &AllCallSitesKnown);
/// Check \p Pred on all values potentially returned by \p F.
///
/// This method will evaluate \p Pred on all values potentially returned by
/// the function associated with \p QueryingAA. The returned values are
/// matched with their respective return instructions. Returns true if \p Pred
/// holds on all of them.
bool checkForAllReturnedValuesAndReturnInsts(
function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
const AbstractAttribute &QueryingAA);
/// Check \p Pred on all values potentially returned by the function
/// associated with \p QueryingAA.
///
/// This is the context insensitive version of the method above.
bool checkForAllReturnedValues(function_ref<bool(Value &)> Pred,
const AbstractAttribute &QueryingAA);
/// Check \p Pred on all instructions with an opcode present in \p Opcodes.
///
/// This method will evaluate \p Pred on all instructions with an opcode
/// present in \p Opcode and return true if \p Pred holds on all of them.
bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
const AbstractAttribute &QueryingAA,
const ArrayRef<unsigned> &Opcodes,
bool CheckBBLivenessOnly = false);
/// Check \p Pred on all call-like instructions (=CallBased derived).
///
/// See checkForAllCallLikeInstructions(...) for more information.
bool checkForAllCallLikeInstructions(function_ref<bool(Instruction &)> Pred,
const AbstractAttribute &QueryingAA) {
return checkForAllInstructions(Pred, QueryingAA,
{(unsigned)Instruction::Invoke,
(unsigned)Instruction::CallBr,
(unsigned)Instruction::Call});
}
/// Check \p Pred on all Read/Write instructions.
///
/// This method will evaluate \p Pred on all instructions that read or write
/// to memory present in the information cache and return true if \p Pred
/// holds on all of them.
bool checkForAllReadWriteInstructions(function_ref<bool(Instruction &)> Pred,
AbstractAttribute &QueryingAA);
/// Create a shallow wrapper for \p F such that \p F has internal linkage
/// afterwards. It also sets the original \p F 's name to anonymous
///
/// A wrapper is a function with the same type (and attributes) as \p F
/// that will only call \p F and return the result, if any.
///
/// Assuming the declaration of looks like:
/// rty F(aty0 arg0, ..., atyN argN);
///
/// The wrapper will then look as follows:
/// rty wrapper(aty0 arg0, ..., atyN argN) {
/// return F(arg0, ..., argN);
/// }
///
static void createShallowWrapper(Function &F);
/// Return the data layout associated with the anchor scope.
const DataLayout &getDataLayout() const { return InfoCache.DL; }
/// The allocator used to allocate memory, e.g. for `AbstractAttribute`s.
BumpPtrAllocator &Allocator;
private:
/// This method will do fixpoint iteration until fixpoint or the
/// maximum iteration count is reached.
///
/// If the maximum iteration count is reached, This method will
/// indicate pessimistic fixpoint on attributes that transitively depend
/// on attributes that were scheduled for an update.
void runTillFixpoint();
/// Gets called after scheduling, manifests attributes to the LLVM IR.
ChangeStatus manifestAttributes();
/// Gets called after attributes have been manifested, cleans up the IR.
/// Deletes dead functions, blocks and instructions.
/// Rewrites function signitures and updates the call graph.
ChangeStatus cleanupIR();
/// Identify internal functions that are effectively dead, thus not reachable
/// from a live entry point. The functions are added to ToBeDeletedFunctions.
void identifyDeadInternalFunctions();
/// Run `::update` on \p AA and track the dependences queried while doing so.
/// Also adjust the state if we know further updates are not necessary.
ChangeStatus updateAA(AbstractAttribute &AA);
/// Remember the dependences on the top of the dependence stack such that they
/// may trigger further updates. (\see DependenceStack)
void rememberDependences();
/// Check \p Pred on all call sites of \p Fn.
///
/// This method will evaluate \p Pred on call sites and return
/// true if \p Pred holds in every call sites. However, this is only possible
/// all call sites are known, hence the function has internal linkage.
/// If true is returned, \p AllCallSitesKnown is set if all possible call
/// sites of the function have been visited.
bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
const Function &Fn, bool RequireAllCallSites,
const AbstractAttribute *QueryingAA,
bool &AllCallSitesKnown);
/// Apply all requested function signature rewrites
/// (\see registerFunctionSignatureRewrite) and return Changed if the module
/// was altered.
ChangeStatus
rewriteFunctionSignatures(SmallPtrSetImpl<Function *> &ModifiedFns);
/// Check if the Attribute \p AA should be seeded.
/// See getOrCreateAAFor.
bool shouldSeedAttribute(AbstractAttribute &AA);
/// A nested map to lookup abstract attributes based on the argument position
/// on the outer level, and the addresses of the static member (AAType::ID) on
/// the inner level.
///{
using AAMapKeyTy = std::pair<const char *, IRPosition>;
DenseMap<AAMapKeyTy, AbstractAttribute *> AAMap;
///}
/// Map to remember all requested signature changes (= argument replacements).
DenseMap<Function *, SmallVector<std::unique_ptr<ArgumentReplacementInfo>, 8>>
ArgumentReplacementMap;
/// The set of functions we are deriving attributes for.
SetVector<Function *> &Functions;
/// The information cache that holds pre-processed (LLVM-IR) information.
InformationCache &InfoCache;
/// Helper to update an underlying call graph.
CallGraphUpdater &CGUpdater;
/// Abstract Attribute dependency graph
AADepGraph DG;
/// Set of functions for which we modified the content such that it might
/// impact the call graph.
SmallPtrSet<Function *, 8> CGModifiedFunctions;
/// Information about a dependence. If FromAA is changed ToAA needs to be
/// updated as well.
struct DepInfo {
const AbstractAttribute *FromAA;
const AbstractAttribute *ToAA;
DepClassTy DepClass;
};
/// The dependence stack is used to track dependences during an
/// `AbstractAttribute::update` call. As `AbstractAttribute::update` can be
/// recursive we might have multiple vectors of dependences in here. The stack
/// size, should be adjusted according to the expected recursion depth and the
/// inner dependence vector size to the expected number of dependences per
/// abstract attribute. Since the inner vectors are actually allocated on the
/// stack we can be generous with their size.
using DependenceVector = SmallVector<DepInfo, 8>;
SmallVector<DependenceVector *, 16> DependenceStack;
/// If not null, a set limiting the attribute opportunities.
const DenseSet<const char *> *Allowed;
/// A set to remember the functions we already assume to be live and visited.
DenseSet<const Function *> VisitedFunctions;
/// Uses we replace with a new value after manifest is done. We will remove
/// then trivially dead instructions as well.
DenseMap<Use *, Value *> ToBeChangedUses;
/// Instructions we replace with `unreachable` insts after manifest is done.
SmallDenseSet<WeakVH, 16> ToBeChangedToUnreachableInsts;
/// Invoke instructions with at least a single dead successor block.
SmallVector<WeakVH, 16> InvokeWithDeadSuccessor;
/// A flag that indicates which stage of the process we are in. Initially, the
/// phase is SEEDING. Phase is changed in `Attributor::run()`
enum class AttributorPhase {
SEEDING,
UPDATE,
MANIFEST,
CLEANUP,
} Phase = AttributorPhase::SEEDING;
/// The current initialization chain length. Tracked to avoid stack overflows.
unsigned InitializationChainLength = 0;
/// Functions, blocks, and instructions we delete after manifest is done.
///
///{
SmallPtrSet<Function *, 8> ToBeDeletedFunctions;
SmallPtrSet<BasicBlock *, 8> ToBeDeletedBlocks;
SmallDenseSet<WeakVH, 8> ToBeDeletedInsts;
///}
friend AADepGraph;
};
/// An interface to query the internal state of an abstract attribute.
///
/// The abstract state is a minimal interface that allows the Attributor to
/// communicate with the abstract attributes about their internal state without
/// enforcing or exposing implementation details, e.g., the (existence of an)
/// underlying lattice.
///
/// It is sufficient to be able to query if a state is (1) valid or invalid, (2)
/// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint
/// was reached or (4) a pessimistic fixpoint was enforced.
///
/// All methods need to be implemented by the subclass. For the common use case,
/// a single boolean state or a bit-encoded state, the BooleanState and
/// {Inc,Dec,Bit}IntegerState classes are already provided. An abstract
/// attribute can inherit from them to get the abstract state interface and
/// additional methods to directly modify the state based if needed. See the
/// class comments for help.
struct AbstractState {
virtual ~AbstractState() {}
/// Return if this abstract state is in a valid state. If false, no
/// information provided should be used.
virtual bool isValidState() const = 0;
/// Return if this abstract state is fixed, thus does not need to be updated
/// if information changes as it cannot change itself.
virtual bool isAtFixpoint() const = 0;
/// Indicate that the abstract state should converge to the optimistic state.
///
/// This will usually make the optimistically assumed state the known to be
/// true state.
///
/// \returns ChangeStatus::UNCHANGED as the assumed value should not change.
virtual ChangeStatus indicateOptimisticFixpoint() = 0;
/// Indicate that the abstract state should converge to the pessimistic state.
///
/// This will usually revert the optimistically assumed state to the known to
/// be true state.
///
/// \returns ChangeStatus::CHANGED as the assumed value may change.
virtual ChangeStatus indicatePessimisticFixpoint() = 0;
};
/// Simple state with integers encoding.
///
/// The interface ensures that the assumed bits are always a subset of the known
/// bits. Users can only add known bits and, except through adding known bits,
/// they can only remove assumed bits. This should guarantee monotoniticy and
/// thereby the existence of a fixpoint (if used corretly). The fixpoint is
/// reached when the assumed and known state/bits are equal. Users can
/// force/inidicate a fixpoint. If an optimistic one is indicated, the known
/// state will catch up with the assumed one, for a pessimistic fixpoint it is
/// the other way around.
template <typename base_ty, base_ty BestState, base_ty WorstState>
struct IntegerStateBase : public AbstractState {
using base_t = base_ty;
IntegerStateBase() {}
IntegerStateBase(base_t Assumed) : Assumed(Assumed) {}
/// Return the best possible representable state.
static constexpr base_t getBestState() { return BestState; }
static constexpr base_t getBestState(const IntegerStateBase &) {
return getBestState();
}
/// Return the worst possible representable state.
static constexpr base_t getWorstState() { return WorstState; }
static constexpr base_t getWorstState(const IntegerStateBase &) {
return getWorstState();
}
/// See AbstractState::isValidState()
/// NOTE: For now we simply pretend that the worst possible state is invalid.
bool isValidState() const override { return Assumed != getWorstState(); }
/// See AbstractState::isAtFixpoint()
bool isAtFixpoint() const override { return Assumed == Known; }
/// See AbstractState::indicateOptimisticFixpoint(...)
ChangeStatus indicateOptimisticFixpoint() override {
Known = Assumed;
return ChangeStatus::UNCHANGED;
}
/// See AbstractState::indicatePessimisticFixpoint(...)
ChangeStatus indicatePessimisticFixpoint() override {
Assumed = Known;
return ChangeStatus::CHANGED;
}
/// Return the known state encoding
base_t getKnown() const { return Known; }
/// Return the assumed state encoding.
base_t getAssumed() const { return Assumed; }
/// Equality for IntegerStateBase.
bool
operator==(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
return this->getAssumed() == R.getAssumed() &&
this->getKnown() == R.getKnown();
}
/// Inequality for IntegerStateBase.
bool
operator!=(const IntegerStateBase<base_t, BestState, WorstState> &R) const {
return !(*this == R);
}
/// "Clamp" this state with \p R. The result is subtype dependent but it is
/// intended that only information assumed in both states will be assumed in
/// this one afterwards.
void operator^=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
handleNewAssumedValue(R.getAssumed());
}
/// "Clamp" this state with \p R. The result is subtype dependent but it is
/// intended that information known in either state will be known in
/// this one afterwards.
void operator+=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
handleNewKnownValue(R.getKnown());
}
void operator|=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
joinOR(R.getAssumed(), R.getKnown());
}
void operator&=(const IntegerStateBase<base_t, BestState, WorstState> &R) {
joinAND(R.getAssumed(), R.getKnown());
}
protected:
/// Handle a new assumed value \p Value. Subtype dependent.
virtual void handleNewAssumedValue(base_t Value) = 0;
/// Handle a new known value \p Value. Subtype dependent.
virtual void handleNewKnownValue(base_t Value) = 0;
/// Handle a value \p Value. Subtype dependent.
virtual void joinOR(base_t AssumedValue, base_t KnownValue) = 0;
/// Handle a new assumed value \p Value. Subtype dependent.
virtual void joinAND(base_t AssumedValue, base_t KnownValue) = 0;
/// The known state encoding in an integer of type base_t.
base_t Known = getWorstState();
/// The assumed state encoding in an integer of type base_t.
base_t Assumed = getBestState();
};
/// Specialization of the integer state for a bit-wise encoding.
template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
base_ty WorstState = 0>
struct BitIntegerState
: public IntegerStateBase<base_ty, BestState, WorstState> {
using base_t = base_ty;
/// Return true if the bits set in \p BitsEncoding are "known bits".
bool isKnown(base_t BitsEncoding) const {
return (this->Known & BitsEncoding) == BitsEncoding;
}
/// Return true if the bits set in \p BitsEncoding are "assumed bits".
bool isAssumed(base_t BitsEncoding) const {
return (this->Assumed & BitsEncoding) == BitsEncoding;
}
/// Add the bits in \p BitsEncoding to the "known bits".
BitIntegerState &addKnownBits(base_t Bits) {
// Make sure we never miss any "known bits".
this->Assumed |= Bits;
this->Known |= Bits;
return *this;
}
/// Remove the bits in \p BitsEncoding from the "assumed bits" if not known.
BitIntegerState &removeAssumedBits(base_t BitsEncoding) {
return intersectAssumedBits(~BitsEncoding);
}
/// Remove the bits in \p BitsEncoding from the "known bits".
BitIntegerState &removeKnownBits(base_t BitsEncoding) {
this->Known = (this->Known & ~BitsEncoding);
return *this;
}
/// Keep only "assumed bits" also set in \p BitsEncoding but all known ones.
BitIntegerState &intersectAssumedBits(base_t BitsEncoding) {
// Make sure we never loose any "known bits".
this->Assumed = (this->Assumed & BitsEncoding) | this->Known;
return *this;
}
private:
void handleNewAssumedValue(base_t Value) override {
intersectAssumedBits(Value);
}
void handleNewKnownValue(base_t Value) override { addKnownBits(Value); }
void joinOR(base_t AssumedValue, base_t KnownValue) override {
this->Known |= KnownValue;
this->Assumed |= AssumedValue;
}
void joinAND(base_t AssumedValue, base_t KnownValue) override {
this->Known &= KnownValue;
this->Assumed &= AssumedValue;
}
};
/// Specialization of the integer state for an increasing value, hence ~0u is
/// the best state and 0 the worst.
template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0),
base_ty WorstState = 0>
struct IncIntegerState
: public IntegerStateBase<base_ty, BestState, WorstState> {
using super = IntegerStateBase<base_ty, BestState, WorstState>;
using base_t = base_ty;
IncIntegerState() : super() {}
IncIntegerState(base_t Assumed) : super(Assumed) {}
/// Return the best possible representable state.
static constexpr base_t getBestState() { return BestState; }
static constexpr base_t
getBestState(const IncIntegerState<base_ty, BestState, WorstState> &) {
return getBestState();
}
/// Take minimum of assumed and \p Value.
IncIntegerState &takeAssumedMinimum(base_t Value) {
// Make sure we never loose "known value".
this->Assumed = std::max(std::min(this->Assumed, Value), this->Known);
return *this;
}
/// Take maximum of known and \p Value.
IncIntegerState &takeKnownMaximum(base_t Value) {
// Make sure we never loose "known value".
this->Assumed = std::max(Value, this->Assumed);
this->Known = std::max(Value, this->Known);
return *this;
}
private:
void handleNewAssumedValue(base_t Value) override {
takeAssumedMinimum(Value);
}
void handleNewKnownValue(base_t Value) override { takeKnownMaximum(Value); }
void joinOR(base_t AssumedValue, base_t KnownValue) override {
this->Known = std::max(this->Known, KnownValue);
this->Assumed = std::max(this->Assumed, AssumedValue);
}
void joinAND(base_t AssumedValue, base_t KnownValue) override {
this->Known = std::min(this->Known, KnownValue);
this->Assumed = std::min(this->Assumed, AssumedValue);
}
};
/// Specialization of the integer state for a decreasing value, hence 0 is the
/// best state and ~0u the worst.
template <typename base_ty = uint32_t>
struct DecIntegerState : public IntegerStateBase<base_ty, 0, ~base_ty(0)> {
using base_t = base_ty;
/// Take maximum of assumed and \p Value.
DecIntegerState &takeAssumedMaximum(base_t Value) {
// Make sure we never loose "known value".
this->Assumed = std::min(std::max(this->Assumed, Value), this->Known);
return *this;
}
/// Take minimum of known and \p Value.
DecIntegerState &takeKnownMinimum(base_t Value) {
// Make sure we never loose "known value".
this->Assumed = std::min(Value, this->Assumed);
this->Known = std::min(Value, this->Known);
return *this;
}
private:
void handleNewAssumedValue(base_t Value) override {
takeAssumedMaximum(Value);
}
void handleNewKnownValue(base_t Value) override { takeKnownMinimum(Value); }
void joinOR(base_t AssumedValue, base_t KnownValue) override {
this->Assumed = std::min(this->Assumed, KnownValue);
this->Assumed = std::min(this->Assumed, AssumedValue);
}
void joinAND(base_t AssumedValue, base_t KnownValue) override {
this->Assumed = std::max(this->Assumed, KnownValue);
this->Assumed = std::max(this->Assumed, AssumedValue);
}
};
/// Simple wrapper for a single bit (boolean) state.
struct BooleanState : public IntegerStateBase<bool, 1, 0> {
using super = IntegerStateBase<bool, 1, 0>;
using base_t = IntegerStateBase::base_t;
BooleanState() : super() {}
BooleanState(base_t Assumed) : super(Assumed) {}
/// Set the assumed value to \p Value but never below the known one.
void setAssumed(bool Value) { Assumed &= (Known | Value); }
/// Set the known and asssumed value to \p Value.
void setKnown(bool Value) {
Known |= Value;
Assumed |= Value;
}
/// Return true if the state is assumed to hold.
bool isAssumed() const { return getAssumed(); }
/// Return true if the state is known to hold.
bool isKnown() const { return getKnown(); }
private:
void handleNewAssumedValue(base_t Value) override {
if (!Value)
Assumed = Known;
}
void handleNewKnownValue(base_t Value) override {
if (Value)
Known = (Assumed = Value);
}
void joinOR(base_t AssumedValue, base_t KnownValue) override {
Known |= KnownValue;
Assumed |= AssumedValue;
}
void joinAND(base_t AssumedValue, base_t KnownValue) override {
Known &= KnownValue;
Assumed &= AssumedValue;
}
};
/// State for an integer range.
struct IntegerRangeState : public AbstractState {
/// Bitwidth of the associated value.
uint32_t BitWidth;
/// State representing assumed range, initially set to empty.
ConstantRange Assumed;
/// State representing known range, initially set to [-inf, inf].
ConstantRange Known;
IntegerRangeState(uint32_t BitWidth)
: BitWidth(BitWidth), Assumed(ConstantRange::getEmpty(BitWidth)),
Known(ConstantRange::getFull(BitWidth)) {}
IntegerRangeState(const ConstantRange &CR)
: BitWidth(CR.getBitWidth()), Assumed(CR),
Known(getWorstState(CR.getBitWidth())) {}
/// Return the worst possible representable state.
static ConstantRange getWorstState(uint32_t BitWidth) {
return ConstantRange::getFull(BitWidth);
}
/// Return the best possible representable state.
static ConstantRange getBestState(uint32_t BitWidth) {
return ConstantRange::getEmpty(BitWidth);
}
static ConstantRange getBestState(const IntegerRangeState &IRS) {
return getBestState(IRS.getBitWidth());
}
/// Return associated values' bit width.
uint32_t getBitWidth() const { return BitWidth; }
/// See AbstractState::isValidState()
bool isValidState() const override {
return BitWidth > 0 && !Assumed.isFullSet();
}
/// See AbstractState::isAtFixpoint()
bool isAtFixpoint() const override { return Assumed == Known; }
/// See AbstractState::indicateOptimisticFixpoint(...)
ChangeStatus indicateOptimisticFixpoint() override {
Known = Assumed;
return ChangeStatus::CHANGED;
}
/// See AbstractState::indicatePessimisticFixpoint(...)
ChangeStatus indicatePessimisticFixpoint() override {
Assumed = Known;
return ChangeStatus::CHANGED;
}
/// Return the known state encoding
ConstantRange getKnown() const { return Known; }
/// Return the assumed state encoding.
ConstantRange getAssumed() const { return Assumed; }
/// Unite assumed range with the passed state.
void unionAssumed(const ConstantRange &R) {
// Don't loose a known range.
Assumed = Assumed.unionWith(R).intersectWith(Known);
}
/// See IntegerRangeState::unionAssumed(..).
void unionAssumed(const IntegerRangeState &R) {
unionAssumed(R.getAssumed());
}
/// Unite known range with the passed state.
void unionKnown(const ConstantRange &R) {
// Don't loose a known range.
Known = Known.unionWith(R);
Assumed = Assumed.unionWith(Known);
}
/// See IntegerRangeState::unionKnown(..).
void unionKnown(const IntegerRangeState &R) { unionKnown(R.getKnown()); }
/// Intersect known range with the passed state.
void intersectKnown(const ConstantRange &R) {
Assumed = Assumed.intersectWith(R);
Known = Known.intersectWith(R);
}
/// See IntegerRangeState::intersectKnown(..).
void intersectKnown(const IntegerRangeState &R) {
intersectKnown(R.getKnown());
}
/// Equality for IntegerRangeState.
bool operator==(const IntegerRangeState &R) const {
return getAssumed() == R.getAssumed() && getKnown() == R.getKnown();
}
/// "Clamp" this state with \p R. The result is subtype dependent but it is
/// intended that only information assumed in both states will be assumed in
/// this one afterwards.
IntegerRangeState operator^=(const IntegerRangeState &R) {
// NOTE: `^=` operator seems like `intersect` but in this case, we need to
// take `union`.
unionAssumed(R);
return *this;
}
IntegerRangeState operator&=(const IntegerRangeState &R) {
// NOTE: `&=` operator seems like `intersect` but in this case, we need to
// take `union`.
unionKnown(R);
unionAssumed(R);
return *this;
}
};
/// Helper struct necessary as the modular build fails if the virtual method
/// IRAttribute::manifest is defined in the Attributor.cpp.
struct IRAttributeManifest {
static ChangeStatus manifestAttrs(Attributor &A, const IRPosition &IRP,
const ArrayRef<Attribute> &DeducedAttrs);
};
/// Helper to tie a abstract state implementation to an abstract attribute.
template <typename StateTy, typename BaseType, class... Ts>
struct StateWrapper : public BaseType, public StateTy {
/// Provide static access to the type of the state.
using StateType = StateTy;
StateWrapper(const IRPosition &IRP, Ts... Args)
: BaseType(IRP), StateTy(Args...) {}
/// See AbstractAttribute::getState(...).
StateType &getState() override { return *this; }
/// See AbstractAttribute::getState(...).
const StateType &getState() const override { return *this; }
};
/// Helper class that provides common functionality to manifest IR attributes.
template <Attribute::AttrKind AK, typename BaseType>
struct IRAttribute : public BaseType {
IRAttribute(const IRPosition &IRP) : BaseType(IRP) {}
/// See AbstractAttribute::initialize(...).
virtual void initialize(Attributor &A) override {
const IRPosition &IRP = this->getIRPosition();
if (isa<UndefValue>(IRP.getAssociatedValue()) ||
this->hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ false,
&A)) {
this->getState().indicateOptimisticFixpoint();
return;
}
bool IsFnInterface = IRP.isFnInterfaceKind();
const Function *FnScope = IRP.getAnchorScope();
// TODO: Not all attributes require an exact definition. Find a way to
// enable deduction for some but not all attributes in case the
// definition might be changed at runtime, see also
// http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
// TODO: We could always determine abstract attributes and if sufficient
// information was found we could duplicate the functions that do not
// have an exact definition.
if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope)))
this->getState().indicatePessimisticFixpoint();
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
if (isa<UndefValue>(this->getIRPosition().getAssociatedValue()))
return ChangeStatus::UNCHANGED;
SmallVector<Attribute, 4> DeducedAttrs;
getDeducedAttributes(this->getAnchorValue().getContext(), DeducedAttrs);
return IRAttributeManifest::manifestAttrs(A, this->getIRPosition(),
DeducedAttrs);
}
/// Return the kind that identifies the abstract attribute implementation.
Attribute::AttrKind getAttrKind() const { return AK; }
/// Return the deduced attributes in \p Attrs.
virtual void getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const {
Attrs.emplace_back(Attribute::get(Ctx, getAttrKind()));
}
};
/// Base struct for all "concrete attribute" deductions.
///
/// The abstract attribute is a minimal interface that allows the Attributor to
/// orchestrate the abstract/fixpoint analysis. The design allows to hide away
/// implementation choices made for the subclasses but also to structure their
/// implementation and simplify the use of other abstract attributes in-flight.
///
/// To allow easy creation of new attributes, most methods have default
/// implementations. The ones that do not are generally straight forward, except
/// `AbstractAttribute::updateImpl` which is the location of most reasoning
/// associated with the abstract attribute. The update is invoked by the
/// Attributor in case the situation used to justify the current optimistic
/// state might have changed. The Attributor determines this automatically
/// by monitoring the `Attributor::getAAFor` calls made by abstract attributes.
///
/// The `updateImpl` method should inspect the IR and other abstract attributes
/// in-flight to justify the best possible (=optimistic) state. The actual
/// implementation is, similar to the underlying abstract state encoding, not
/// exposed. In the most common case, the `updateImpl` will go through a list of
/// reasons why its optimistic state is valid given the current information. If
/// any combination of them holds and is sufficient to justify the current
/// optimistic state, the method shall return UNCHAGED. If not, the optimistic
/// state is adjusted to the situation and the method shall return CHANGED.
///
/// If the manifestation of the "concrete attribute" deduced by the subclass
/// differs from the "default" behavior, which is a (set of) LLVM-IR
/// attribute(s) for an argument, call site argument, function return value, or
/// function, the `AbstractAttribute::manifest` method should be overloaded.
///
/// NOTE: If the state obtained via getState() is INVALID, thus if
/// AbstractAttribute::getState().isValidState() returns false, no
/// information provided by the methods of this class should be used.
/// NOTE: The Attributor currently has certain limitations to what we can do.
/// As a general rule of thumb, "concrete" abstract attributes should *for
/// now* only perform "backward" information propagation. That means
/// optimistic information obtained through abstract attributes should
/// only be used at positions that precede the origin of the information
/// with regards to the program flow. More practically, information can
/// *now* be propagated from instructions to their enclosing function, but
/// *not* from call sites to the called function. The mechanisms to allow
/// both directions will be added in the future.
/// NOTE: The mechanics of adding a new "concrete" abstract attribute are
/// described in the file comment.
struct AbstractAttribute : public IRPosition, public AADepGraphNode {
using StateType = AbstractState;
AbstractAttribute(const IRPosition &IRP) : IRPosition(IRP) {}
/// Virtual destructor.
virtual ~AbstractAttribute() {}
/// This function is used to identify if an \p DGN is of type
/// AbstractAttribute so that the dyn_cast and cast can use such information
/// to cast an AADepGraphNode to an AbstractAttribute.
///
/// We eagerly return true here because all AADepGraphNodes except for the
/// Synthethis Node are of type AbstractAttribute
static bool classof(const AADepGraphNode *DGN) { return true; }
/// Initialize the state with the information in the Attributor \p A.
///
/// This function is called by the Attributor once all abstract attributes
/// have been identified. It can and shall be used for task like:
/// - identify existing knowledge in the IR and use it for the "known state"
/// - perform any work that is not going to change over time, e.g., determine
/// a subset of the IR, or attributes in-flight, that have to be looked at
/// in the `updateImpl` method.
virtual void initialize(Attributor &A) {}
/// Return the internal abstract state for inspection.
virtual StateType &getState() = 0;
virtual const StateType &getState() const = 0;
/// Return an IR position, see struct IRPosition.
const IRPosition &getIRPosition() const { return *this; };
IRPosition &getIRPosition() { return *this; };
/// Helper functions, for debug purposes only.
///{
void print(raw_ostream &OS) const override;
virtual void printWithDeps(raw_ostream &OS) const;
void dump() const { print(dbgs()); }
/// This function should return the "summarized" assumed state as string.
virtual const std::string getAsStr() const = 0;
/// This function should return the name of the AbstractAttribute
virtual const std::string getName() const = 0;
/// This function should return the address of the ID of the AbstractAttribute
virtual const char *getIdAddr() const = 0;
///}
/// Allow the Attributor access to the protected methods.
friend struct Attributor;
protected:
/// Hook for the Attributor to trigger an update of the internal state.
///
/// If this attribute is already fixed, this method will return UNCHANGED,
/// otherwise it delegates to `AbstractAttribute::updateImpl`.
///
/// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
ChangeStatus update(Attributor &A);
/// Hook for the Attributor to trigger the manifestation of the information
/// represented by the abstract attribute in the LLVM-IR.
///
/// \Return CHANGED if the IR was altered, otherwise UNCHANGED.
virtual ChangeStatus manifest(Attributor &A) {
return ChangeStatus::UNCHANGED;
}
/// Hook to enable custom statistic tracking, called after manifest that
/// resulted in a change if statistics are enabled.
///
/// We require subclasses to provide an implementation so we remember to
/// add statistics for them.
virtual void trackStatistics() const = 0;
/// The actual update/transfer function which has to be implemented by the
/// derived classes.
///
/// If it is called, the environment has changed and we have to determine if
/// the current information is still valid or adjust it otherwise.
///
/// \Return CHANGED if the internal state changed, otherwise UNCHANGED.
virtual ChangeStatus updateImpl(Attributor &A) = 0;
};
/// Forward declarations of output streams for debug purposes.
///
///{
raw_ostream &operator<<(raw_ostream &OS, const AbstractAttribute &AA);
raw_ostream &operator<<(raw_ostream &OS, ChangeStatus S);
raw_ostream &operator<<(raw_ostream &OS, IRPosition::Kind);
raw_ostream &operator<<(raw_ostream &OS, const IRPosition &);
raw_ostream &operator<<(raw_ostream &OS, const AbstractState &State);
template <typename base_ty, base_ty BestState, base_ty WorstState>
raw_ostream &
operator<<(raw_ostream &OS,
const IntegerStateBase<base_ty, BestState, WorstState> &S) {
return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
<< static_cast<const AbstractState &>(S);
}
raw_ostream &operator<<(raw_ostream &OS, const IntegerRangeState &State);
///}
struct AttributorPass : public PassInfoMixin<AttributorPass> {
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
};
struct AttributorCGSCCPass : public PassInfoMixin<AttributorCGSCCPass> {
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR);
};
Pass *createAttributorLegacyPass();
Pass *createAttributorCGSCCLegacyPass();
/// ----------------------------------------------------------------------------
/// Abstract Attribute Classes
/// ----------------------------------------------------------------------------
/// An abstract attribute for the returned values of a function.
struct AAReturnedValues
: public IRAttribute<Attribute::Returned, AbstractAttribute> {
AAReturnedValues(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return an assumed unique return value if a single candidate is found. If
/// there cannot be one, return a nullptr. If it is not clear yet, return the
/// Optional::NoneType.
Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
/// Check \p Pred on all returned values.
///
/// This method will evaluate \p Pred on returned values and return
/// true if (1) all returned values are known, and (2) \p Pred returned true
/// for all returned values.
///
/// Note: Unlike the Attributor::checkForAllReturnedValuesAndReturnInsts
/// method, this one will not filter dead return instructions.
virtual bool checkForAllReturnedValuesAndReturnInsts(
function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
const = 0;
using iterator =
MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::iterator;
using const_iterator =
MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::const_iterator;
virtual llvm::iterator_range<iterator> returned_values() = 0;
virtual llvm::iterator_range<const_iterator> returned_values() const = 0;
virtual size_t getNumReturnValues() const = 0;
virtual const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const = 0;
/// Create an abstract attribute view for the position \p IRP.
static AAReturnedValues &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAReturnedValues"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAReturnedValues
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
struct AANoUnwind
: public IRAttribute<Attribute::NoUnwind,
StateWrapper<BooleanState, AbstractAttribute>> {
AANoUnwind(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Returns true if nounwind is assumed.
bool isAssumedNoUnwind() const { return getAssumed(); }
/// Returns true if nounwind is known.
bool isKnownNoUnwind() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANoUnwind &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoUnwind"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoUnwind
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
struct AANoSync
: public IRAttribute<Attribute::NoSync,
StateWrapper<BooleanState, AbstractAttribute>> {
AANoSync(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Returns true if "nosync" is assumed.
bool isAssumedNoSync() const { return getAssumed(); }
/// Returns true if "nosync" is known.
bool isKnownNoSync() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANoSync &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoSync"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoSync
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for all nonnull attributes.
struct AANonNull
: public IRAttribute<Attribute::NonNull,
StateWrapper<BooleanState, AbstractAttribute>> {
AANonNull(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if we assume that the underlying value is nonnull.
bool isAssumedNonNull() const { return getAssumed(); }
/// Return true if we know that underlying value is nonnull.
bool isKnownNonNull() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANonNull &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANonNull"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANonNull
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract attribute for norecurse.
struct AANoRecurse
: public IRAttribute<Attribute::NoRecurse,
StateWrapper<BooleanState, AbstractAttribute>> {
AANoRecurse(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if "norecurse" is assumed.
bool isAssumedNoRecurse() const { return getAssumed(); }
/// Return true if "norecurse" is known.
bool isKnownNoRecurse() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANoRecurse &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoRecurse"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoRecurse
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract attribute for willreturn.
struct AAWillReturn
: public IRAttribute<Attribute::WillReturn,
StateWrapper<BooleanState, AbstractAttribute>> {
AAWillReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if "willreturn" is assumed.
bool isAssumedWillReturn() const { return getAssumed(); }
/// Return true if "willreturn" is known.
bool isKnownWillReturn() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AAWillReturn &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAWillReturn"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AAWillReturn
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract attribute for undefined behavior.
struct AAUndefinedBehavior
: public StateWrapper<BooleanState, AbstractAttribute> {
using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAUndefinedBehavior(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
/// Return true if "undefined behavior" is assumed.
bool isAssumedToCauseUB() const { return getAssumed(); }
/// Return true if "undefined behavior" is assumed for a specific instruction.
virtual bool isAssumedToCauseUB(Instruction *I) const = 0;
/// Return true if "undefined behavior" is known.
bool isKnownToCauseUB() const { return getKnown(); }
/// Return true if "undefined behavior" is known for a specific instruction.
virtual bool isKnownToCauseUB(Instruction *I) const = 0;
/// Create an abstract attribute view for the position \p IRP.
static AAUndefinedBehavior &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAUndefinedBehavior"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAUndefineBehavior
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface to determine reachability of point A to B.
struct AAReachability : public StateWrapper<BooleanState, AbstractAttribute> {
using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
/// Returns true if 'From' instruction is assumed to reach, 'To' instruction.
/// Users should provide two positions they are interested in, and the class
/// determines (and caches) reachability.
bool isAssumedReachable(Attributor &A, const Instruction &From,
const Instruction &To) const {
return A.getInfoCache().getPotentiallyReachable(From, To);
}
/// Returns true if 'From' instruction is known to reach, 'To' instruction.
/// Users should provide two positions they are interested in, and the class
/// determines (and caches) reachability.
bool isKnownReachable(Attributor &A, const Instruction &From,
const Instruction &To) const {
return A.getInfoCache().getPotentiallyReachable(From, To);
}
/// Create an abstract attribute view for the position \p IRP.
static AAReachability &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAReachability"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAReachability
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for all noalias attributes.
struct AANoAlias
: public IRAttribute<Attribute::NoAlias,
StateWrapper<BooleanState, AbstractAttribute>> {
AANoAlias(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if we assume that the underlying value is alias.
bool isAssumedNoAlias() const { return getAssumed(); }
/// Return true if we know that underlying value is noalias.
bool isKnownNoAlias() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANoAlias &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoAlias"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoAlias
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An AbstractAttribute for nofree.
struct AANoFree
: public IRAttribute<Attribute::NoFree,
StateWrapper<BooleanState, AbstractAttribute>> {
AANoFree(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if "nofree" is assumed.
bool isAssumedNoFree() const { return getAssumed(); }
/// Return true if "nofree" is known.
bool isKnownNoFree() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANoFree &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoFree"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoFree
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An AbstractAttribute for noreturn.
struct AANoReturn
: public IRAttribute<Attribute::NoReturn,
StateWrapper<BooleanState, AbstractAttribute>> {
AANoReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if the underlying object is assumed to never return.
bool isAssumedNoReturn() const { return getAssumed(); }
/// Return true if the underlying object is known to never return.
bool isKnownNoReturn() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANoReturn &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoReturn"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoReturn
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for liveness abstract attribute.
struct AAIsDead : public StateWrapper<BooleanState, AbstractAttribute> {
using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAIsDead(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
protected:
/// The query functions are protected such that other attributes need to go
/// through the Attributor interfaces: `Attributor::isAssumedDead(...)`
/// Returns true if the underlying value is assumed dead.
virtual bool isAssumedDead() const = 0;
/// Returns true if the underlying value is known dead.
virtual bool isKnownDead() const = 0;
/// Returns true if \p BB is assumed dead.
virtual bool isAssumedDead(const BasicBlock *BB) const = 0;
/// Returns true if \p BB is known dead.
virtual bool isKnownDead(const BasicBlock *BB) const = 0;
/// Returns true if \p I is assumed dead.
virtual bool isAssumedDead(const Instruction *I) const = 0;
/// Returns true if \p I is known dead.
virtual bool isKnownDead(const Instruction *I) const = 0;
/// This method is used to check if at least one instruction in a collection
/// of instructions is live.
template <typename T> bool isLiveInstSet(T begin, T end) const {
for (const auto &I : llvm::make_range(begin, end)) {
assert(I->getFunction() == getIRPosition().getAssociatedFunction() &&
"Instruction must be in the same anchor scope function.");
if (!isAssumedDead(I))
return true;
}
return false;
}
public:
/// Create an abstract attribute view for the position \p IRP.
static AAIsDead &createForPosition(const IRPosition &IRP, Attributor &A);
/// Determine if \p F might catch asynchronous exceptions.
static bool mayCatchAsynchronousExceptions(const Function &F) {
return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
}
/// Return if the edge from \p From BB to \p To BB is assumed dead.
/// This is specifically useful in AAReachability.
virtual bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const {
return false;
}
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAIsDead"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AAIsDead
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
friend struct Attributor;
};
/// State for dereferenceable attribute
struct DerefState : AbstractState {
static DerefState getBestState() { return DerefState(); }
static DerefState getBestState(const DerefState &) { return getBestState(); }
/// Return the worst possible representable state.
static DerefState getWorstState() {
DerefState DS;
DS.indicatePessimisticFixpoint();
return DS;
}
static DerefState getWorstState(const DerefState &) {
return getWorstState();
}
/// State representing for dereferenceable bytes.
IncIntegerState<> DerefBytesState;
/// Map representing for accessed memory offsets and sizes.
/// A key is Offset and a value is size.
/// If there is a load/store instruction something like,
/// p[offset] = v;
/// (offset, sizeof(v)) will be inserted to this map.
/// std::map is used because we want to iterate keys in ascending order.
std::map<int64_t, uint64_t> AccessedBytesMap;
/// Helper function to calculate dereferenceable bytes from current known
/// bytes and accessed bytes.
///
/// int f(int *A){
/// *A = 0;
/// *(A+2) = 2;
/// *(A+1) = 1;
/// *(A+10) = 10;
/// }
/// ```
/// In that case, AccessedBytesMap is `{0:4, 4:4, 8:4, 40:4}`.
/// AccessedBytesMap is std::map so it is iterated in accending order on
/// key(Offset). So KnownBytes will be updated like this:
///
/// |Access | KnownBytes
/// |(0, 4)| 0 -> 4
/// |(4, 4)| 4 -> 8
/// |(8, 4)| 8 -> 12
/// |(40, 4) | 12 (break)
void computeKnownDerefBytesFromAccessedMap() {
int64_t KnownBytes = DerefBytesState.getKnown();
for (auto &Access : AccessedBytesMap) {
if (KnownBytes < Access.first)
break;
KnownBytes = std::max(KnownBytes, Access.first + (int64_t)Access.second);
}
DerefBytesState.takeKnownMaximum(KnownBytes);
}
/// State representing that whether the value is globaly dereferenceable.
BooleanState GlobalState;
/// See AbstractState::isValidState()
bool isValidState() const override { return DerefBytesState.isValidState(); }
/// See AbstractState::isAtFixpoint()
bool isAtFixpoint() const override {
return !isValidState() ||
(DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint());
}
/// See AbstractState::indicateOptimisticFixpoint(...)
ChangeStatus indicateOptimisticFixpoint() override {
DerefBytesState.indicateOptimisticFixpoint();
GlobalState.indicateOptimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractState::indicatePessimisticFixpoint(...)
ChangeStatus indicatePessimisticFixpoint() override {
DerefBytesState.indicatePessimisticFixpoint();
GlobalState.indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
/// Update known dereferenceable bytes.
void takeKnownDerefBytesMaximum(uint64_t Bytes) {
DerefBytesState.takeKnownMaximum(Bytes);
// Known bytes might increase.
computeKnownDerefBytesFromAccessedMap();
}
/// Update assumed dereferenceable bytes.
void takeAssumedDerefBytesMinimum(uint64_t Bytes) {
DerefBytesState.takeAssumedMinimum(Bytes);
}
/// Add accessed bytes to the map.
void addAccessedBytes(int64_t Offset, uint64_t Size) {
uint64_t &AccessedBytes = AccessedBytesMap[Offset];
AccessedBytes = std::max(AccessedBytes, Size);
// Known bytes might increase.
computeKnownDerefBytesFromAccessedMap();
}
/// Equality for DerefState.
bool operator==(const DerefState &R) const {
return this->DerefBytesState == R.DerefBytesState &&
this->GlobalState == R.GlobalState;
}
/// Inequality for DerefState.
bool operator!=(const DerefState &R) const { return !(*this == R); }
/// See IntegerStateBase::operator^=
DerefState operator^=(const DerefState &R) {
DerefBytesState ^= R.DerefBytesState;
GlobalState ^= R.GlobalState;
return *this;
}
/// See IntegerStateBase::operator+=
DerefState operator+=(const DerefState &R) {
DerefBytesState += R.DerefBytesState;
GlobalState += R.GlobalState;
return *this;
}
/// See IntegerStateBase::operator&=
DerefState operator&=(const DerefState &R) {
DerefBytesState &= R.DerefBytesState;
GlobalState &= R.GlobalState;
return *this;
}
/// See IntegerStateBase::operator|=
DerefState operator|=(const DerefState &R) {
DerefBytesState |= R.DerefBytesState;
GlobalState |= R.GlobalState;
return *this;
}
protected:
const AANonNull *NonNullAA = nullptr;
};
/// An abstract interface for all dereferenceable attribute.
struct AADereferenceable
: public IRAttribute<Attribute::Dereferenceable,
StateWrapper<DerefState, AbstractAttribute>> {
AADereferenceable(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if we assume that the underlying value is nonnull.
bool isAssumedNonNull() const {
return NonNullAA && NonNullAA->isAssumedNonNull();
}
/// Return true if we know that the underlying value is nonnull.
bool isKnownNonNull() const {
return NonNullAA && NonNullAA->isKnownNonNull();
}
/// Return true if we assume that underlying value is
/// dereferenceable(_or_null) globally.
bool isAssumedGlobal() const { return GlobalState.getAssumed(); }
/// Return true if we know that underlying value is
/// dereferenceable(_or_null) globally.
bool isKnownGlobal() const { return GlobalState.getKnown(); }
/// Return assumed dereferenceable bytes.
uint32_t getAssumedDereferenceableBytes() const {
return DerefBytesState.getAssumed();
}
/// Return known dereferenceable bytes.
uint32_t getKnownDereferenceableBytes() const {
return DerefBytesState.getKnown();
}
/// Create an abstract attribute view for the position \p IRP.
static AADereferenceable &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AADereferenceable"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AADereferenceable
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
using AAAlignmentStateType =
IncIntegerState<uint32_t, Value::MaximumAlignment, 0>;
/// An abstract interface for all align attributes.
struct AAAlign : public IRAttribute<
Attribute::Alignment,
StateWrapper<AAAlignmentStateType, AbstractAttribute>> {
AAAlign(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return assumed alignment.
unsigned getAssumedAlign() const { return getAssumed(); }
/// Return known alignment.
unsigned getKnownAlign() const { return getKnown(); }
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAAlign"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AAAlign
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Create an abstract attribute view for the position \p IRP.
static AAAlign &createForPosition(const IRPosition &IRP, Attributor &A);
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for all nocapture attributes.
struct AANoCapture
: public IRAttribute<
Attribute::NoCapture,
StateWrapper<BitIntegerState<uint16_t, 7, 0>, AbstractAttribute>> {
AANoCapture(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// State encoding bits. A set bit in the state means the property holds.
/// NO_CAPTURE is the best possible state, 0 the worst possible state.
enum {
NOT_CAPTURED_IN_MEM = 1 << 0,
NOT_CAPTURED_IN_INT = 1 << 1,
NOT_CAPTURED_IN_RET = 1 << 2,
/// If we do not capture the value in memory or through integers we can only
/// communicate it back as a derived pointer.
NO_CAPTURE_MAYBE_RETURNED = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT,
/// If we do not capture the value in memory, through integers, or as a
/// derived pointer we know it is not captured.
NO_CAPTURE =
NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT | NOT_CAPTURED_IN_RET,
};
/// Return true if we know that the underlying value is not captured in its
/// respective scope.
bool isKnownNoCapture() const { return isKnown(NO_CAPTURE); }
/// Return true if we assume that the underlying value is not captured in its
/// respective scope.
bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE); }
/// Return true if we know that the underlying value is not captured in its
/// respective scope but we allow it to escape through a "return".
bool isKnownNoCaptureMaybeReturned() const {
return isKnown(NO_CAPTURE_MAYBE_RETURNED);
}
/// Return true if we assume that the underlying value is not captured in its
/// respective scope but we allow it to escape through a "return".
bool isAssumedNoCaptureMaybeReturned() const {
return isAssumed(NO_CAPTURE_MAYBE_RETURNED);
}
/// Create an abstract attribute view for the position \p IRP.
static AANoCapture &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoCapture"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoCapture
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for value simplify abstract attribute.
struct AAValueSimplify : public StateWrapper<BooleanState, AbstractAttribute> {
using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAValueSimplify(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
/// Return an assumed simplified value if a single candidate is found. If
/// there cannot be one, return original value. If it is not clear yet, return
/// the Optional::NoneType.
virtual Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const = 0;
/// Create an abstract attribute view for the position \p IRP.
static AAValueSimplify &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAValueSimplify"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAValueSimplify
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
struct AAHeapToStack : public StateWrapper<BooleanState, AbstractAttribute> {
using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAHeapToStack(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
/// Returns true if HeapToStack conversion is assumed to be possible.
bool isAssumedHeapToStack() const { return getAssumed(); }
/// Returns true if HeapToStack conversion is known to be possible.
bool isKnownHeapToStack() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AAHeapToStack &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAHeapToStack"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AAHeapToStack
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for privatizability.
///
/// A pointer is privatizable if it can be replaced by a new, private one.
/// Privatizing pointer reduces the use count, interaction between unrelated
/// code parts.
///
/// In order for a pointer to be privatizable its value cannot be observed
/// (=nocapture), it is (for now) not written (=readonly & noalias), we know
/// what values are necessary to make the private copy look like the original
/// one, and the values we need can be loaded (=dereferenceable).
struct AAPrivatizablePtr
: public StateWrapper<BooleanState, AbstractAttribute> {
using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAPrivatizablePtr(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
/// Returns true if pointer privatization is assumed to be possible.
bool isAssumedPrivatizablePtr() const { return getAssumed(); }
/// Returns true if pointer privatization is known to be possible.
bool isKnownPrivatizablePtr() const { return getKnown(); }
/// Return the type we can choose for a private copy of the underlying
/// value. None means it is not clear yet, nullptr means there is none.
virtual Optional<Type *> getPrivatizableType() const = 0;
/// Create an abstract attribute view for the position \p IRP.
static AAPrivatizablePtr &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAPrivatizablePtr"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAPricatizablePtr
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for memory access kind related attributes
/// (readnone/readonly/writeonly).
struct AAMemoryBehavior
: public IRAttribute<
Attribute::ReadNone,
StateWrapper<BitIntegerState<uint8_t, 3>, AbstractAttribute>> {
AAMemoryBehavior(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// State encoding bits. A set bit in the state means the property holds.
/// BEST_STATE is the best possible state, 0 the worst possible state.
enum {
NO_READS = 1 << 0,
NO_WRITES = 1 << 1,
NO_ACCESSES = NO_READS | NO_WRITES,
BEST_STATE = NO_ACCESSES,
};
static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
/// Return true if we know that the underlying value is not read or accessed
/// in its respective scope.
bool isKnownReadNone() const { return isKnown(NO_ACCESSES); }
/// Return true if we assume that the underlying value is not read or accessed
/// in its respective scope.
bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES); }
/// Return true if we know that the underlying value is not accessed
/// (=written) in its respective scope.
bool isKnownReadOnly() const { return isKnown(NO_WRITES); }
/// Return true if we assume that the underlying value is not accessed
/// (=written) in its respective scope.
bool isAssumedReadOnly() const { return isAssumed(NO_WRITES); }
/// Return true if we know that the underlying value is not read in its
/// respective scope.
bool isKnownWriteOnly() const { return isKnown(NO_READS); }
/// Return true if we assume that the underlying value is not read in its
/// respective scope.
bool isAssumedWriteOnly() const { return isAssumed(NO_READS); }
/// Create an abstract attribute view for the position \p IRP.
static AAMemoryBehavior &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAMemoryBehavior"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAMemoryBehavior
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for all memory location attributes
/// (readnone/argmemonly/inaccessiblememonly/inaccessibleorargmemonly).
struct AAMemoryLocation
: public IRAttribute<
Attribute::ReadNone,
StateWrapper<BitIntegerState<uint32_t, 511>, AbstractAttribute>> {
using MemoryLocationsKind = StateType::base_t;
AAMemoryLocation(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Encoding of different locations that could be accessed by a memory
/// access.
enum {
ALL_LOCATIONS = 0,
NO_LOCAL_MEM = 1 << 0,
NO_CONST_MEM = 1 << 1,
NO_GLOBAL_INTERNAL_MEM = 1 << 2,
NO_GLOBAL_EXTERNAL_MEM = 1 << 3,
NO_GLOBAL_MEM = NO_GLOBAL_INTERNAL_MEM | NO_GLOBAL_EXTERNAL_MEM,
NO_ARGUMENT_MEM = 1 << 4,
NO_INACCESSIBLE_MEM = 1 << 5,
NO_MALLOCED_MEM = 1 << 6,
NO_UNKOWN_MEM = 1 << 7,
NO_LOCATIONS = NO_LOCAL_MEM | NO_CONST_MEM | NO_GLOBAL_INTERNAL_MEM |
NO_GLOBAL_EXTERNAL_MEM | NO_ARGUMENT_MEM |
NO_INACCESSIBLE_MEM | NO_MALLOCED_MEM | NO_UNKOWN_MEM,
// Helper bit to track if we gave up or not.
VALID_STATE = NO_LOCATIONS + 1,
BEST_STATE = NO_LOCATIONS | VALID_STATE,
};
static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value");
/// Return true if we know that the associated functions has no observable
/// accesses.
bool isKnownReadNone() const { return isKnown(NO_LOCATIONS); }
/// Return true if we assume that the associated functions has no observable
/// accesses.
bool isAssumedReadNone() const {
return isAssumed(NO_LOCATIONS) | isAssumedStackOnly();
}
/// Return true if we know that the associated functions has at most
/// local/stack accesses.
bool isKnowStackOnly() const {
return isKnown(inverseLocation(NO_LOCAL_MEM, true, true));
}
/// Return true if we assume that the associated functions has at most
/// local/stack accesses.
bool isAssumedStackOnly() const {
return isAssumed(inverseLocation(NO_LOCAL_MEM, true, true));
}
/// Return true if we know that the underlying value will only access
/// inaccesible memory only (see Attribute::InaccessibleMemOnly).
bool isKnownInaccessibleMemOnly() const {
return isKnown(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
}
/// Return true if we assume that the underlying value will only access
/// inaccesible memory only (see Attribute::InaccessibleMemOnly).
bool isAssumedInaccessibleMemOnly() const {
return isAssumed(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
}
/// Return true if we know that the underlying value will only access
/// argument pointees (see Attribute::ArgMemOnly).
bool isKnownArgMemOnly() const {
return isKnown(inverseLocation(NO_ARGUMENT_MEM, true, true));
}
/// Return true if we assume that the underlying value will only access
/// argument pointees (see Attribute::ArgMemOnly).
bool isAssumedArgMemOnly() const {
return isAssumed(inverseLocation(NO_ARGUMENT_MEM, true, true));
}
/// Return true if we know that the underlying value will only access
/// inaccesible memory or argument pointees (see
/// Attribute::InaccessibleOrArgMemOnly).
bool isKnownInaccessibleOrArgMemOnly() const {
return isKnown(
inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
}
/// Return true if we assume that the underlying value will only access
/// inaccesible memory or argument pointees (see
/// Attribute::InaccessibleOrArgMemOnly).
bool isAssumedInaccessibleOrArgMemOnly() const {
return isAssumed(
inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
}
/// Return true if the underlying value may access memory through arguement
/// pointers of the associated function, if any.
bool mayAccessArgMem() const { return !isAssumed(NO_ARGUMENT_MEM); }
/// Return true if only the memory locations specififed by \p MLK are assumed
/// to be accessed by the associated function.
bool isAssumedSpecifiedMemOnly(MemoryLocationsKind MLK) const {
return isAssumed(MLK);
}
/// Return the locations that are assumed to be not accessed by the associated
/// function, if any.
MemoryLocationsKind getAssumedNotAccessedLocation() const {
return getAssumed();
}
/// Return the inverse of location \p Loc, thus for NO_XXX the return
/// describes ONLY_XXX. The flags \p AndLocalMem and \p AndConstMem determine
/// if local (=stack) and constant memory are allowed as well. Most of the
/// time we do want them to be included, e.g., argmemonly allows accesses via
/// argument pointers or local or constant memory accesses.
static MemoryLocationsKind
inverseLocation(MemoryLocationsKind Loc, bool AndLocalMem, bool AndConstMem) {
return NO_LOCATIONS & ~(Loc | (AndLocalMem ? NO_LOCAL_MEM : 0) |
(AndConstMem ? NO_CONST_MEM : 0));
};
/// Return the locations encoded by \p MLK as a readable string.
static std::string getMemoryLocationsAsStr(MemoryLocationsKind MLK);
/// Simple enum to distinguish read/write/read-write accesses.
enum AccessKind {
NONE = 0,
READ = 1 << 0,
WRITE = 1 << 1,
READ_WRITE = READ | WRITE,
};
/// Check \p Pred on all accesses to the memory kinds specified by \p MLK.
///
/// This method will evaluate \p Pred on all accesses (access instruction +
/// underlying accessed memory pointer) and it will return true if \p Pred
/// holds every time.
virtual bool checkForAllAccessesToMemoryKind(
function_ref<bool(const Instruction *, const Value *, AccessKind,
MemoryLocationsKind)>
Pred,
MemoryLocationsKind MLK) const = 0;
/// Create an abstract attribute view for the position \p IRP.
static AAMemoryLocation &createForPosition(const IRPosition &IRP,
Attributor &A);
/// See AbstractState::getAsStr().
const std::string getAsStr() const override {
return getMemoryLocationsAsStr(getAssumedNotAccessedLocation());
}
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAMemoryLocation"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAMemoryLocation
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for range value analysis.
struct AAValueConstantRange
: public StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t> {
using Base = StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t>;
AAValueConstantRange(const IRPosition &IRP, Attributor &A)
: Base(IRP, IRP.getAssociatedType()->getIntegerBitWidth()) {}
/// See AbstractAttribute::getState(...).
IntegerRangeState &getState() override { return *this; }
const IntegerRangeState &getState() const override { return *this; }
/// Create an abstract attribute view for the position \p IRP.
static AAValueConstantRange &createForPosition(const IRPosition &IRP,
Attributor &A);
/// Return an assumed range for the assocaited value a program point \p CtxI.
/// If \p I is nullptr, simply return an assumed range.
virtual ConstantRange
getAssumedConstantRange(Attributor &A,
const Instruction *CtxI = nullptr) const = 0;
/// Return a known range for the assocaited value at a program point \p CtxI.
/// If \p I is nullptr, simply return a known range.
virtual ConstantRange
getKnownConstantRange(Attributor &A,
const Instruction *CtxI = nullptr) const = 0;
/// Return an assumed constant for the assocaited value a program point \p
/// CtxI.
Optional<ConstantInt *>
getAssumedConstantInt(Attributor &A,
const Instruction *CtxI = nullptr) const {
ConstantRange RangeV = getAssumedConstantRange(A, CtxI);
if (auto *C = RangeV.getSingleElement())
return cast<ConstantInt>(
ConstantInt::get(getAssociatedValue().getType(), *C));
if (RangeV.isEmptySet())
return llvm::None;
return nullptr;
}
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAValueConstantRange"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAValueConstantRange
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// A class for a set state.
/// The assumed boolean state indicates whether the corresponding set is full
/// set or not. If the assumed state is false, this is the worst state. The
/// worst state (invalid state) of set of potential values is when the set
/// contains every possible value (i.e. we cannot in any way limit the value
/// that the target position can take). That never happens naturally, we only
/// force it. As for the conditions under which we force it, see
/// AAPotentialValues.
template <typename MemberTy, typename KeyInfo = DenseMapInfo<MemberTy>>
struct PotentialValuesState : AbstractState {
using SetTy = DenseSet<MemberTy, KeyInfo>;
PotentialValuesState() : IsValidState(true), UndefIsContained(false) {}
PotentialValuesState(bool IsValid)
: IsValidState(IsValid), UndefIsContained(false) {}
/// See AbstractState::isValidState(...)
bool isValidState() const override { return IsValidState.isValidState(); }
/// See AbstractState::isAtFixpoint(...)
bool isAtFixpoint() const override { return IsValidState.isAtFixpoint(); }
/// See AbstractState::indicatePessimisticFixpoint(...)
ChangeStatus indicatePessimisticFixpoint() override {
return IsValidState.indicatePessimisticFixpoint();
}
/// See AbstractState::indicateOptimisticFixpoint(...)
ChangeStatus indicateOptimisticFixpoint() override {
return IsValidState.indicateOptimisticFixpoint();
}
/// Return the assumed state
PotentialValuesState &getAssumed() { return *this; }
const PotentialValuesState &getAssumed() const { return *this; }
/// Return this set. We should check whether this set is valid or not by
/// isValidState() before calling this function.
const SetTy &getAssumedSet() const {
assert(isValidState() && "This set shoud not be used when it is invalid!");
return Set;
}
/// Returns whether this state contains an undef value or not.
bool undefIsContained() const {
assert(isValidState() && "This flag shoud not be used when it is invalid!");
return UndefIsContained;
}
bool operator==(const PotentialValuesState &RHS) const {
if (isValidState() != RHS.isValidState())
return false;
if (!isValidState() && !RHS.isValidState())
return true;
if (undefIsContained() != RHS.undefIsContained())
return false;
return Set == RHS.getAssumedSet();
}
/// Maximum number of potential values to be tracked.
/// This is set by -attributor-max-potential-values command line option
static unsigned MaxPotentialValues;
/// Return empty set as the best state of potential values.
static PotentialValuesState getBestState() {
return PotentialValuesState(true);
}
static PotentialValuesState getBestState(PotentialValuesState &PVS) {
return getBestState();
}
/// Return full set as the worst state of potential values.
static PotentialValuesState getWorstState() {
return PotentialValuesState(false);
}
/// Union assumed set with the passed value.
void unionAssumed(const MemberTy &C) { insert(C); }
/// Union assumed set with assumed set of the passed state \p PVS.
void unionAssumed(const PotentialValuesState &PVS) { unionWith(PVS); }
/// Union assumed set with an undef value.
void unionAssumedWithUndef() { unionWithUndef(); }
/// "Clamp" this state with \p PVS.
PotentialValuesState operator^=(const PotentialValuesState &PVS) {
IsValidState ^= PVS.IsValidState;
unionAssumed(PVS);
return *this;
}
PotentialValuesState operator&=(const PotentialValuesState &PVS) {
IsValidState &= PVS.IsValidState;
unionAssumed(PVS);
return *this;
}
private:
/// Check the size of this set, and invalidate when the size is no
/// less than \p MaxPotentialValues threshold.
void checkAndInvalidate() {
if (Set.size() >= MaxPotentialValues)
indicatePessimisticFixpoint();
}
/// If this state contains both undef and not undef, we can reduce
/// undef to the not undef value.
void reduceUndefValue() { UndefIsContained = UndefIsContained & Set.empty(); }
/// Insert an element into this set.
void insert(const MemberTy &C) {
if (!isValidState())
return;
Set.insert(C);
checkAndInvalidate();
}
/// Take union with R.
void unionWith(const PotentialValuesState &R) {
/// If this is a full set, do nothing.;
if (!isValidState())
return;
/// If R is full set, change L to a full set.
if (!R.isValidState()) {
indicatePessimisticFixpoint();
return;
}
for (const MemberTy &C : R.Set)
Set.insert(C);
UndefIsContained |= R.undefIsContained();
reduceUndefValue();
checkAndInvalidate();
}
/// Take union with an undef value.
void unionWithUndef() {
UndefIsContained = true;
reduceUndefValue();
}
/// Take intersection with R.
void intersectWith(const PotentialValuesState &R) {
/// If R is a full set, do nothing.
if (!R.isValidState())
return;
/// If this is a full set, change this to R.
if (!isValidState()) {
*this = R;
return;
}
SetTy IntersectSet;
for (const MemberTy &C : Set) {
if (R.Set.count(C))
IntersectSet.insert(C);
}
Set = IntersectSet;
UndefIsContained &= R.undefIsContained();
reduceUndefValue();
}
/// A helper state which indicate whether this state is valid or not.
BooleanState IsValidState;
/// Container for potential values
SetTy Set;
/// Flag for undef value
bool UndefIsContained;
};
using PotentialConstantIntValuesState = PotentialValuesState<APInt>;
raw_ostream &operator<<(raw_ostream &OS,
const PotentialConstantIntValuesState &R);
/// An abstract interface for potential values analysis.
///
/// This AA collects potential values for each IR position.
/// An assumed set of potential values is initialized with the empty set (the
/// best state) and it will grow monotonically as we find more potential values
/// for this position.
/// The set might be forced to the worst state, that is, to contain every
/// possible value for this position in 2 cases.
/// 1. We surpassed the \p MaxPotentialValues threshold. This includes the
/// case that this position is affected (e.g. because of an operation) by a
/// Value that is in the worst state.
/// 2. We tried to initialize on a Value that we cannot handle (e.g. an
/// operator we do not currently handle).
///
/// TODO: Support values other than constant integers.
struct AAPotentialValues
: public StateWrapper<PotentialConstantIntValuesState, AbstractAttribute> {
using Base = StateWrapper<PotentialConstantIntValuesState, AbstractAttribute>;
AAPotentialValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
/// See AbstractAttribute::getState(...).
PotentialConstantIntValuesState &getState() override { return *this; }
const PotentialConstantIntValuesState &getState() const override {
return *this;
}
/// Create an abstract attribute view for the position \p IRP.
static AAPotentialValues &createForPosition(const IRPosition &IRP,
Attributor &A);
/// Return assumed constant for the associated value
Optional<ConstantInt *>
getAssumedConstantInt(Attributor &A,
const Instruction *CtxI = nullptr) const {
if (!isValidState())
return nullptr;
if (getAssumedSet().size() == 1)
return cast<ConstantInt>(ConstantInt::get(getAssociatedValue().getType(),
*(getAssumedSet().begin())));
if (getAssumedSet().size() == 0) {
if (undefIsContained())
return cast<ConstantInt>(
ConstantInt::get(getAssociatedValue().getType(), 0));
return llvm::None;
}
return nullptr;
}
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AAPotentialValues"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is
/// AAPotentialValues
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// An abstract interface for all noundef attributes.
struct AANoUndef
: public IRAttribute<Attribute::NoUndef,
StateWrapper<BooleanState, AbstractAttribute>> {
AANoUndef(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {}
/// Return true if we assume that the underlying value is noundef.
bool isAssumedNoUndef() const { return getAssumed(); }
/// Return true if we know that underlying value is noundef.
bool isKnownNoUndef() const { return getKnown(); }
/// Create an abstract attribute view for the position \p IRP.
static AANoUndef &createForPosition(const IRPosition &IRP, Attributor &A);
/// See AbstractAttribute::getName()
const std::string getName() const override { return "AANoUndef"; }
/// See AbstractAttribute::getIdAddr()
const char *getIdAddr() const override { return &ID; }
/// This function should return true if the type of the \p AA is AANoUndef
static bool classof(const AbstractAttribute *AA) {
return (AA->getIdAddr() == &ID);
}
/// Unique ID (due to the unique address)
static const char ID;
};
/// Run options, used by the pass manager.
enum AttributorRunOption {
NONE = 0,
MODULE = 1 << 0,
CGSCC = 1 << 1,
ALL = MODULE | CGSCC
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_IPO_FUNCTIONATTRS_H