llvm-for-llvmta/unittests/CodeGen/GlobalISel/CSETest.cpp

167 lines
6.3 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- CSETest.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GISelMITest.h"
#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
#include "gtest/gtest.h"
namespace {
TEST_F(AArch64GISelMITest, TestCSE) {
setUp();
if (!TM)
return;
LLT s16{LLT::scalar(16)};
LLT s32{LLT::scalar(32)};
auto MIBInput = B.buildInstr(TargetOpcode::G_TRUNC, {s16}, {Copies[0]});
auto MIBInput1 = B.buildInstr(TargetOpcode::G_TRUNC, {s16}, {Copies[1]});
auto MIBAdd = B.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigFull>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
CSEB.setInsertPt(B.getMBB(), B.getInsertPt());
Register AddReg = MRI->createGenericVirtualRegister(s16);
auto MIBAddCopy =
CSEB.buildInstr(TargetOpcode::G_ADD, {AddReg}, {MIBInput, MIBInput});
EXPECT_EQ(MIBAddCopy->getOpcode(), TargetOpcode::COPY);
auto MIBAdd2 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
EXPECT_TRUE(&*MIBAdd == &*MIBAdd2);
auto MIBAdd4 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
EXPECT_TRUE(&*MIBAdd == &*MIBAdd4);
auto MIBAdd5 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput1});
EXPECT_TRUE(&*MIBAdd != &*MIBAdd5);
// Try building G_CONSTANTS.
auto MIBCst = CSEB.buildConstant(s32, 0);
auto MIBCst1 = CSEB.buildConstant(s32, 0);
EXPECT_TRUE(&*MIBCst == &*MIBCst1);
// Try the CFing of BinaryOps.
auto MIBCF1 = CSEB.buildInstr(TargetOpcode::G_ADD, {s32}, {MIBCst, MIBCst});
EXPECT_TRUE(&*MIBCF1 == &*MIBCst);
// Try out building FCONSTANTs.
auto MIBFP0 = CSEB.buildFConstant(s32, 1.0);
auto MIBFP0_1 = CSEB.buildFConstant(s32, 1.0);
EXPECT_TRUE(&*MIBFP0 == &*MIBFP0_1);
CSEInfo.print();
// Make sure buildConstant with a vector type doesn't crash, and the elements
// CSE.
auto Splat0 = CSEB.buildConstant(LLT::vector(2, s32), 0);
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR, Splat0->getOpcode());
EXPECT_EQ(Splat0.getReg(1), Splat0.getReg(2));
EXPECT_EQ(&*MIBCst, MRI->getVRegDef(Splat0.getReg(1)));
auto FSplat = CSEB.buildFConstant(LLT::vector(2, s32), 1.0);
EXPECT_EQ(TargetOpcode::G_BUILD_VECTOR, FSplat->getOpcode());
EXPECT_EQ(FSplat.getReg(1), FSplat.getReg(2));
EXPECT_EQ(&*MIBFP0, MRI->getVRegDef(FSplat.getReg(1)));
// Check G_UNMERGE_VALUES
auto MIBUnmerge = CSEB.buildUnmerge({s32, s32}, Copies[0]);
auto MIBUnmerge2 = CSEB.buildUnmerge({s32, s32}, Copies[0]);
EXPECT_TRUE(&*MIBUnmerge == &*MIBUnmerge2);
// Check G_IMPLICIT_DEF
auto Undef0 = CSEB.buildUndef(s32);
auto Undef1 = CSEB.buildUndef(s32);
EXPECT_EQ(&*Undef0, &*Undef1);
// If the observer is installed to the MF, CSE can also
// track new instructions built without the CSEBuilder and
// the newly built instructions are available for CSEing next
// time a build call is made through the CSEMIRBuilder.
// Additionally, the CSE implementation lazily hashes instructions
// (every build call) to give chance for the instruction to be fully
// built (say using .addUse().addDef().. so on).
GISelObserverWrapper WrapperObserver(&CSEInfo);
RAIIMFObsDelInstaller Installer(*MF, WrapperObserver);
MachineIRBuilder RegularBuilder(*MF);
RegularBuilder.setInsertPt(*EntryMBB, EntryMBB->begin());
auto NonCSEFMul = RegularBuilder.buildInstr(TargetOpcode::G_AND)
.addDef(MRI->createGenericVirtualRegister(s32))
.addUse(Copies[0])
.addUse(Copies[1]);
auto CSEFMul =
CSEB.buildInstr(TargetOpcode::G_AND, {s32}, {Copies[0], Copies[1]});
EXPECT_EQ(&*CSEFMul, &*NonCSEFMul);
auto ExtractMIB = CSEB.buildInstr(TargetOpcode::G_EXTRACT, {s16},
{Copies[0], static_cast<uint64_t>(0)});
auto ExtractMIB1 = CSEB.buildInstr(TargetOpcode::G_EXTRACT, {s16},
{Copies[0], static_cast<uint64_t>(0)});
auto ExtractMIB2 = CSEB.buildInstr(TargetOpcode::G_EXTRACT, {s16},
{Copies[0], static_cast<uint64_t>(1)});
EXPECT_EQ(&*ExtractMIB, &*ExtractMIB1);
EXPECT_NE(&*ExtractMIB, &*ExtractMIB2);
}
TEST_F(AArch64GISelMITest, TestCSEConstantConfig) {
setUp();
if (!TM)
return;
LLT s16{LLT::scalar(16)};
auto MIBInput = B.buildInstr(TargetOpcode::G_TRUNC, {s16}, {Copies[0]});
auto MIBAdd = B.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
auto MIBZero = B.buildConstant(s16, 0);
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigConstantOnly>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
CSEB.setInsertPt(*EntryMBB, EntryMBB->begin());
auto MIBAdd1 =
CSEB.buildInstr(TargetOpcode::G_ADD, {s16}, {MIBInput, MIBInput});
// We should CSE constants only. Adds should not be CSEd.
EXPECT_TRUE(MIBAdd1->getOpcode() != TargetOpcode::COPY);
EXPECT_TRUE(&*MIBAdd1 != &*MIBAdd);
// We should CSE constant.
auto MIBZeroTmp = CSEB.buildConstant(s16, 0);
EXPECT_TRUE(&*MIBZero == &*MIBZeroTmp);
// Check G_IMPLICIT_DEF
auto Undef0 = CSEB.buildUndef(s16);
auto Undef1 = CSEB.buildUndef(s16);
EXPECT_EQ(&*Undef0, &*Undef1);
}
TEST_F(AArch64GISelMITest, TestCSEImmediateNextCSE) {
setUp();
if (!TM)
return;
LLT s32{LLT::scalar(32)};
// We want to check that when the CSE hit is on the next instruction, i.e. at
// the current insert pt, that the insertion point is moved ahead of the
// instruction.
GISelCSEInfo CSEInfo;
CSEInfo.setCSEConfig(std::make_unique<CSEConfigConstantOnly>());
CSEInfo.analyze(*MF);
B.setCSEInfo(&CSEInfo);
CSEMIRBuilder CSEB(B.getState());
CSEB.buildConstant(s32, 0);
auto MIBCst2 = CSEB.buildConstant(s32, 2);
// Move the insert point before the second constant.
CSEB.setInsertPt(CSEB.getMBB(), --CSEB.getInsertPt());
auto MIBCst3 = CSEB.buildConstant(s32, 2);
EXPECT_TRUE(&*MIBCst2 == &*MIBCst3);
EXPECT_TRUE(CSEB.getInsertPt() == CSEB.getMBB().end());
}
} // namespace