llvm-for-llvmta/include/llvm/CodeGen/BasicTTIImpl.h

2069 lines
82 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file provides a helper that implements much of the TTI interface in
/// terms of the target-independent code generator and TargetLowering
/// interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
#define LLVM_CODEGEN_BASICTTIIMPL_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <utility>
namespace llvm {
class Function;
class GlobalValue;
class LLVMContext;
class ScalarEvolution;
class SCEV;
class TargetMachine;
extern cl::opt<unsigned> PartialUnrollingThreshold;
/// Base class which can be used to help build a TTI implementation.
///
/// This class provides as much implementation of the TTI interface as is
/// possible using the target independent parts of the code generator.
///
/// In order to subclass it, your class must implement a getST() method to
/// return the subtarget, and a getTLI() method to return the target lowering.
/// We need these methods implemented in the derived class so that this class
/// doesn't have to duplicate storage for them.
template <typename T>
class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
private:
using BaseT = TargetTransformInfoImplCRTPBase<T>;
using TTI = TargetTransformInfo;
/// Helper function to access this as a T.
T *thisT() { return static_cast<T *>(this); }
/// Estimate a cost of Broadcast as an extract and sequence of insert
/// operations.
unsigned getBroadcastShuffleOverhead(FixedVectorType *VTy) {
unsigned Cost = 0;
// Broadcast cost is equal to the cost of extracting the zero'th element
// plus the cost of inserting it into every element of the result vector.
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, 0);
for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
}
return Cost;
}
/// Estimate a cost of shuffle as a sequence of extract and insert
/// operations.
unsigned getPermuteShuffleOverhead(FixedVectorType *VTy) {
unsigned Cost = 0;
// Shuffle cost is equal to the cost of extracting element from its argument
// plus the cost of inserting them onto the result vector.
// e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
// index 0 of first vector, index 1 of second vector,index 2 of first
// vector and finally index 3 of second vector and insert them at index
// <0,1,2,3> of result vector.
for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, i);
}
return Cost;
}
/// Estimate a cost of subvector extraction as a sequence of extract and
/// insert operations.
unsigned getExtractSubvectorOverhead(VectorType *VTy, int Index,
FixedVectorType *SubVTy) {
assert(VTy && SubVTy &&
"Can only extract subvectors from vectors");
int NumSubElts = SubVTy->getNumElements();
assert((!isa<FixedVectorType>(VTy) ||
(Index + NumSubElts) <=
(int)cast<FixedVectorType>(VTy)->getNumElements()) &&
"SK_ExtractSubvector index out of range");
unsigned Cost = 0;
// Subvector extraction cost is equal to the cost of extracting element from
// the source type plus the cost of inserting them into the result vector
// type.
for (int i = 0; i != NumSubElts; ++i) {
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
i + Index);
Cost +=
thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy, i);
}
return Cost;
}
/// Estimate a cost of subvector insertion as a sequence of extract and
/// insert operations.
unsigned getInsertSubvectorOverhead(VectorType *VTy, int Index,
FixedVectorType *SubVTy) {
assert(VTy && SubVTy &&
"Can only insert subvectors into vectors");
int NumSubElts = SubVTy->getNumElements();
assert((!isa<FixedVectorType>(VTy) ||
(Index + NumSubElts) <=
(int)cast<FixedVectorType>(VTy)->getNumElements()) &&
"SK_InsertSubvector index out of range");
unsigned Cost = 0;
// Subvector insertion cost is equal to the cost of extracting element from
// the source type plus the cost of inserting them into the result vector
// type.
for (int i = 0; i != NumSubElts; ++i) {
Cost +=
thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy, i);
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
i + Index);
}
return Cost;
}
/// Local query method delegates up to T which *must* implement this!
const TargetSubtargetInfo *getST() const {
return static_cast<const T *>(this)->getST();
}
/// Local query method delegates up to T which *must* implement this!
const TargetLoweringBase *getTLI() const {
return static_cast<const T *>(this)->getTLI();
}
static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
switch (M) {
case TTI::MIM_Unindexed:
return ISD::UNINDEXED;
case TTI::MIM_PreInc:
return ISD::PRE_INC;
case TTI::MIM_PreDec:
return ISD::PRE_DEC;
case TTI::MIM_PostInc:
return ISD::POST_INC;
case TTI::MIM_PostDec:
return ISD::POST_DEC;
}
llvm_unreachable("Unexpected MemIndexedMode");
}
protected:
explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
: BaseT(DL) {}
virtual ~BasicTTIImplBase() = default;
using TargetTransformInfoImplBase::DL;
public:
/// \name Scalar TTI Implementations
/// @{
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
unsigned AddressSpace, unsigned Alignment,
bool *Fast) const {
EVT E = EVT::getIntegerVT(Context, BitWidth);
return getTLI()->allowsMisalignedMemoryAccesses(
E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
}
bool hasBranchDivergence() { return false; }
bool useGPUDivergenceAnalysis() { return false; }
bool isSourceOfDivergence(const Value *V) { return false; }
bool isAlwaysUniform(const Value *V) { return false; }
unsigned getFlatAddressSpace() {
// Return an invalid address space.
return -1;
}
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
return false;
}
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
}
unsigned getAssumedAddrSpace(const Value *V) const {
return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
}
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const {
return nullptr;
}
bool isLegalAddImmediate(int64_t imm) {
return getTLI()->isLegalAddImmediate(imm);
}
bool isLegalICmpImmediate(int64_t imm) {
return getTLI()->isLegalICmpImmediate(imm);
}
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace, Instruction *I = nullptr) {
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
}
bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
const DataLayout &DL) const {
EVT VT = getTLI()->getValueType(DL, Ty);
return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
}
bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
const DataLayout &DL) const {
EVT VT = getTLI()->getValueType(DL, Ty);
return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
}
bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
}
bool isNumRegsMajorCostOfLSR() {
return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR();
}
bool isProfitableLSRChainElement(Instruction *I) {
return TargetTransformInfoImplBase::isProfitableLSRChainElement(I);
}
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
}
bool isTruncateFree(Type *Ty1, Type *Ty2) {
return getTLI()->isTruncateFree(Ty1, Ty2);
}
bool isProfitableToHoist(Instruction *I) {
return getTLI()->isProfitableToHoist(I);
}
bool useAA() const { return getST()->useAA(); }
bool isTypeLegal(Type *Ty) {
EVT VT = getTLI()->getValueType(DL, Ty);
return getTLI()->isTypeLegal(VT);
}
unsigned getRegUsageForType(Type *Ty) {
return getTLI()->getTypeLegalizationCost(DL, Ty).first;
}
int getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands) {
return BaseT::getGEPCost(PointeeType, Ptr, Operands);
}
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JumpTableSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) {
/// Try to find the estimated number of clusters. Note that the number of
/// clusters identified in this function could be different from the actual
/// numbers found in lowering. This function ignore switches that are
/// lowered with a mix of jump table / bit test / BTree. This function was
/// initially intended to be used when estimating the cost of switch in
/// inline cost heuristic, but it's a generic cost model to be used in other
/// places (e.g., in loop unrolling).
unsigned N = SI.getNumCases();
const TargetLoweringBase *TLI = getTLI();
const DataLayout &DL = this->getDataLayout();
JumpTableSize = 0;
bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
// Early exit if both a jump table and bit test are not allowed.
if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
return N;
APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
APInt MinCaseVal = MaxCaseVal;
for (auto CI : SI.cases()) {
const APInt &CaseVal = CI.getCaseValue()->getValue();
if (CaseVal.sgt(MaxCaseVal))
MaxCaseVal = CaseVal;
if (CaseVal.slt(MinCaseVal))
MinCaseVal = CaseVal;
}
// Check if suitable for a bit test
if (N <= DL.getIndexSizeInBits(0u)) {
SmallPtrSet<const BasicBlock *, 4> Dests;
for (auto I : SI.cases())
Dests.insert(I.getCaseSuccessor());
if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
DL))
return 1;
}
// Check if suitable for a jump table.
if (IsJTAllowed) {
if (N < 2 || N < TLI->getMinimumJumpTableEntries())
return N;
uint64_t Range =
(MaxCaseVal - MinCaseVal)
.getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
// Check whether a range of clusters is dense enough for a jump table
if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
JumpTableSize = Range;
return 1;
}
}
return N;
}
bool shouldBuildLookupTables() {
const TargetLoweringBase *TLI = getTLI();
return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
bool haveFastSqrt(Type *Ty) {
const TargetLoweringBase *TLI = getTLI();
EVT VT = TLI->getValueType(DL, Ty);
return TLI->isTypeLegal(VT) &&
TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
}
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
return true;
}
unsigned getFPOpCost(Type *Ty) {
// Check whether FADD is available, as a proxy for floating-point in
// general.
const TargetLoweringBase *TLI = getTLI();
EVT VT = TLI->getValueType(DL, Ty);
if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
return TargetTransformInfo::TCC_Basic;
return TargetTransformInfo::TCC_Expensive;
}
unsigned getInliningThresholdMultiplier() { return 1; }
unsigned adjustInliningThreshold(const CallBase *CB) { return 0; }
int getInlinerVectorBonusPercent() { return 150; }
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
// This unrolling functionality is target independent, but to provide some
// motivation for its intended use, for x86:
// According to the Intel 64 and IA-32 Architectures Optimization Reference
// Manual, Intel Core models and later have a loop stream detector (and
// associated uop queue) that can benefit from partial unrolling.
// The relevant requirements are:
// - The loop must have no more than 4 (8 for Nehalem and later) branches
// taken, and none of them may be calls.
// - The loop can have no more than 18 (28 for Nehalem and later) uops.
// According to the Software Optimization Guide for AMD Family 15h
// Processors, models 30h-4fh (Steamroller and later) have a loop predictor
// and loop buffer which can benefit from partial unrolling.
// The relevant requirements are:
// - The loop must have fewer than 16 branches
// - The loop must have less than 40 uops in all executed loop branches
// The number of taken branches in a loop is hard to estimate here, and
// benchmarking has revealed that it is better not to be conservative when
// estimating the branch count. As a result, we'll ignore the branch limits
// until someone finds a case where it matters in practice.
unsigned MaxOps;
const TargetSubtargetInfo *ST = getST();
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
MaxOps = PartialUnrollingThreshold;
else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
else
return;
// Scan the loop: don't unroll loops with calls.
for (BasicBlock *BB : L->blocks()) {
for (Instruction &I : *BB) {
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!thisT()->isLoweredToCall(F))
continue;
}
return;
}
}
}
// Enable runtime and partial unrolling up to the specified size.
// Enable using trip count upper bound to unroll loops.
UP.Partial = UP.Runtime = UP.UpperBound = true;
UP.PartialThreshold = MaxOps;
// Avoid unrolling when optimizing for size.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
// Set number of instructions optimized when "back edge"
// becomes "fall through" to default value of 2.
UP.BEInsns = 2;
}
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
PP.PeelCount = 0;
PP.AllowPeeling = true;
PP.AllowLoopNestsPeeling = false;
PP.PeelProfiledIterations = true;
}
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC,
TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) {
return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
}
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
const LoopAccessInfo *LAI) {
return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
}
bool emitGetActiveLaneMask() {
return BaseT::emitGetActiveLaneMask();
}
Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) {
return BaseT::instCombineIntrinsic(IC, II);
}
Optional<Value *> simplifyDemandedUseBitsIntrinsic(InstCombiner &IC,
IntrinsicInst &II,
APInt DemandedMask,
KnownBits &Known,
bool &KnownBitsComputed) {
return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
KnownBitsComputed);
}
Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) {
return BaseT::simplifyDemandedVectorEltsIntrinsic(
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
SimplifyAndSetOp);
}
int getInstructionLatency(const Instruction *I) {
if (isa<LoadInst>(I))
return getST()->getSchedModel().DefaultLoadLatency;
return BaseT::getInstructionLatency(I);
}
virtual Optional<unsigned>
getCacheSize(TargetTransformInfo::CacheLevel Level) const {
return Optional<unsigned>(
getST()->getCacheSize(static_cast<unsigned>(Level)));
}
virtual Optional<unsigned>
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
Optional<unsigned> TargetResult =
getST()->getCacheAssociativity(static_cast<unsigned>(Level));
if (TargetResult)
return TargetResult;
return BaseT::getCacheAssociativity(Level);
}
virtual unsigned getCacheLineSize() const {
return getST()->getCacheLineSize();
}
virtual unsigned getPrefetchDistance() const {
return getST()->getPrefetchDistance();
}
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) const {
return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
NumPrefetches, HasCall);
}
virtual unsigned getMaxPrefetchIterationsAhead() const {
return getST()->getMaxPrefetchIterationsAhead();
}
virtual bool enableWritePrefetching() const {
return getST()->enableWritePrefetching();
}
/// @}
/// \name Vector TTI Implementations
/// @{
unsigned getRegisterBitWidth(bool Vector) const { return 32; }
Optional<unsigned> getMaxVScale() const { return None; }
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the demanded result elements need to be inserted and/or
/// extracted from vectors.
unsigned getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts,
bool Insert, bool Extract) {
/// FIXME: a bitfield is not a reasonable abstraction for talking about
/// which elements are needed from a scalable vector
auto *Ty = cast<FixedVectorType>(InTy);
assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
"Vector size mismatch");
unsigned Cost = 0;
for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
if (!DemandedElts[i])
continue;
if (Insert)
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty, i);
if (Extract)
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
}
return Cost;
}
/// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
unsigned getScalarizationOverhead(VectorType *InTy, bool Insert,
bool Extract) {
auto *Ty = cast<FixedVectorType>(InTy);
APInt DemandedElts = APInt::getAllOnesValue(Ty->getNumElements());
return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
}
/// Estimate the overhead of scalarizing an instruction's unique
/// non-constant operands. The types of the arguments are ordinarily
/// scalar, in which case the costs are multiplied with VF.
unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
unsigned VF) {
unsigned Cost = 0;
SmallPtrSet<const Value*, 4> UniqueOperands;
for (const Value *A : Args) {
// Disregard things like metadata arguments.
Type *Ty = A->getType();
if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
!Ty->isPtrOrPtrVectorTy())
continue;
if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
auto *VecTy = dyn_cast<VectorType>(Ty);
if (VecTy) {
// If A is a vector operand, VF should be 1 or correspond to A.
assert((VF == 1 ||
VF == cast<FixedVectorType>(VecTy)->getNumElements()) &&
"Vector argument does not match VF");
}
else
VecTy = FixedVectorType::get(Ty, VF);
Cost += getScalarizationOverhead(VecTy, false, true);
}
}
return Cost;
}
unsigned getScalarizationOverhead(VectorType *InTy,
ArrayRef<const Value *> Args) {
auto *Ty = cast<FixedVectorType>(InTy);
unsigned Cost = 0;
Cost += getScalarizationOverhead(Ty, true, false);
if (!Args.empty())
Cost += getOperandsScalarizationOverhead(Args, Ty->getNumElements());
else
// When no information on arguments is provided, we add the cost
// associated with one argument as a heuristic.
Cost += getScalarizationOverhead(Ty, false, true);
return Cost;
}
unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
unsigned getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr) {
// Check if any of the operands are vector operands.
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo,
Args, CxtI);
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
bool IsFloat = Ty->isFPOrFPVectorTy();
// Assume that floating point arithmetic operations cost twice as much as
// integer operations.
unsigned OpCost = (IsFloat ? 2 : 1);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
// TODO: Once we have extract/insert subvector cost we need to use them.
return LT.first * OpCost;
}
if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered, then assume that the code is twice
// as expensive.
return LT.first * 2 * OpCost;
}
// Else, assume that we need to scalarize this op.
// TODO: If one of the types get legalized by splitting, handle this
// similarly to what getCastInstrCost() does.
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
unsigned Cost = thisT()->getArithmeticInstrCost(
Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(VTy, Args) + Num * Cost;
}
// We don't know anything about this scalar instruction.
return OpCost;
}
unsigned getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, int Index,
VectorType *SubTp) {
switch (Kind) {
case TTI::SK_Broadcast:
return getBroadcastShuffleOverhead(cast<FixedVectorType>(Tp));
case TTI::SK_Select:
case TTI::SK_Reverse:
case TTI::SK_Transpose:
case TTI::SK_PermuteSingleSrc:
case TTI::SK_PermuteTwoSrc:
return getPermuteShuffleOverhead(cast<FixedVectorType>(Tp));
case TTI::SK_ExtractSubvector:
return getExtractSubvectorOverhead(Tp, Index,
cast<FixedVectorType>(SubTp));
case TTI::SK_InsertSubvector:
return getInsertSubvectorOverhead(Tp, Index,
cast<FixedVectorType>(SubTp));
}
llvm_unreachable("Unknown TTI::ShuffleKind");
}
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0)
return 0;
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
TypeSize SrcSize = SrcLT.second.getSizeInBits();
TypeSize DstSize = DstLT.second.getSizeInBits();
bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
switch (Opcode) {
default:
break;
case Instruction::Trunc:
// Check for NOOP conversions.
if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
return 0;
LLVM_FALLTHROUGH;
case Instruction::BitCast:
// Bitcast between types that are legalized to the same type are free and
// assume int to/from ptr of the same size is also free.
if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
SrcSize == DstSize)
return 0;
break;
case Instruction::FPExt:
if (I && getTLI()->isExtFree(I))
return 0;
break;
case Instruction::ZExt:
if (TLI->isZExtFree(SrcLT.second, DstLT.second))
return 0;
LLVM_FALLTHROUGH;
case Instruction::SExt:
if (I && getTLI()->isExtFree(I))
return 0;
// If this is a zext/sext of a load, return 0 if the corresponding
// extending load exists on target.
if (CCH == TTI::CastContextHint::Normal) {
EVT ExtVT = EVT::getEVT(Dst);
EVT LoadVT = EVT::getEVT(Src);
unsigned LType =
((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
return 0;
}
break;
case Instruction::AddrSpaceCast:
if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
Dst->getPointerAddressSpace()))
return 0;
break;
}
auto *SrcVTy = dyn_cast<VectorType>(Src);
auto *DstVTy = dyn_cast<VectorType>(Dst);
// If the cast is marked as legal (or promote) then assume low cost.
if (SrcLT.first == DstLT.first &&
TLI->isOperationLegalOrPromote(ISD, DstLT.second))
return SrcLT.first;
// Handle scalar conversions.
if (!SrcVTy && !DstVTy) {
// Just check the op cost. If the operation is legal then assume it costs
// 1.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return 1;
// Assume that illegal scalar instruction are expensive.
return 4;
}
// Check vector-to-vector casts.
if (DstVTy && SrcVTy) {
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
// Assume that Zext is done using AND.
if (Opcode == Instruction::ZExt)
return SrcLT.first;
// Assume that sext is done using SHL and SRA.
if (Opcode == Instruction::SExt)
return SrcLT.first * 2;
// Just check the op cost. If the operation is legal then assume it
// costs
// 1 and multiply by the type-legalization overhead.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return SrcLT.first * 1;
}
// If we are legalizing by splitting, query the concrete TTI for the cost
// of casting the original vector twice. We also need to factor in the
// cost of the split itself. Count that as 1, to be consistent with
// TLI->getTypeLegalizationCost().
bool SplitSrc =
TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
TargetLowering::TypeSplitVector;
bool SplitDst =
TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
TargetLowering::TypeSplitVector;
if ((SplitSrc || SplitDst) &&
cast<FixedVectorType>(SrcVTy)->getNumElements() > 1 &&
cast<FixedVectorType>(DstVTy)->getNumElements() > 1) {
Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
T *TTI = static_cast<T *>(this);
// If both types need to be split then the split is free.
unsigned SplitCost =
(!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
return SplitCost +
(2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
CostKind, I));
}
// In other cases where the source or destination are illegal, assume
// the operation will get scalarized.
unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
unsigned Cost = thisT()->getCastInstrCost(
Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(DstVTy, true, true) + Num * Cost;
}
// We already handled vector-to-vector and scalar-to-scalar conversions.
// This
// is where we handle bitcast between vectors and scalars. We need to assume
// that the conversion is scalarized in one way or another.
if (Opcode == Instruction::BitCast) {
// Illegal bitcasts are done by storing and loading from a stack slot.
return (SrcVTy ? getScalarizationOverhead(SrcVTy, false, true) : 0) +
(DstVTy ? getScalarizationOverhead(DstVTy, true, false) : 0);
}
llvm_unreachable("Unhandled cast");
}
unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy, unsigned Index) {
return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
Index) +
thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
TTI::CastContextHint::None, TTI::TCK_RecipThroughput);
}
unsigned getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
return BaseT::getCFInstrCost(Opcode, CostKind);
}
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
const TargetLoweringBase *TLI = getTLI();
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// TODO: Handle other cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
// Selects on vectors are actually vector selects.
if (ISD == ISD::SELECT) {
assert(CondTy && "CondTy must exist");
if (CondTy->isVectorTy())
ISD = ISD::VSELECT;
}
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
!TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
// Otherwise, assume that the cast is scalarized.
// TODO: If one of the types get legalized by splitting, handle this
// similarly to what getCastInstrCost() does.
if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
if (CondTy)
CondTy = CondTy->getScalarType();
unsigned Cost = thisT()->getCmpSelInstrCost(
Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I);
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(ValVTy, true, false) + Num * Cost;
}
// Unknown scalar opcode.
return 1;
}
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
std::pair<unsigned, MVT> LT =
getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
return LT.first;
}
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
assert(!Src->isVoidTy() && "Invalid type");
// Assume types, such as structs, are expensive.
if (getTLI()->getValueType(DL, Src, true) == MVT::Other)
return 4;
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
// Assuming that all loads of legal types cost 1.
unsigned Cost = LT.first;
if (CostKind != TTI::TCK_RecipThroughput)
return Cost;
if (Src->isVectorTy() &&
// In practice it's not currently possible to have a change in lane
// length for extending loads or truncating stores so both types should
// have the same scalable property.
TypeSize::isKnownLT(Src->getPrimitiveSizeInBits(),
LT.second.getSizeInBits())) {
// This is a vector load that legalizes to a larger type than the vector
// itself. Unless the corresponding extending load or truncating store is
// legal, then this will scalarize.
TargetLowering::LegalizeAction LA = TargetLowering::Expand;
EVT MemVT = getTLI()->getValueType(DL, Src);
if (Opcode == Instruction::Store)
LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
else
LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
// This is a vector load/store for some illegal type that is scalarized.
// We must account for the cost of building or decomposing the vector.
Cost += getScalarizationOverhead(cast<VectorType>(Src),
Opcode != Instruction::Store,
Opcode == Instruction::Store);
}
}
return Cost;
}
unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) {
auto *VT = cast<FixedVectorType>(DataTy);
// Assume the target does not have support for gather/scatter operations
// and provide a rough estimate.
//
// First, compute the cost of extracting the individual addresses and the
// individual memory operations.
int LoadCost =
VT->getNumElements() *
(getVectorInstrCost(
Instruction::ExtractElement,
FixedVectorType::get(PointerType::get(VT->getElementType(), 0),
VT->getNumElements()),
-1) +
getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind));
// Next, compute the cost of packing the result in a vector.
int PackingCost = getScalarizationOverhead(VT, Opcode != Instruction::Store,
Opcode == Instruction::Store);
int ConditionalCost = 0;
if (VariableMask) {
// Compute the cost of conditionally executing the memory operations with
// variable masks. This includes extracting the individual conditions, a
// branches and PHIs to combine the results.
// NOTE: Estimating the cost of conditionally executing the memory
// operations accurately is quite difficult and the current solution
// provides a very rough estimate only.
ConditionalCost =
VT->getNumElements() *
(getVectorInstrCost(
Instruction::ExtractElement,
FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()),
VT->getNumElements()),
-1) +
getCFInstrCost(Instruction::Br, CostKind) +
getCFInstrCost(Instruction::PHI, CostKind));
}
return LoadCost + PackingCost + ConditionalCost;
}
unsigned getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond = false, bool UseMaskForGaps = false) {
auto *VT = cast<FixedVectorType>(VecTy);
unsigned NumElts = VT->getNumElements();
assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
unsigned NumSubElts = NumElts / Factor;
auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);
// Firstly, the cost of load/store operation.
unsigned Cost;
if (UseMaskForCond || UseMaskForGaps)
Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment,
AddressSpace, CostKind);
else
Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
CostKind);
// Legalize the vector type, and get the legalized and unlegalized type
// sizes.
MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
unsigned VecTyLTSize = VecTyLT.getStoreSize();
// Return the ceiling of dividing A by B.
auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
// Scale the cost of the memory operation by the fraction of legalized
// instructions that will actually be used. We shouldn't account for the
// cost of dead instructions since they will be removed.
//
// E.g., An interleaved load of factor 8:
// %vec = load <16 x i64>, <16 x i64>* %ptr
// %v0 = shufflevector %vec, undef, <0, 8>
//
// If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
// used (those corresponding to elements [0:1] and [8:9] of the unlegalized
// type). The other loads are unused.
//
// We only scale the cost of loads since interleaved store groups aren't
// allowed to have gaps.
if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
// The number of loads of a legal type it will take to represent a load
// of the unlegalized vector type.
unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
// The number of elements of the unlegalized type that correspond to a
// single legal instruction.
unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
// Determine which legal instructions will be used.
BitVector UsedInsts(NumLegalInsts, false);
for (unsigned Index : Indices)
for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
// Scale the cost of the load by the fraction of legal instructions that
// will be used.
Cost *= UsedInsts.count() / NumLegalInsts;
}
// Then plus the cost of interleave operation.
if (Opcode == Instruction::Load) {
// The interleave cost is similar to extract sub vectors' elements
// from the wide vector, and insert them into sub vectors.
//
// E.g. An interleaved load of factor 2 (with one member of index 0):
// %vec = load <8 x i32>, <8 x i32>* %ptr
// %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
// The cost is estimated as extract elements at 0, 2, 4, 6 from the
// <8 x i32> vector and insert them into a <4 x i32> vector.
assert(Indices.size() <= Factor &&
"Interleaved memory op has too many members");
for (unsigned Index : Indices) {
assert(Index < Factor && "Invalid index for interleaved memory op");
// Extract elements from loaded vector for each sub vector.
for (unsigned i = 0; i < NumSubElts; i++)
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VT,
Index + i * Factor);
}
unsigned InsSubCost = 0;
for (unsigned i = 0; i < NumSubElts; i++)
InsSubCost +=
thisT()->getVectorInstrCost(Instruction::InsertElement, SubVT, i);
Cost += Indices.size() * InsSubCost;
} else {
// The interleave cost is extract all elements from sub vectors, and
// insert them into the wide vector.
//
// E.g. An interleaved store of factor 2:
// %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
// store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
// The cost is estimated as extract all elements from both <4 x i32>
// vectors and insert into the <8 x i32> vector.
unsigned ExtSubCost = 0;
for (unsigned i = 0; i < NumSubElts; i++)
ExtSubCost +=
thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
Cost += ExtSubCost * Factor;
for (unsigned i = 0; i < NumElts; i++)
Cost += static_cast<T *>(this)
->getVectorInstrCost(Instruction::InsertElement, VT, i);
}
if (!UseMaskForCond)
return Cost;
Type *I8Type = Type::getInt8Ty(VT->getContext());
auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
SubVT = FixedVectorType::get(I8Type, NumSubElts);
// The Mask shuffling cost is extract all the elements of the Mask
// and insert each of them Factor times into the wide vector:
//
// E.g. an interleaved group with factor 3:
// %mask = icmp ult <8 x i32> %vec1, %vec2
// %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
// <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
// The cost is estimated as extract all mask elements from the <8xi1> mask
// vector and insert them factor times into the <24xi1> shuffled mask
// vector.
for (unsigned i = 0; i < NumSubElts; i++)
Cost +=
thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
for (unsigned i = 0; i < NumElts; i++)
Cost +=
thisT()->getVectorInstrCost(Instruction::InsertElement, MaskVT, i);
// The Gaps mask is invariant and created outside the loop, therefore the
// cost of creating it is not accounted for here. However if we have both
// a MaskForGaps and some other mask that guards the execution of the
// memory access, we need to account for the cost of And-ing the two masks
// inside the loop.
if (UseMaskForGaps)
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
CostKind);
return Cost;
}
/// Get intrinsic cost based on arguments.
unsigned getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
// Check for generically free intrinsics.
if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0)
return 0;
// Assume that target intrinsics are cheap.
Intrinsic::ID IID = ICA.getID();
if (Function::isTargetIntrinsic(IID))
return TargetTransformInfo::TCC_Basic;
if (ICA.isTypeBasedOnly())
return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
Type *RetTy = ICA.getReturnType();
ElementCount VF = ICA.getVectorFactor();
ElementCount RetVF =
(RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount()
: ElementCount::getFixed(1));
assert((RetVF.isScalar() || VF.isScalar()) &&
"VF > 1 and RetVF is a vector type");
const IntrinsicInst *I = ICA.getInst();
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
FastMathFlags FMF = ICA.getFlags();
switch (IID) {
default:
break;
case Intrinsic::cttz:
// FIXME: If necessary, this should go in target-specific overrides.
if (VF.isScalar() && RetVF.isScalar() &&
getTLI()->isCheapToSpeculateCttz())
return TargetTransformInfo::TCC_Basic;
break;
case Intrinsic::ctlz:
// FIXME: If necessary, this should go in target-specific overrides.
if (VF.isScalar() && RetVF.isScalar() &&
getTLI()->isCheapToSpeculateCtlz())
return TargetTransformInfo::TCC_Basic;
break;
case Intrinsic::memcpy:
return thisT()->getMemcpyCost(ICA.getInst());
case Intrinsic::masked_scatter: {
assert(VF.isScalar() && "Can't vectorize types here.");
const Value *Mask = Args[3];
bool VarMask = !isa<Constant>(Mask);
Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue();
return thisT()->getGatherScatterOpCost(Instruction::Store,
Args[0]->getType(), Args[1],
VarMask, Alignment, CostKind, I);
}
case Intrinsic::masked_gather: {
assert(VF.isScalar() && "Can't vectorize types here.");
const Value *Mask = Args[2];
bool VarMask = !isa<Constant>(Mask);
Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue();
return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
VarMask, Alignment, CostKind, I);
}
case Intrinsic::experimental_vector_extract: {
// FIXME: Handle case where a scalable vector is extracted from a scalable
// vector
if (isa<ScalableVectorType>(RetTy))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue();
return thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
cast<VectorType>(Args[0]->getType()),
Index, cast<VectorType>(RetTy));
}
case Intrinsic::experimental_vector_insert: {
// FIXME: Handle case where a scalable vector is inserted into a scalable
// vector
if (isa<ScalableVectorType>(Args[1]->getType()))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
return thisT()->getShuffleCost(
TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()), Index,
cast<VectorType>(Args[1]->getType()));
}
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_fmax:
case Intrinsic::vector_reduce_fmin:
case Intrinsic::vector_reduce_umax:
case Intrinsic::vector_reduce_umin: {
IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, 1, I);
return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
}
case Intrinsic::vector_reduce_fadd:
case Intrinsic::vector_reduce_fmul: {
IntrinsicCostAttributes Attrs(
IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, 1, I);
return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
}
case Intrinsic::fshl:
case Intrinsic::fshr: {
if (isa<ScalableVectorType>(RetTy))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
const Value *X = Args[0];
const Value *Y = Args[1];
const Value *Z = Args[2];
TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
: TTI::OP_None;
// fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
// fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
unsigned Cost = 0;
Cost +=
thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
Cost +=
thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
Cost += thisT()->getArithmeticInstrCost(
BinaryOperator::Shl, RetTy, CostKind, OpKindX, OpKindZ, OpPropsX);
Cost += thisT()->getArithmeticInstrCost(
BinaryOperator::LShr, RetTy, CostKind, OpKindY, OpKindZ, OpPropsY);
// Non-constant shift amounts requires a modulo.
if (OpKindZ != TTI::OK_UniformConstantValue &&
OpKindZ != TTI::OK_NonUniformConstantValue)
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
CostKind, OpKindZ, OpKindBW,
OpPropsZ, OpPropsBW);
// For non-rotates (X != Y) we must add shift-by-zero handling costs.
if (X != Y) {
Type *CondTy = RetTy->getWithNewBitWidth(1);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
}
return Cost;
}
}
// TODO: Handle the remaining intrinsic with scalable vector type
if (isa<ScalableVectorType>(RetTy))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
// Assume that we need to scalarize this intrinsic.
SmallVector<Type *, 4> Types;
for (const Value *Op : Args) {
Type *OpTy = Op->getType();
assert(VF.isScalar() || !OpTy->isVectorTy());
Types.push_back(VF.isScalar()
? OpTy
: FixedVectorType::get(OpTy, VF.getKnownMinValue()));
}
if (VF.isVector() && !RetTy->isVoidTy())
RetTy = FixedVectorType::get(RetTy, VF.getKnownMinValue());
// Compute the scalarization overhead based on Args for a vector
// intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
// CostModel will pass a vector RetTy and VF is 1.
unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
if (RetVF.isVector() || VF.isVector()) {
ScalarizationCost = 0;
if (!RetTy->isVoidTy())
ScalarizationCost +=
getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
ScalarizationCost +=
getOperandsScalarizationOverhead(Args, VF.getKnownMinValue());
}
IntrinsicCostAttributes Attrs(IID, RetTy, Types, FMF, ScalarizationCost, I);
return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
}
/// Get intrinsic cost based on argument types.
/// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
/// cost of scalarizing the arguments and the return value will be computed
/// based on types.
unsigned getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
Intrinsic::ID IID = ICA.getID();
Type *RetTy = ICA.getReturnType();
const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
FastMathFlags FMF = ICA.getFlags();
unsigned ScalarizationCostPassed = ICA.getScalarizationCost();
bool SkipScalarizationCost = ICA.skipScalarizationCost();
VectorType *VecOpTy = nullptr;
if (!Tys.empty()) {
// The vector reduction operand is operand 0 except for fadd/fmul.
// Their operand 0 is a scalar start value, so the vector op is operand 1.
unsigned VecTyIndex = 0;
if (IID == Intrinsic::vector_reduce_fadd ||
IID == Intrinsic::vector_reduce_fmul)
VecTyIndex = 1;
assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]);
}
// Library call cost - other than size, make it expensive.
unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10;
SmallVector<unsigned, 2> ISDs;
switch (IID) {
default: {
// Assume that we need to scalarize this intrinsic.
unsigned ScalarizationCost = ScalarizationCostPassed;
unsigned ScalarCalls = 1;
Type *ScalarRetTy = RetTy;
if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
if (!SkipScalarizationCost)
ScalarizationCost = getScalarizationOverhead(RetVTy, true, false);
ScalarCalls = std::max(ScalarCalls,
cast<FixedVectorType>(RetVTy)->getNumElements());
ScalarRetTy = RetTy->getScalarType();
}
SmallVector<Type *, 4> ScalarTys;
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
Type *Ty = Tys[i];
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
if (!SkipScalarizationCost)
ScalarizationCost += getScalarizationOverhead(VTy, false, true);
ScalarCalls = std::max(ScalarCalls,
cast<FixedVectorType>(VTy)->getNumElements());
Ty = Ty->getScalarType();
}
ScalarTys.push_back(Ty);
}
if (ScalarCalls == 1)
return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
unsigned ScalarCost =
thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
return ScalarCalls * ScalarCost + ScalarizationCost;
}
// Look for intrinsics that can be lowered directly or turned into a scalar
// intrinsic call.
case Intrinsic::sqrt:
ISDs.push_back(ISD::FSQRT);
break;
case Intrinsic::sin:
ISDs.push_back(ISD::FSIN);
break;
case Intrinsic::cos:
ISDs.push_back(ISD::FCOS);
break;
case Intrinsic::exp:
ISDs.push_back(ISD::FEXP);
break;
case Intrinsic::exp2:
ISDs.push_back(ISD::FEXP2);
break;
case Intrinsic::log:
ISDs.push_back(ISD::FLOG);
break;
case Intrinsic::log10:
ISDs.push_back(ISD::FLOG10);
break;
case Intrinsic::log2:
ISDs.push_back(ISD::FLOG2);
break;
case Intrinsic::fabs:
ISDs.push_back(ISD::FABS);
break;
case Intrinsic::canonicalize:
ISDs.push_back(ISD::FCANONICALIZE);
break;
case Intrinsic::minnum:
ISDs.push_back(ISD::FMINNUM);
break;
case Intrinsic::maxnum:
ISDs.push_back(ISD::FMAXNUM);
break;
case Intrinsic::minimum:
ISDs.push_back(ISD::FMINIMUM);
break;
case Intrinsic::maximum:
ISDs.push_back(ISD::FMAXIMUM);
break;
case Intrinsic::copysign:
ISDs.push_back(ISD::FCOPYSIGN);
break;
case Intrinsic::floor:
ISDs.push_back(ISD::FFLOOR);
break;
case Intrinsic::ceil:
ISDs.push_back(ISD::FCEIL);
break;
case Intrinsic::trunc:
ISDs.push_back(ISD::FTRUNC);
break;
case Intrinsic::nearbyint:
ISDs.push_back(ISD::FNEARBYINT);
break;
case Intrinsic::rint:
ISDs.push_back(ISD::FRINT);
break;
case Intrinsic::round:
ISDs.push_back(ISD::FROUND);
break;
case Intrinsic::roundeven:
ISDs.push_back(ISD::FROUNDEVEN);
break;
case Intrinsic::pow:
ISDs.push_back(ISD::FPOW);
break;
case Intrinsic::fma:
ISDs.push_back(ISD::FMA);
break;
case Intrinsic::fmuladd:
ISDs.push_back(ISD::FMA);
break;
case Intrinsic::experimental_constrained_fmuladd:
ISDs.push_back(ISD::STRICT_FMA);
break;
// FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::sideeffect:
case Intrinsic::pseudoprobe:
return 0;
case Intrinsic::masked_store: {
Type *Ty = Tys[0];
Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0,
CostKind);
}
case Intrinsic::masked_load: {
Type *Ty = RetTy;
Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0,
CostKind);
}
case Intrinsic::vector_reduce_add:
return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy,
/*IsPairwiseForm=*/false,
CostKind);
case Intrinsic::vector_reduce_mul:
return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy,
/*IsPairwiseForm=*/false,
CostKind);
case Intrinsic::vector_reduce_and:
return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy,
/*IsPairwiseForm=*/false,
CostKind);
case Intrinsic::vector_reduce_or:
return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy,
/*IsPairwiseForm=*/false,
CostKind);
case Intrinsic::vector_reduce_xor:
return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy,
/*IsPairwiseForm=*/false,
CostKind);
case Intrinsic::vector_reduce_fadd:
// FIXME: Add new flag for cost of strict reductions.
return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy,
/*IsPairwiseForm=*/false,
CostKind);
case Intrinsic::vector_reduce_fmul:
// FIXME: Add new flag for cost of strict reductions.
return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy,
/*IsPairwiseForm=*/false,
CostKind);
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_fmax:
case Intrinsic::vector_reduce_fmin:
return thisT()->getMinMaxReductionCost(
VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
/*IsPairwiseForm=*/false,
/*IsUnsigned=*/false, CostKind);
case Intrinsic::vector_reduce_umax:
case Intrinsic::vector_reduce_umin:
return thisT()->getMinMaxReductionCost(
VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
/*IsPairwiseForm=*/false,
/*IsUnsigned=*/true, CostKind);
case Intrinsic::abs:
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin: {
// abs(X) = select(icmp(X,0),X,sub(0,X))
// minmax(X,Y) = select(icmp(X,Y),X,Y)
Type *CondTy = RetTy->getWithNewBitWidth(1);
unsigned Cost = 0;
// TODO: Ideally getCmpSelInstrCost would accept an icmp condition code.
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
// TODO: Should we add an OperandValueProperties::OP_Zero property?
if (IID == Intrinsic::abs)
Cost += thisT()->getArithmeticInstrCost(
BinaryOperator::Sub, RetTy, CostKind, TTI::OK_UniformConstantValue);
return Cost;
}
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat: {
Type *CondTy = RetTy->getWithNewBitWidth(1);
Type *OpTy = StructType::create({RetTy, CondTy});
Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
? Intrinsic::sadd_with_overflow
: Intrinsic::ssub_with_overflow;
// SatMax -> Overflow && SumDiff < 0
// SatMin -> Overflow && SumDiff >= 0
unsigned Cost = 0;
IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
ScalarizationCostPassed);
Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
Cost += 2 * thisT()->getCmpSelInstrCost(
BinaryOperator::Select, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return Cost;
}
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat: {
Type *CondTy = RetTy->getWithNewBitWidth(1);
Type *OpTy = StructType::create({RetTy, CondTy});
Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
? Intrinsic::uadd_with_overflow
: Intrinsic::usub_with_overflow;
unsigned Cost = 0;
IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
ScalarizationCostPassed);
Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return Cost;
}
case Intrinsic::smul_fix:
case Intrinsic::umul_fix: {
unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
unsigned ExtOp =
IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
TTI::CastContextHint CCH = TTI::CastContextHint::None;
unsigned Cost = 0;
Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
Cost +=
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
CCH, CostKind);
Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy,
CostKind, TTI::OK_AnyValue,
TTI::OK_UniformConstantValue);
Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind,
TTI::OK_AnyValue,
TTI::OK_UniformConstantValue);
Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
return Cost;
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow: {
Type *SumTy = RetTy->getContainedType(0);
Type *OverflowTy = RetTy->getContainedType(1);
unsigned Opcode = IID == Intrinsic::sadd_with_overflow
? BinaryOperator::Add
: BinaryOperator::Sub;
// LHSSign -> LHS >= 0
// RHSSign -> RHS >= 0
// SumSign -> Sum >= 0
//
// Add:
// Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
// Sub:
// Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
unsigned Cost = 0;
Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
Cost += 3 * thisT()->getCmpSelInstrCost(
Instruction::ICmp, SumTy, OverflowTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
Cost += 2 * thisT()->getCmpSelInstrCost(
Instruction::Select, OverflowTy, OverflowTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, OverflowTy,
CostKind);
return Cost;
}
case Intrinsic::uadd_with_overflow:
case Intrinsic::usub_with_overflow: {
Type *SumTy = RetTy->getContainedType(0);
Type *OverflowTy = RetTy->getContainedType(1);
unsigned Opcode = IID == Intrinsic::uadd_with_overflow
? BinaryOperator::Add
: BinaryOperator::Sub;
unsigned Cost = 0;
Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return Cost;
}
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
Type *MulTy = RetTy->getContainedType(0);
Type *OverflowTy = RetTy->getContainedType(1);
unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
unsigned ExtOp =
IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
TTI::CastContextHint CCH = TTI::CastContextHint::None;
unsigned Cost = 0;
Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
Cost +=
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
CCH, CostKind);
Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, MulTy,
CostKind, TTI::OK_AnyValue,
TTI::OK_UniformConstantValue);
if (IID == Intrinsic::smul_with_overflow)
Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy,
CostKind, TTI::OK_AnyValue,
TTI::OK_UniformConstantValue);
Cost +=
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy, OverflowTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return Cost;
}
case Intrinsic::ctpop:
ISDs.push_back(ISD::CTPOP);
// In case of legalization use TCC_Expensive. This is cheaper than a
// library call but still not a cheap instruction.
SingleCallCost = TargetTransformInfo::TCC_Expensive;
break;
case Intrinsic::ctlz:
ISDs.push_back(ISD::CTLZ);
break;
case Intrinsic::cttz:
ISDs.push_back(ISD::CTTZ);
break;
case Intrinsic::bswap:
ISDs.push_back(ISD::BSWAP);
break;
case Intrinsic::bitreverse:
ISDs.push_back(ISD::BITREVERSE);
break;
}
const TargetLoweringBase *TLI = getTLI();
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
SmallVector<unsigned, 2> LegalCost;
SmallVector<unsigned, 2> CustomCost;
for (unsigned ISD : ISDs) {
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
TLI->isFAbsFree(LT.second)) {
return 0;
}
// The operation is legal. Assume it costs 1.
// If the type is split to multiple registers, assume that there is some
// overhead to this.
// TODO: Once we have extract/insert subvector cost we need to use them.
if (LT.first > 1)
LegalCost.push_back(LT.first * 2);
else
LegalCost.push_back(LT.first * 1);
} else if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered then assume
// that the code is twice as expensive.
CustomCost.push_back(LT.first * 2);
}
}
auto *MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
if (MinLegalCostI != LegalCost.end())
return *MinLegalCostI;
auto MinCustomCostI =
std::min_element(CustomCost.begin(), CustomCost.end());
if (MinCustomCostI != CustomCost.end())
return *MinCustomCostI;
// If we can't lower fmuladd into an FMA estimate the cost as a floating
// point mul followed by an add.
if (IID == Intrinsic::fmuladd)
return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
CostKind) +
thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
CostKind);
if (IID == Intrinsic::experimental_constrained_fmuladd) {
IntrinsicCostAttributes FMulAttrs(
Intrinsic::experimental_constrained_fmul, RetTy, Tys);
IntrinsicCostAttributes FAddAttrs(
Intrinsic::experimental_constrained_fadd, RetTy, Tys);
return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
}
// Else, assume that we need to scalarize this intrinsic. For math builtins
// this will emit a costly libcall, adding call overhead and spills. Make it
// very expensive.
if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
unsigned ScalarizationCost = SkipScalarizationCost ?
ScalarizationCostPassed : getScalarizationOverhead(RetVTy, true, false);
unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements();
SmallVector<Type *, 4> ScalarTys;
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
Type *Ty = Tys[i];
if (Ty->isVectorTy())
Ty = Ty->getScalarType();
ScalarTys.push_back(Ty);
}
IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF);
unsigned ScalarCost = thisT()->getIntrinsicInstrCost(Attrs, CostKind);
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
if (auto *VTy = dyn_cast<VectorType>(Tys[i])) {
if (!ICA.skipScalarizationCost())
ScalarizationCost += getScalarizationOverhead(VTy, false, true);
ScalarCalls = std::max(ScalarCalls,
cast<FixedVectorType>(VTy)->getNumElements());
}
}
return ScalarCalls * ScalarCost + ScalarizationCost;
}
// This is going to be turned into a library call, make it expensive.
return SingleCallCost;
}
/// Compute a cost of the given call instruction.
///
/// Compute the cost of calling function F with return type RetTy and
/// argument types Tys. F might be nullptr, in this case the cost of an
/// arbitrary call with the specified signature will be returned.
/// This is used, for instance, when we estimate call of a vector
/// counterpart of the given function.
/// \param F Called function, might be nullptr.
/// \param RetTy Return value types.
/// \param Tys Argument types.
/// \returns The cost of Call instruction.
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) {
return 10;
}
unsigned getNumberOfParts(Type *Tp) {
std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
return LT.first;
}
unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
const SCEV *) {
return 0;
}
/// Try to calculate arithmetic and shuffle op costs for reduction operations.
/// We're assuming that reduction operation are performing the following way:
/// 1. Non-pairwise reduction
/// %val1 = shufflevector<n x t> %val, <n x t> %undef,
/// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
/// \----------------v-------------/ \----------v------------/
/// n/2 elements n/2 elements
/// %red1 = op <n x t> %val, <n x t> val1
/// After this operation we have a vector %red1 where only the first n/2
/// elements are meaningful, the second n/2 elements are undefined and can be
/// dropped. All other operations are actually working with the vector of
/// length n/2, not n, though the real vector length is still n.
/// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
/// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
/// \----------------v-------------/ \----------v------------/
/// n/4 elements 3*n/4 elements
/// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
/// length n/2, the resulting vector has length n/4 etc.
/// 2. Pairwise reduction:
/// Everything is the same except for an additional shuffle operation which
/// is used to produce operands for pairwise kind of reductions.
/// %val1 = shufflevector<n x t> %val, <n x t> %undef,
/// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
/// \-------------v----------/ \----------v------------/
/// n/2 elements n/2 elements
/// %val2 = shufflevector<n x t> %val, <n x t> %undef,
/// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
/// \-------------v----------/ \----------v------------/
/// n/2 elements n/2 elements
/// %red1 = op <n x t> %val1, <n x t> val2
/// Again, the operation is performed on <n x t> vector, but the resulting
/// vector %red1 is <n/2 x t> vector.
///
/// The cost model should take into account that the actual length of the
/// vector is reduced on each iteration.
unsigned getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
bool IsPairwise,
TTI::TargetCostKind CostKind) {
Type *ScalarTy = Ty->getElementType();
unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
unsigned NumReduxLevels = Log2_32(NumVecElts);
unsigned ArithCost = 0;
unsigned ShuffleCost = 0;
std::pair<unsigned, MVT> LT =
thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
unsigned LongVectorCount = 0;
unsigned MVTLen =
LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
while (NumVecElts > MVTLen) {
NumVecElts /= 2;
VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
// Assume the pairwise shuffles add a cost.
ShuffleCost +=
(IsPairwise + 1) * thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
Ty, NumVecElts, SubTy);
ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
Ty = SubTy;
++LongVectorCount;
}
NumReduxLevels -= LongVectorCount;
// The minimal length of the vector is limited by the real length of vector
// operations performed on the current platform. That's why several final
// reduction operations are performed on the vectors with the same
// architecture-dependent length.
// Non pairwise reductions need one shuffle per reduction level. Pairwise
// reductions need two shuffles on every level, but the last one. On that
// level one of the shuffles is <0, u, u, ...> which is identity.
unsigned NumShuffles = NumReduxLevels;
if (IsPairwise && NumReduxLevels >= 1)
NumShuffles += NumReduxLevels - 1;
ShuffleCost += NumShuffles *
thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, Ty);
ArithCost += NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty);
return ShuffleCost + ArithCost +
thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
}
/// Try to calculate op costs for min/max reduction operations.
/// \param CondTy Conditional type for the Select instruction.
unsigned getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsPairwise, bool IsUnsigned,
TTI::TargetCostKind CostKind) {
Type *ScalarTy = Ty->getElementType();
Type *ScalarCondTy = CondTy->getElementType();
unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
unsigned NumReduxLevels = Log2_32(NumVecElts);
unsigned CmpOpcode;
if (Ty->isFPOrFPVectorTy()) {
CmpOpcode = Instruction::FCmp;
} else {
assert(Ty->isIntOrIntVectorTy() &&
"expecting floating point or integer type for min/max reduction");
CmpOpcode = Instruction::ICmp;
}
unsigned MinMaxCost = 0;
unsigned ShuffleCost = 0;
std::pair<unsigned, MVT> LT =
thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
unsigned LongVectorCount = 0;
unsigned MVTLen =
LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
while (NumVecElts > MVTLen) {
NumVecElts /= 2;
auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts);
// Assume the pairwise shuffles add a cost.
ShuffleCost +=
(IsPairwise + 1) * thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
Ty, NumVecElts, SubTy);
MinMaxCost +=
thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
Ty = SubTy;
++LongVectorCount;
}
NumReduxLevels -= LongVectorCount;
// The minimal length of the vector is limited by the real length of vector
// operations performed on the current platform. That's why several final
// reduction opertions are perfomed on the vectors with the same
// architecture-dependent length.
// Non pairwise reductions need one shuffle per reduction level. Pairwise
// reductions need two shuffles on every level, but the last one. On that
// level one of the shuffles is <0, u, u, ...> which is identity.
unsigned NumShuffles = NumReduxLevels;
if (IsPairwise && NumReduxLevels >= 1)
NumShuffles += NumReduxLevels - 1;
ShuffleCost += NumShuffles *
thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, Ty);
MinMaxCost +=
NumReduxLevels *
(thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind));
// The last min/max should be in vector registers and we counted it above.
// So just need a single extractelement.
return ShuffleCost + MinMaxCost +
thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
}
InstructionCost getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind) {
// Without any native support, this is equivalent to the cost of
// vecreduce.add(ext) or if IsMLA vecreduce.add(mul(ext, ext))
VectorType *ExtTy = VectorType::get(ResTy, Ty);
unsigned RedCost = thisT()->getArithmeticReductionCost(
Instruction::Add, ExtTy, false, CostKind);
unsigned MulCost = 0;
unsigned ExtCost = thisT()->getCastInstrCost(
IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
TTI::CastContextHint::None, CostKind);
if (IsMLA) {
MulCost =
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
ExtCost *= 2;
}
return RedCost + MulCost + ExtCost;
}
unsigned getVectorSplitCost() { return 1; }
/// @}
};
/// Concrete BasicTTIImpl that can be used if no further customization
/// is needed.
class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
using BaseT = BasicTTIImplBase<BasicTTIImpl>;
friend class BasicTTIImplBase<BasicTTIImpl>;
const TargetSubtargetInfo *ST;
const TargetLoweringBase *TLI;
const TargetSubtargetInfo *getST() const { return ST; }
const TargetLoweringBase *getTLI() const { return TLI; }
public:
explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
};
} // end namespace llvm
#endif // LLVM_CODEGEN_BASICTTIIMPL_H