llvm-for-llvmta/tools/clang/lib/AST/ExprCXX.cpp

1744 lines
72 KiB
C++
Raw Normal View History

2022-04-25 13:02:35 +02:00
//===- ExprCXX.cpp - (C++) Expression AST Node Implementation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the subclesses of Expr class declared in ExprCXX.h
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/ComputeDependence.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/Expr.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <memory>
using namespace clang;
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
bool CXXOperatorCallExpr::isInfixBinaryOp() const {
// An infix binary operator is any operator with two arguments other than
// operator() and operator[]. Note that none of these operators can have
// default arguments, so it suffices to check the number of argument
// expressions.
if (getNumArgs() != 2)
return false;
switch (getOperator()) {
case OO_Call: case OO_Subscript:
return false;
default:
return true;
}
}
CXXRewrittenBinaryOperator::DecomposedForm
CXXRewrittenBinaryOperator::getDecomposedForm() const {
DecomposedForm Result = {};
const Expr *E = getSemanticForm()->IgnoreImplicit();
// Remove an outer '!' if it exists (only happens for a '!=' rewrite).
bool SkippedNot = false;
if (auto *NotEq = dyn_cast<UnaryOperator>(E)) {
assert(NotEq->getOpcode() == UO_LNot);
E = NotEq->getSubExpr()->IgnoreImplicit();
SkippedNot = true;
}
// Decompose the outer binary operator.
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
assert(!SkippedNot || BO->getOpcode() == BO_EQ);
Result.Opcode = SkippedNot ? BO_NE : BO->getOpcode();
Result.LHS = BO->getLHS();
Result.RHS = BO->getRHS();
Result.InnerBinOp = BO;
} else if (auto *BO = dyn_cast<CXXOperatorCallExpr>(E)) {
assert(!SkippedNot || BO->getOperator() == OO_EqualEqual);
assert(BO->isInfixBinaryOp());
switch (BO->getOperator()) {
case OO_Less: Result.Opcode = BO_LT; break;
case OO_LessEqual: Result.Opcode = BO_LE; break;
case OO_Greater: Result.Opcode = BO_GT; break;
case OO_GreaterEqual: Result.Opcode = BO_GE; break;
case OO_Spaceship: Result.Opcode = BO_Cmp; break;
case OO_EqualEqual: Result.Opcode = SkippedNot ? BO_NE : BO_EQ; break;
default: llvm_unreachable("unexpected binop in rewritten operator expr");
}
Result.LHS = BO->getArg(0);
Result.RHS = BO->getArg(1);
Result.InnerBinOp = BO;
} else {
llvm_unreachable("unexpected rewritten operator form");
}
// Put the operands in the right order for == and !=, and canonicalize the
// <=> subexpression onto the LHS for all other forms.
if (isReversed())
std::swap(Result.LHS, Result.RHS);
// If this isn't a spaceship rewrite, we're done.
if (Result.Opcode == BO_EQ || Result.Opcode == BO_NE)
return Result;
// Otherwise, we expect a <=> to now be on the LHS.
E = Result.LHS->IgnoreImplicitAsWritten();
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
assert(BO->getOpcode() == BO_Cmp);
Result.LHS = BO->getLHS();
Result.RHS = BO->getRHS();
Result.InnerBinOp = BO;
} else if (auto *BO = dyn_cast<CXXOperatorCallExpr>(E)) {
assert(BO->getOperator() == OO_Spaceship);
Result.LHS = BO->getArg(0);
Result.RHS = BO->getArg(1);
Result.InnerBinOp = BO;
} else {
llvm_unreachable("unexpected rewritten operator form");
}
// Put the comparison operands in the right order.
if (isReversed())
std::swap(Result.LHS, Result.RHS);
return Result;
}
bool CXXTypeidExpr::isPotentiallyEvaluated() const {
if (isTypeOperand())
return false;
// C++11 [expr.typeid]p3:
// When typeid is applied to an expression other than a glvalue of
// polymorphic class type, [...] the expression is an unevaluated operand.
const Expr *E = getExprOperand();
if (const CXXRecordDecl *RD = E->getType()->getAsCXXRecordDecl())
if (RD->isPolymorphic() && E->isGLValue())
return true;
return false;
}
bool CXXTypeidExpr::isMostDerived(ASTContext &Context) const {
assert(!isTypeOperand() && "Cannot call isMostDerived for typeid(type)");
const Expr *E = getExprOperand()->IgnoreParenNoopCasts(Context);
if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
QualType Ty = DRE->getDecl()->getType();
if (!Ty->isPointerType() && !Ty->isReferenceType())
return true;
}
return false;
}
QualType CXXTypeidExpr::getTypeOperand(ASTContext &Context) const {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
Qualifiers Quals;
return Context.getUnqualifiedArrayType(
Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType(), Quals);
}
QualType CXXUuidofExpr::getTypeOperand(ASTContext &Context) const {
assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
Qualifiers Quals;
return Context.getUnqualifiedArrayType(
Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType(), Quals);
}
// CXXScalarValueInitExpr
SourceLocation CXXScalarValueInitExpr::getBeginLoc() const {
return TypeInfo ? TypeInfo->getTypeLoc().getBeginLoc() : getRParenLoc();
}
// CXXNewExpr
CXXNewExpr::CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew,
FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
bool UsualArrayDeleteWantsSize,
ArrayRef<Expr *> PlacementArgs, SourceRange TypeIdParens,
Optional<Expr *> ArraySize,
InitializationStyle InitializationStyle,
Expr *Initializer, QualType Ty,
TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
SourceRange DirectInitRange)
: Expr(CXXNewExprClass, Ty, VK_RValue, OK_Ordinary),
OperatorNew(OperatorNew), OperatorDelete(OperatorDelete),
AllocatedTypeInfo(AllocatedTypeInfo), Range(Range),
DirectInitRange(DirectInitRange) {
assert((Initializer != nullptr || InitializationStyle == NoInit) &&
"Only NoInit can have no initializer!");
CXXNewExprBits.IsGlobalNew = IsGlobalNew;
CXXNewExprBits.IsArray = ArraySize.hasValue();
CXXNewExprBits.ShouldPassAlignment = ShouldPassAlignment;
CXXNewExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize;
CXXNewExprBits.StoredInitializationStyle =
Initializer ? InitializationStyle + 1 : 0;
bool IsParenTypeId = TypeIdParens.isValid();
CXXNewExprBits.IsParenTypeId = IsParenTypeId;
CXXNewExprBits.NumPlacementArgs = PlacementArgs.size();
if (ArraySize)
getTrailingObjects<Stmt *>()[arraySizeOffset()] = *ArraySize;
if (Initializer)
getTrailingObjects<Stmt *>()[initExprOffset()] = Initializer;
for (unsigned I = 0; I != PlacementArgs.size(); ++I)
getTrailingObjects<Stmt *>()[placementNewArgsOffset() + I] =
PlacementArgs[I];
if (IsParenTypeId)
getTrailingObjects<SourceRange>()[0] = TypeIdParens;
switch (getInitializationStyle()) {
case CallInit:
this->Range.setEnd(DirectInitRange.getEnd());
break;
case ListInit:
this->Range.setEnd(getInitializer()->getSourceRange().getEnd());
break;
default:
if (IsParenTypeId)
this->Range.setEnd(TypeIdParens.getEnd());
break;
}
setDependence(computeDependence(this));
}
CXXNewExpr::CXXNewExpr(EmptyShell Empty, bool IsArray,
unsigned NumPlacementArgs, bool IsParenTypeId)
: Expr(CXXNewExprClass, Empty) {
CXXNewExprBits.IsArray = IsArray;
CXXNewExprBits.NumPlacementArgs = NumPlacementArgs;
CXXNewExprBits.IsParenTypeId = IsParenTypeId;
}
CXXNewExpr *
CXXNewExpr::Create(const ASTContext &Ctx, bool IsGlobalNew,
FunctionDecl *OperatorNew, FunctionDecl *OperatorDelete,
bool ShouldPassAlignment, bool UsualArrayDeleteWantsSize,
ArrayRef<Expr *> PlacementArgs, SourceRange TypeIdParens,
Optional<Expr *> ArraySize,
InitializationStyle InitializationStyle, Expr *Initializer,
QualType Ty, TypeSourceInfo *AllocatedTypeInfo,
SourceRange Range, SourceRange DirectInitRange) {
bool IsArray = ArraySize.hasValue();
bool HasInit = Initializer != nullptr;
unsigned NumPlacementArgs = PlacementArgs.size();
bool IsParenTypeId = TypeIdParens.isValid();
void *Mem =
Ctx.Allocate(totalSizeToAlloc<Stmt *, SourceRange>(
IsArray + HasInit + NumPlacementArgs, IsParenTypeId),
alignof(CXXNewExpr));
return new (Mem)
CXXNewExpr(IsGlobalNew, OperatorNew, OperatorDelete, ShouldPassAlignment,
UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
ArraySize, InitializationStyle, Initializer, Ty,
AllocatedTypeInfo, Range, DirectInitRange);
}
CXXNewExpr *CXXNewExpr::CreateEmpty(const ASTContext &Ctx, bool IsArray,
bool HasInit, unsigned NumPlacementArgs,
bool IsParenTypeId) {
void *Mem =
Ctx.Allocate(totalSizeToAlloc<Stmt *, SourceRange>(
IsArray + HasInit + NumPlacementArgs, IsParenTypeId),
alignof(CXXNewExpr));
return new (Mem)
CXXNewExpr(EmptyShell(), IsArray, NumPlacementArgs, IsParenTypeId);
}
bool CXXNewExpr::shouldNullCheckAllocation() const {
return getOperatorNew()
->getType()
->castAs<FunctionProtoType>()
->isNothrow() &&
!getOperatorNew()->isReservedGlobalPlacementOperator();
}
// CXXDeleteExpr
QualType CXXDeleteExpr::getDestroyedType() const {
const Expr *Arg = getArgument();
// For a destroying operator delete, we may have implicitly converted the
// pointer type to the type of the parameter of the 'operator delete'
// function.
while (const auto *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
if (ICE->getCastKind() == CK_DerivedToBase ||
ICE->getCastKind() == CK_UncheckedDerivedToBase ||
ICE->getCastKind() == CK_NoOp) {
assert((ICE->getCastKind() == CK_NoOp ||
getOperatorDelete()->isDestroyingOperatorDelete()) &&
"only a destroying operator delete can have a converted arg");
Arg = ICE->getSubExpr();
} else
break;
}
// The type-to-delete may not be a pointer if it's a dependent type.
const QualType ArgType = Arg->getType();
if (ArgType->isDependentType() && !ArgType->isPointerType())
return QualType();
return ArgType->castAs<PointerType>()->getPointeeType();
}
// CXXPseudoDestructorExpr
PseudoDestructorTypeStorage::PseudoDestructorTypeStorage(TypeSourceInfo *Info)
: Type(Info) {
Location = Info->getTypeLoc().getLocalSourceRange().getBegin();
}
CXXPseudoDestructorExpr::CXXPseudoDestructorExpr(
const ASTContext &Context, Expr *Base, bool isArrow,
SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
TypeSourceInfo *ScopeType, SourceLocation ColonColonLoc,
SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType)
: Expr(CXXPseudoDestructorExprClass, Context.BoundMemberTy, VK_RValue,
OK_Ordinary),
Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
OperatorLoc(OperatorLoc), QualifierLoc(QualifierLoc),
ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
DestroyedType(DestroyedType) {
setDependence(computeDependence(this));
}
QualType CXXPseudoDestructorExpr::getDestroyedType() const {
if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
return TInfo->getType();
return QualType();
}
SourceLocation CXXPseudoDestructorExpr::getEndLoc() const {
SourceLocation End = DestroyedType.getLocation();
if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
End = TInfo->getTypeLoc().getLocalSourceRange().getEnd();
return End;
}
// UnresolvedLookupExpr
UnresolvedLookupExpr::UnresolvedLookupExpr(
const ASTContext &Context, CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded,
const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin,
UnresolvedSetIterator End)
: OverloadExpr(UnresolvedLookupExprClass, Context, QualifierLoc,
TemplateKWLoc, NameInfo, TemplateArgs, Begin, End, false,
false, false),
NamingClass(NamingClass) {
UnresolvedLookupExprBits.RequiresADL = RequiresADL;
UnresolvedLookupExprBits.Overloaded = Overloaded;
}
UnresolvedLookupExpr::UnresolvedLookupExpr(EmptyShell Empty,
unsigned NumResults,
bool HasTemplateKWAndArgsInfo)
: OverloadExpr(UnresolvedLookupExprClass, Empty, NumResults,
HasTemplateKWAndArgsInfo) {}
UnresolvedLookupExpr *UnresolvedLookupExpr::Create(
const ASTContext &Context, CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo,
bool RequiresADL, bool Overloaded, UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
unsigned NumResults = End - Begin;
unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(NumResults, 0, 0);
void *Mem = Context.Allocate(Size, alignof(UnresolvedLookupExpr));
return new (Mem) UnresolvedLookupExpr(Context, NamingClass, QualifierLoc,
SourceLocation(), NameInfo, RequiresADL,
Overloaded, nullptr, Begin, End);
}
UnresolvedLookupExpr *UnresolvedLookupExpr::Create(
const ASTContext &Context, CXXRecordDecl *NamingClass,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo, bool RequiresADL,
const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
assert(Args || TemplateKWLoc.isValid());
unsigned NumResults = End - Begin;
unsigned NumTemplateArgs = Args ? Args->size() : 0;
unsigned Size =
totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(NumResults, 1, NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(UnresolvedLookupExpr));
return new (Mem) UnresolvedLookupExpr(Context, NamingClass, QualifierLoc,
TemplateKWLoc, NameInfo, RequiresADL,
/*Overloaded*/ true, Args, Begin, End);
}
UnresolvedLookupExpr *UnresolvedLookupExpr::CreateEmpty(
const ASTContext &Context, unsigned NumResults,
bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) {
assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(
NumResults, HasTemplateKWAndArgsInfo, NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(UnresolvedLookupExpr));
return new (Mem)
UnresolvedLookupExpr(EmptyShell(), NumResults, HasTemplateKWAndArgsInfo);
}
OverloadExpr::OverloadExpr(StmtClass SC, const ASTContext &Context,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End, bool KnownDependent,
bool KnownInstantiationDependent,
bool KnownContainsUnexpandedParameterPack)
: Expr(SC, Context.OverloadTy, VK_LValue, OK_Ordinary), NameInfo(NameInfo),
QualifierLoc(QualifierLoc) {
unsigned NumResults = End - Begin;
OverloadExprBits.NumResults = NumResults;
OverloadExprBits.HasTemplateKWAndArgsInfo =
(TemplateArgs != nullptr ) || TemplateKWLoc.isValid();
if (NumResults) {
// Copy the results to the trailing array past UnresolvedLookupExpr
// or UnresolvedMemberExpr.
DeclAccessPair *Results = getTrailingResults();
memcpy(Results, Begin.I, NumResults * sizeof(DeclAccessPair));
}
if (TemplateArgs) {
auto Deps = TemplateArgumentDependence::None;
getTrailingASTTemplateKWAndArgsInfo()->initializeFrom(
TemplateKWLoc, *TemplateArgs, getTrailingTemplateArgumentLoc(), Deps);
} else if (TemplateKWLoc.isValid()) {
getTrailingASTTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
}
setDependence(computeDependence(this, KnownDependent,
KnownInstantiationDependent,
KnownContainsUnexpandedParameterPack));
if (isTypeDependent())
setType(Context.DependentTy);
}
OverloadExpr::OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults,
bool HasTemplateKWAndArgsInfo)
: Expr(SC, Empty) {
OverloadExprBits.NumResults = NumResults;
OverloadExprBits.HasTemplateKWAndArgsInfo = HasTemplateKWAndArgsInfo;
}
// DependentScopeDeclRefExpr
DependentScopeDeclRefExpr::DependentScopeDeclRefExpr(
QualType Ty, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *Args)
: Expr(DependentScopeDeclRefExprClass, Ty, VK_LValue, OK_Ordinary),
QualifierLoc(QualifierLoc), NameInfo(NameInfo) {
DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo =
(Args != nullptr) || TemplateKWLoc.isValid();
if (Args) {
auto Deps = TemplateArgumentDependence::None;
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc, *Args, getTrailingObjects<TemplateArgumentLoc>(), Deps);
} else if (TemplateKWLoc.isValid()) {
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc);
}
setDependence(computeDependence(this));
}
DependentScopeDeclRefExpr *DependentScopeDeclRefExpr::Create(
const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *Args) {
assert(QualifierLoc && "should be created for dependent qualifiers");
bool HasTemplateKWAndArgsInfo = Args || TemplateKWLoc.isValid();
std::size_t Size =
totalSizeToAlloc<ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
HasTemplateKWAndArgsInfo, Args ? Args->size() : 0);
void *Mem = Context.Allocate(Size);
return new (Mem) DependentScopeDeclRefExpr(Context.DependentTy, QualifierLoc,
TemplateKWLoc, NameInfo, Args);
}
DependentScopeDeclRefExpr *
DependentScopeDeclRefExpr::CreateEmpty(const ASTContext &Context,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
std::size_t Size =
totalSizeToAlloc<ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
HasTemplateKWAndArgsInfo, NumTemplateArgs);
void *Mem = Context.Allocate(Size);
auto *E = new (Mem) DependentScopeDeclRefExpr(
QualType(), NestedNameSpecifierLoc(), SourceLocation(),
DeclarationNameInfo(), nullptr);
E->DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo =
HasTemplateKWAndArgsInfo;
return E;
}
SourceLocation CXXConstructExpr::getBeginLoc() const {
if (isa<CXXTemporaryObjectExpr>(this))
return cast<CXXTemporaryObjectExpr>(this)->getBeginLoc();
return getLocation();
}
SourceLocation CXXConstructExpr::getEndLoc() const {
if (isa<CXXTemporaryObjectExpr>(this))
return cast<CXXTemporaryObjectExpr>(this)->getEndLoc();
if (ParenOrBraceRange.isValid())
return ParenOrBraceRange.getEnd();
SourceLocation End = getLocation();
for (unsigned I = getNumArgs(); I > 0; --I) {
const Expr *Arg = getArg(I-1);
if (!Arg->isDefaultArgument()) {
SourceLocation NewEnd = Arg->getEndLoc();
if (NewEnd.isValid()) {
End = NewEnd;
break;
}
}
}
return End;
}
CXXOperatorCallExpr::CXXOperatorCallExpr(OverloadedOperatorKind OpKind,
Expr *Fn, ArrayRef<Expr *> Args,
QualType Ty, ExprValueKind VK,
SourceLocation OperatorLoc,
FPOptionsOverride FPFeatures,
ADLCallKind UsesADL)
: CallExpr(CXXOperatorCallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
OperatorLoc, FPFeatures, /*MinNumArgs=*/0, UsesADL) {
CXXOperatorCallExprBits.OperatorKind = OpKind;
assert(
(CXXOperatorCallExprBits.OperatorKind == static_cast<unsigned>(OpKind)) &&
"OperatorKind overflow!");
Range = getSourceRangeImpl();
}
CXXOperatorCallExpr::CXXOperatorCallExpr(unsigned NumArgs, bool HasFPFeatures,
EmptyShell Empty)
: CallExpr(CXXOperatorCallExprClass, /*NumPreArgs=*/0, NumArgs,
HasFPFeatures, Empty) {}
CXXOperatorCallExpr *
CXXOperatorCallExpr::Create(const ASTContext &Ctx,
OverloadedOperatorKind OpKind, Expr *Fn,
ArrayRef<Expr *> Args, QualType Ty,
ExprValueKind VK, SourceLocation OperatorLoc,
FPOptionsOverride FPFeatures, ADLCallKind UsesADL) {
// Allocate storage for the trailing objects of CallExpr.
unsigned NumArgs = Args.size();
unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
/*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
void *Mem = Ctx.Allocate(sizeof(CXXOperatorCallExpr) + SizeOfTrailingObjects,
alignof(CXXOperatorCallExpr));
return new (Mem) CXXOperatorCallExpr(OpKind, Fn, Args, Ty, VK, OperatorLoc,
FPFeatures, UsesADL);
}
CXXOperatorCallExpr *CXXOperatorCallExpr::CreateEmpty(const ASTContext &Ctx,
unsigned NumArgs,
bool HasFPFeatures,
EmptyShell Empty) {
// Allocate storage for the trailing objects of CallExpr.
unsigned SizeOfTrailingObjects =
CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
void *Mem = Ctx.Allocate(sizeof(CXXOperatorCallExpr) + SizeOfTrailingObjects,
alignof(CXXOperatorCallExpr));
return new (Mem) CXXOperatorCallExpr(NumArgs, HasFPFeatures, Empty);
}
SourceRange CXXOperatorCallExpr::getSourceRangeImpl() const {
OverloadedOperatorKind Kind = getOperator();
if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) {
if (getNumArgs() == 1)
// Prefix operator
return SourceRange(getOperatorLoc(), getArg(0)->getEndLoc());
else
// Postfix operator
return SourceRange(getArg(0)->getBeginLoc(), getOperatorLoc());
} else if (Kind == OO_Arrow) {
return SourceRange(getArg(0)->getBeginLoc(), getOperatorLoc());
} else if (Kind == OO_Call) {
return SourceRange(getArg(0)->getBeginLoc(), getRParenLoc());
} else if (Kind == OO_Subscript) {
return SourceRange(getArg(0)->getBeginLoc(), getRParenLoc());
} else if (getNumArgs() == 1) {
return SourceRange(getOperatorLoc(), getArg(0)->getEndLoc());
} else if (getNumArgs() == 2) {
return SourceRange(getArg(0)->getBeginLoc(), getArg(1)->getEndLoc());
} else {
return getOperatorLoc();
}
}
CXXMemberCallExpr::CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args,
QualType Ty, ExprValueKind VK,
SourceLocation RP,
FPOptionsOverride FPOptions,
unsigned MinNumArgs)
: CallExpr(CXXMemberCallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, RP,
FPOptions, MinNumArgs, NotADL) {}
CXXMemberCallExpr::CXXMemberCallExpr(unsigned NumArgs, bool HasFPFeatures,
EmptyShell Empty)
: CallExpr(CXXMemberCallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures,
Empty) {}
CXXMemberCallExpr *CXXMemberCallExpr::Create(const ASTContext &Ctx, Expr *Fn,
ArrayRef<Expr *> Args, QualType Ty,
ExprValueKind VK,
SourceLocation RP,
FPOptionsOverride FPFeatures,
unsigned MinNumArgs) {
// Allocate storage for the trailing objects of CallExpr.
unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
/*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
void *Mem = Ctx.Allocate(sizeof(CXXMemberCallExpr) + SizeOfTrailingObjects,
alignof(CXXMemberCallExpr));
return new (Mem)
CXXMemberCallExpr(Fn, Args, Ty, VK, RP, FPFeatures, MinNumArgs);
}
CXXMemberCallExpr *CXXMemberCallExpr::CreateEmpty(const ASTContext &Ctx,
unsigned NumArgs,
bool HasFPFeatures,
EmptyShell Empty) {
// Allocate storage for the trailing objects of CallExpr.
unsigned SizeOfTrailingObjects =
CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
void *Mem = Ctx.Allocate(sizeof(CXXMemberCallExpr) + SizeOfTrailingObjects,
alignof(CXXMemberCallExpr));
return new (Mem) CXXMemberCallExpr(NumArgs, HasFPFeatures, Empty);
}
Expr *CXXMemberCallExpr::getImplicitObjectArgument() const {
const Expr *Callee = getCallee()->IgnoreParens();
if (const auto *MemExpr = dyn_cast<MemberExpr>(Callee))
return MemExpr->getBase();
if (const auto *BO = dyn_cast<BinaryOperator>(Callee))
if (BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI)
return BO->getLHS();
// FIXME: Will eventually need to cope with member pointers.
return nullptr;
}
QualType CXXMemberCallExpr::getObjectType() const {
QualType Ty = getImplicitObjectArgument()->getType();
if (Ty->isPointerType())
Ty = Ty->getPointeeType();
return Ty;
}
CXXMethodDecl *CXXMemberCallExpr::getMethodDecl() const {
if (const auto *MemExpr = dyn_cast<MemberExpr>(getCallee()->IgnoreParens()))
return cast<CXXMethodDecl>(MemExpr->getMemberDecl());
// FIXME: Will eventually need to cope with member pointers.
return nullptr;
}
CXXRecordDecl *CXXMemberCallExpr::getRecordDecl() const {
Expr* ThisArg = getImplicitObjectArgument();
if (!ThisArg)
return nullptr;
if (ThisArg->getType()->isAnyPointerType())
return ThisArg->getType()->getPointeeType()->getAsCXXRecordDecl();
return ThisArg->getType()->getAsCXXRecordDecl();
}
//===----------------------------------------------------------------------===//
// Named casts
//===----------------------------------------------------------------------===//
/// getCastName - Get the name of the C++ cast being used, e.g.,
/// "static_cast", "dynamic_cast", "reinterpret_cast", or
/// "const_cast". The returned pointer must not be freed.
const char *CXXNamedCastExpr::getCastName() const {
switch (getStmtClass()) {
case CXXStaticCastExprClass: return "static_cast";
case CXXDynamicCastExprClass: return "dynamic_cast";
case CXXReinterpretCastExprClass: return "reinterpret_cast";
case CXXConstCastExprClass: return "const_cast";
case CXXAddrspaceCastExprClass: return "addrspace_cast";
default: return "<invalid cast>";
}
}
CXXStaticCastExpr *
CXXStaticCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK,
CastKind K, Expr *Op, const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy, FPOptionsOverride FPO,
SourceLocation L, SourceLocation RParenLoc,
SourceRange AngleBrackets) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer =
C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
PathSize, FPO.requiresTrailingStorage()));
auto *E = new (Buffer) CXXStaticCastExpr(T, VK, K, Op, PathSize, WrittenTy,
FPO, L, RParenLoc, AngleBrackets);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
CXXStaticCastExpr *CXXStaticCastExpr::CreateEmpty(const ASTContext &C,
unsigned PathSize,
bool HasFPFeatures) {
void *Buffer =
C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
PathSize, HasFPFeatures));
return new (Buffer) CXXStaticCastExpr(EmptyShell(), PathSize, HasFPFeatures);
}
CXXDynamicCastExpr *CXXDynamicCastExpr::Create(const ASTContext &C, QualType T,
ExprValueKind VK,
CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L,
SourceLocation RParenLoc,
SourceRange AngleBrackets) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
auto *E =
new (Buffer) CXXDynamicCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
RParenLoc, AngleBrackets);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
CXXDynamicCastExpr *CXXDynamicCastExpr::CreateEmpty(const ASTContext &C,
unsigned PathSize) {
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
return new (Buffer) CXXDynamicCastExpr(EmptyShell(), PathSize);
}
/// isAlwaysNull - Return whether the result of the dynamic_cast is proven
/// to always be null. For example:
///
/// struct A { };
/// struct B final : A { };
/// struct C { };
///
/// C *f(B* b) { return dynamic_cast<C*>(b); }
bool CXXDynamicCastExpr::isAlwaysNull() const
{
QualType SrcType = getSubExpr()->getType();
QualType DestType = getType();
if (const auto *SrcPTy = SrcType->getAs<PointerType>()) {
SrcType = SrcPTy->getPointeeType();
DestType = DestType->castAs<PointerType>()->getPointeeType();
}
if (DestType->isVoidType())
return false;
const auto *SrcRD =
cast<CXXRecordDecl>(SrcType->castAs<RecordType>()->getDecl());
if (!SrcRD->hasAttr<FinalAttr>())
return false;
const auto *DestRD =
cast<CXXRecordDecl>(DestType->castAs<RecordType>()->getDecl());
return !DestRD->isDerivedFrom(SrcRD);
}
CXXReinterpretCastExpr *
CXXReinterpretCastExpr::Create(const ASTContext &C, QualType T,
ExprValueKind VK, CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation RParenLoc,
SourceRange AngleBrackets) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
auto *E =
new (Buffer) CXXReinterpretCastExpr(T, VK, K, Op, PathSize, WrittenTy, L,
RParenLoc, AngleBrackets);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
CXXReinterpretCastExpr *
CXXReinterpretCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize) {
void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
return new (Buffer) CXXReinterpretCastExpr(EmptyShell(), PathSize);
}
CXXConstCastExpr *CXXConstCastExpr::Create(const ASTContext &C, QualType T,
ExprValueKind VK, Expr *Op,
TypeSourceInfo *WrittenTy,
SourceLocation L,
SourceLocation RParenLoc,
SourceRange AngleBrackets) {
return new (C) CXXConstCastExpr(T, VK, Op, WrittenTy, L, RParenLoc, AngleBrackets);
}
CXXConstCastExpr *CXXConstCastExpr::CreateEmpty(const ASTContext &C) {
return new (C) CXXConstCastExpr(EmptyShell());
}
CXXAddrspaceCastExpr *
CXXAddrspaceCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK,
CastKind K, Expr *Op, TypeSourceInfo *WrittenTy,
SourceLocation L, SourceLocation RParenLoc,
SourceRange AngleBrackets) {
return new (C) CXXAddrspaceCastExpr(T, VK, K, Op, WrittenTy, L, RParenLoc,
AngleBrackets);
}
CXXAddrspaceCastExpr *CXXAddrspaceCastExpr::CreateEmpty(const ASTContext &C) {
return new (C) CXXAddrspaceCastExpr(EmptyShell());
}
CXXFunctionalCastExpr *CXXFunctionalCastExpr::Create(
const ASTContext &C, QualType T, ExprValueKind VK, TypeSourceInfo *Written,
CastKind K, Expr *Op, const CXXCastPath *BasePath, FPOptionsOverride FPO,
SourceLocation L, SourceLocation R) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer =
C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
PathSize, FPO.requiresTrailingStorage()));
auto *E = new (Buffer)
CXXFunctionalCastExpr(T, VK, Written, K, Op, PathSize, FPO, L, R);
if (PathSize)
std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
E->getTrailingObjects<CXXBaseSpecifier *>());
return E;
}
CXXFunctionalCastExpr *CXXFunctionalCastExpr::CreateEmpty(const ASTContext &C,
unsigned PathSize,
bool HasFPFeatures) {
void *Buffer =
C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
PathSize, HasFPFeatures));
return new (Buffer)
CXXFunctionalCastExpr(EmptyShell(), PathSize, HasFPFeatures);
}
SourceLocation CXXFunctionalCastExpr::getBeginLoc() const {
return getTypeInfoAsWritten()->getTypeLoc().getBeginLoc();
}
SourceLocation CXXFunctionalCastExpr::getEndLoc() const {
return RParenLoc.isValid() ? RParenLoc : getSubExpr()->getEndLoc();
}
UserDefinedLiteral::UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args,
QualType Ty, ExprValueKind VK,
SourceLocation LitEndLoc,
SourceLocation SuffixLoc,
FPOptionsOverride FPFeatures)
: CallExpr(UserDefinedLiteralClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
LitEndLoc, FPFeatures, /*MinNumArgs=*/0, NotADL),
UDSuffixLoc(SuffixLoc) {}
UserDefinedLiteral::UserDefinedLiteral(unsigned NumArgs, bool HasFPFeatures,
EmptyShell Empty)
: CallExpr(UserDefinedLiteralClass, /*NumPreArgs=*/0, NumArgs,
HasFPFeatures, Empty) {}
UserDefinedLiteral *UserDefinedLiteral::Create(const ASTContext &Ctx, Expr *Fn,
ArrayRef<Expr *> Args,
QualType Ty, ExprValueKind VK,
SourceLocation LitEndLoc,
SourceLocation SuffixLoc,
FPOptionsOverride FPFeatures) {
// Allocate storage for the trailing objects of CallExpr.
unsigned NumArgs = Args.size();
unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
/*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
void *Mem = Ctx.Allocate(sizeof(UserDefinedLiteral) + SizeOfTrailingObjects,
alignof(UserDefinedLiteral));
return new (Mem)
UserDefinedLiteral(Fn, Args, Ty, VK, LitEndLoc, SuffixLoc, FPFeatures);
}
UserDefinedLiteral *UserDefinedLiteral::CreateEmpty(const ASTContext &Ctx,
unsigned NumArgs,
bool HasFPOptions,
EmptyShell Empty) {
// Allocate storage for the trailing objects of CallExpr.
unsigned SizeOfTrailingObjects =
CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPOptions);
void *Mem = Ctx.Allocate(sizeof(UserDefinedLiteral) + SizeOfTrailingObjects,
alignof(UserDefinedLiteral));
return new (Mem) UserDefinedLiteral(NumArgs, HasFPOptions, Empty);
}
UserDefinedLiteral::LiteralOperatorKind
UserDefinedLiteral::getLiteralOperatorKind() const {
if (getNumArgs() == 0)
return LOK_Template;
if (getNumArgs() == 2)
return LOK_String;
assert(getNumArgs() == 1 && "unexpected #args in literal operator call");
QualType ParamTy =
cast<FunctionDecl>(getCalleeDecl())->getParamDecl(0)->getType();
if (ParamTy->isPointerType())
return LOK_Raw;
if (ParamTy->isAnyCharacterType())
return LOK_Character;
if (ParamTy->isIntegerType())
return LOK_Integer;
if (ParamTy->isFloatingType())
return LOK_Floating;
llvm_unreachable("unknown kind of literal operator");
}
Expr *UserDefinedLiteral::getCookedLiteral() {
#ifndef NDEBUG
LiteralOperatorKind LOK = getLiteralOperatorKind();
assert(LOK != LOK_Template && LOK != LOK_Raw && "not a cooked literal");
#endif
return getArg(0);
}
const IdentifierInfo *UserDefinedLiteral::getUDSuffix() const {
return cast<FunctionDecl>(getCalleeDecl())->getLiteralIdentifier();
}
CXXDefaultInitExpr::CXXDefaultInitExpr(const ASTContext &Ctx,
SourceLocation Loc, FieldDecl *Field,
QualType Ty, DeclContext *UsedContext)
: Expr(CXXDefaultInitExprClass, Ty.getNonLValueExprType(Ctx),
Ty->isLValueReferenceType()
? VK_LValue
: Ty->isRValueReferenceType() ? VK_XValue : VK_RValue,
/*FIXME*/ OK_Ordinary),
Field(Field), UsedContext(UsedContext) {
CXXDefaultInitExprBits.Loc = Loc;
assert(Field->hasInClassInitializer());
setDependence(computeDependence(this));
}
CXXTemporary *CXXTemporary::Create(const ASTContext &C,
const CXXDestructorDecl *Destructor) {
return new (C) CXXTemporary(Destructor);
}
CXXBindTemporaryExpr *CXXBindTemporaryExpr::Create(const ASTContext &C,
CXXTemporary *Temp,
Expr* SubExpr) {
assert((SubExpr->getType()->isRecordType() ||
SubExpr->getType()->isArrayType()) &&
"Expression bound to a temporary must have record or array type!");
return new (C) CXXBindTemporaryExpr(Temp, SubExpr);
}
CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(
CXXConstructorDecl *Cons, QualType Ty, TypeSourceInfo *TSI,
ArrayRef<Expr *> Args, SourceRange ParenOrBraceRange,
bool HadMultipleCandidates, bool ListInitialization,
bool StdInitListInitialization, bool ZeroInitialization)
: CXXConstructExpr(
CXXTemporaryObjectExprClass, Ty, TSI->getTypeLoc().getBeginLoc(),
Cons, /* Elidable=*/false, Args, HadMultipleCandidates,
ListInitialization, StdInitListInitialization, ZeroInitialization,
CXXConstructExpr::CK_Complete, ParenOrBraceRange),
TSI(TSI) {}
CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(EmptyShell Empty,
unsigned NumArgs)
: CXXConstructExpr(CXXTemporaryObjectExprClass, Empty, NumArgs) {}
CXXTemporaryObjectExpr *CXXTemporaryObjectExpr::Create(
const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty,
TypeSourceInfo *TSI, ArrayRef<Expr *> Args, SourceRange ParenOrBraceRange,
bool HadMultipleCandidates, bool ListInitialization,
bool StdInitListInitialization, bool ZeroInitialization) {
unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(Args.size());
void *Mem =
Ctx.Allocate(sizeof(CXXTemporaryObjectExpr) + SizeOfTrailingObjects,
alignof(CXXTemporaryObjectExpr));
return new (Mem) CXXTemporaryObjectExpr(
Cons, Ty, TSI, Args, ParenOrBraceRange, HadMultipleCandidates,
ListInitialization, StdInitListInitialization, ZeroInitialization);
}
CXXTemporaryObjectExpr *
CXXTemporaryObjectExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs) {
unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(NumArgs);
void *Mem =
Ctx.Allocate(sizeof(CXXTemporaryObjectExpr) + SizeOfTrailingObjects,
alignof(CXXTemporaryObjectExpr));
return new (Mem) CXXTemporaryObjectExpr(EmptyShell(), NumArgs);
}
SourceLocation CXXTemporaryObjectExpr::getBeginLoc() const {
return getTypeSourceInfo()->getTypeLoc().getBeginLoc();
}
SourceLocation CXXTemporaryObjectExpr::getEndLoc() const {
SourceLocation Loc = getParenOrBraceRange().getEnd();
if (Loc.isInvalid() && getNumArgs())
Loc = getArg(getNumArgs() - 1)->getEndLoc();
return Loc;
}
CXXConstructExpr *CXXConstructExpr::Create(
const ASTContext &Ctx, QualType Ty, SourceLocation Loc,
CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args,
bool HadMultipleCandidates, bool ListInitialization,
bool StdInitListInitialization, bool ZeroInitialization,
ConstructionKind ConstructKind, SourceRange ParenOrBraceRange) {
unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(Args.size());
void *Mem = Ctx.Allocate(sizeof(CXXConstructExpr) + SizeOfTrailingObjects,
alignof(CXXConstructExpr));
return new (Mem) CXXConstructExpr(
CXXConstructExprClass, Ty, Loc, Ctor, Elidable, Args,
HadMultipleCandidates, ListInitialization, StdInitListInitialization,
ZeroInitialization, ConstructKind, ParenOrBraceRange);
}
CXXConstructExpr *CXXConstructExpr::CreateEmpty(const ASTContext &Ctx,
unsigned NumArgs) {
unsigned SizeOfTrailingObjects = sizeOfTrailingObjects(NumArgs);
void *Mem = Ctx.Allocate(sizeof(CXXConstructExpr) + SizeOfTrailingObjects,
alignof(CXXConstructExpr));
return new (Mem)
CXXConstructExpr(CXXConstructExprClass, EmptyShell(), NumArgs);
}
CXXConstructExpr::CXXConstructExpr(
StmtClass SC, QualType Ty, SourceLocation Loc, CXXConstructorDecl *Ctor,
bool Elidable, ArrayRef<Expr *> Args, bool HadMultipleCandidates,
bool ListInitialization, bool StdInitListInitialization,
bool ZeroInitialization, ConstructionKind ConstructKind,
SourceRange ParenOrBraceRange)
: Expr(SC, Ty, VK_RValue, OK_Ordinary), Constructor(Ctor),
ParenOrBraceRange(ParenOrBraceRange), NumArgs(Args.size()) {
CXXConstructExprBits.Elidable = Elidable;
CXXConstructExprBits.HadMultipleCandidates = HadMultipleCandidates;
CXXConstructExprBits.ListInitialization = ListInitialization;
CXXConstructExprBits.StdInitListInitialization = StdInitListInitialization;
CXXConstructExprBits.ZeroInitialization = ZeroInitialization;
CXXConstructExprBits.ConstructionKind = ConstructKind;
CXXConstructExprBits.Loc = Loc;
Stmt **TrailingArgs = getTrailingArgs();
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
assert(Args[I] && "NULL argument in CXXConstructExpr!");
TrailingArgs[I] = Args[I];
}
setDependence(computeDependence(this));
}
CXXConstructExpr::CXXConstructExpr(StmtClass SC, EmptyShell Empty,
unsigned NumArgs)
: Expr(SC, Empty), NumArgs(NumArgs) {}
LambdaCapture::LambdaCapture(SourceLocation Loc, bool Implicit,
LambdaCaptureKind Kind, VarDecl *Var,
SourceLocation EllipsisLoc)
: DeclAndBits(Var, 0), Loc(Loc), EllipsisLoc(EllipsisLoc) {
unsigned Bits = 0;
if (Implicit)
Bits |= Capture_Implicit;
switch (Kind) {
case LCK_StarThis:
Bits |= Capture_ByCopy;
LLVM_FALLTHROUGH;
case LCK_This:
assert(!Var && "'this' capture cannot have a variable!");
Bits |= Capture_This;
break;
case LCK_ByCopy:
Bits |= Capture_ByCopy;
LLVM_FALLTHROUGH;
case LCK_ByRef:
assert(Var && "capture must have a variable!");
break;
case LCK_VLAType:
assert(!Var && "VLA type capture cannot have a variable!");
break;
}
DeclAndBits.setInt(Bits);
}
LambdaCaptureKind LambdaCapture::getCaptureKind() const {
if (capturesVLAType())
return LCK_VLAType;
bool CapByCopy = DeclAndBits.getInt() & Capture_ByCopy;
if (capturesThis())
return CapByCopy ? LCK_StarThis : LCK_This;
return CapByCopy ? LCK_ByCopy : LCK_ByRef;
}
LambdaExpr::LambdaExpr(QualType T, SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc, bool ExplicitParams,
bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
SourceLocation ClosingBrace,
bool ContainsUnexpandedParameterPack)
: Expr(LambdaExprClass, T, VK_RValue, OK_Ordinary),
IntroducerRange(IntroducerRange), CaptureDefaultLoc(CaptureDefaultLoc),
ClosingBrace(ClosingBrace) {
LambdaExprBits.NumCaptures = CaptureInits.size();
LambdaExprBits.CaptureDefault = CaptureDefault;
LambdaExprBits.ExplicitParams = ExplicitParams;
LambdaExprBits.ExplicitResultType = ExplicitResultType;
CXXRecordDecl *Class = getLambdaClass();
(void)Class;
assert(capture_size() == Class->capture_size() && "Wrong number of captures");
assert(getCaptureDefault() == Class->getLambdaCaptureDefault());
// Copy initialization expressions for the non-static data members.
Stmt **Stored = getStoredStmts();
for (unsigned I = 0, N = CaptureInits.size(); I != N; ++I)
*Stored++ = CaptureInits[I];
// Copy the body of the lambda.
*Stored++ = getCallOperator()->getBody();
setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
}
LambdaExpr::LambdaExpr(EmptyShell Empty, unsigned NumCaptures)
: Expr(LambdaExprClass, Empty) {
LambdaExprBits.NumCaptures = NumCaptures;
// Initially don't initialize the body of the LambdaExpr. The body will
// be lazily deserialized when needed.
getStoredStmts()[NumCaptures] = nullptr; // Not one past the end.
}
LambdaExpr *LambdaExpr::Create(const ASTContext &Context, CXXRecordDecl *Class,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
bool ExplicitParams, bool ExplicitResultType,
ArrayRef<Expr *> CaptureInits,
SourceLocation ClosingBrace,
bool ContainsUnexpandedParameterPack) {
// Determine the type of the expression (i.e., the type of the
// function object we're creating).
QualType T = Context.getTypeDeclType(Class);
unsigned Size = totalSizeToAlloc<Stmt *>(CaptureInits.size() + 1);
void *Mem = Context.Allocate(Size);
return new (Mem)
LambdaExpr(T, IntroducerRange, CaptureDefault, CaptureDefaultLoc,
ExplicitParams, ExplicitResultType, CaptureInits, ClosingBrace,
ContainsUnexpandedParameterPack);
}
LambdaExpr *LambdaExpr::CreateDeserialized(const ASTContext &C,
unsigned NumCaptures) {
unsigned Size = totalSizeToAlloc<Stmt *>(NumCaptures + 1);
void *Mem = C.Allocate(Size);
return new (Mem) LambdaExpr(EmptyShell(), NumCaptures);
}
void LambdaExpr::initBodyIfNeeded() const {
if (!getStoredStmts()[capture_size()]) {
auto *This = const_cast<LambdaExpr *>(this);
This->getStoredStmts()[capture_size()] = getCallOperator()->getBody();
}
}
Stmt *LambdaExpr::getBody() const {
initBodyIfNeeded();
return getStoredStmts()[capture_size()];
}
const CompoundStmt *LambdaExpr::getCompoundStmtBody() const {
Stmt *Body = getBody();
if (const auto *CoroBody = dyn_cast<CoroutineBodyStmt>(Body))
return cast<CompoundStmt>(CoroBody->getBody());
return cast<CompoundStmt>(Body);
}
bool LambdaExpr::isInitCapture(const LambdaCapture *C) const {
return (C->capturesVariable() && C->getCapturedVar()->isInitCapture() &&
(getCallOperator() == C->getCapturedVar()->getDeclContext()));
}
LambdaExpr::capture_iterator LambdaExpr::capture_begin() const {
return getLambdaClass()->getLambdaData().Captures;
}
LambdaExpr::capture_iterator LambdaExpr::capture_end() const {
return capture_begin() + capture_size();
}
LambdaExpr::capture_range LambdaExpr::captures() const {
return capture_range(capture_begin(), capture_end());
}
LambdaExpr::capture_iterator LambdaExpr::explicit_capture_begin() const {
return capture_begin();
}
LambdaExpr::capture_iterator LambdaExpr::explicit_capture_end() const {
struct CXXRecordDecl::LambdaDefinitionData &Data
= getLambdaClass()->getLambdaData();
return Data.Captures + Data.NumExplicitCaptures;
}
LambdaExpr::capture_range LambdaExpr::explicit_captures() const {
return capture_range(explicit_capture_begin(), explicit_capture_end());
}
LambdaExpr::capture_iterator LambdaExpr::implicit_capture_begin() const {
return explicit_capture_end();
}
LambdaExpr::capture_iterator LambdaExpr::implicit_capture_end() const {
return capture_end();
}
LambdaExpr::capture_range LambdaExpr::implicit_captures() const {
return capture_range(implicit_capture_begin(), implicit_capture_end());
}
CXXRecordDecl *LambdaExpr::getLambdaClass() const {
return getType()->getAsCXXRecordDecl();
}
CXXMethodDecl *LambdaExpr::getCallOperator() const {
CXXRecordDecl *Record = getLambdaClass();
return Record->getLambdaCallOperator();
}
FunctionTemplateDecl *LambdaExpr::getDependentCallOperator() const {
CXXRecordDecl *Record = getLambdaClass();
return Record->getDependentLambdaCallOperator();
}
TemplateParameterList *LambdaExpr::getTemplateParameterList() const {
CXXRecordDecl *Record = getLambdaClass();
return Record->getGenericLambdaTemplateParameterList();
}
ArrayRef<NamedDecl *> LambdaExpr::getExplicitTemplateParameters() const {
const CXXRecordDecl *Record = getLambdaClass();
return Record->getLambdaExplicitTemplateParameters();
}
Expr *LambdaExpr::getTrailingRequiresClause() const {
return getCallOperator()->getTrailingRequiresClause();
}
bool LambdaExpr::isMutable() const { return !getCallOperator()->isConst(); }
LambdaExpr::child_range LambdaExpr::children() {
initBodyIfNeeded();
return child_range(getStoredStmts(), getStoredStmts() + capture_size() + 1);
}
LambdaExpr::const_child_range LambdaExpr::children() const {
initBodyIfNeeded();
return const_child_range(getStoredStmts(),
getStoredStmts() + capture_size() + 1);
}
ExprWithCleanups::ExprWithCleanups(Expr *subexpr,
bool CleanupsHaveSideEffects,
ArrayRef<CleanupObject> objects)
: FullExpr(ExprWithCleanupsClass, subexpr) {
ExprWithCleanupsBits.CleanupsHaveSideEffects = CleanupsHaveSideEffects;
ExprWithCleanupsBits.NumObjects = objects.size();
for (unsigned i = 0, e = objects.size(); i != e; ++i)
getTrailingObjects<CleanupObject>()[i] = objects[i];
}
ExprWithCleanups *ExprWithCleanups::Create(const ASTContext &C, Expr *subexpr,
bool CleanupsHaveSideEffects,
ArrayRef<CleanupObject> objects) {
void *buffer = C.Allocate(totalSizeToAlloc<CleanupObject>(objects.size()),
alignof(ExprWithCleanups));
return new (buffer)
ExprWithCleanups(subexpr, CleanupsHaveSideEffects, objects);
}
ExprWithCleanups::ExprWithCleanups(EmptyShell empty, unsigned numObjects)
: FullExpr(ExprWithCleanupsClass, empty) {
ExprWithCleanupsBits.NumObjects = numObjects;
}
ExprWithCleanups *ExprWithCleanups::Create(const ASTContext &C,
EmptyShell empty,
unsigned numObjects) {
void *buffer = C.Allocate(totalSizeToAlloc<CleanupObject>(numObjects),
alignof(ExprWithCleanups));
return new (buffer) ExprWithCleanups(empty, numObjects);
}
CXXUnresolvedConstructExpr::CXXUnresolvedConstructExpr(QualType T,
TypeSourceInfo *TSI,
SourceLocation LParenLoc,
ArrayRef<Expr *> Args,
SourceLocation RParenLoc)
: Expr(CXXUnresolvedConstructExprClass, T,
(TSI->getType()->isLValueReferenceType()
? VK_LValue
: TSI->getType()->isRValueReferenceType() ? VK_XValue
: VK_RValue),
OK_Ordinary),
TSI(TSI), LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
CXXUnresolvedConstructExprBits.NumArgs = Args.size();
auto **StoredArgs = getTrailingObjects<Expr *>();
for (unsigned I = 0; I != Args.size(); ++I)
StoredArgs[I] = Args[I];
setDependence(computeDependence(this));
}
CXXUnresolvedConstructExpr *CXXUnresolvedConstructExpr::Create(
const ASTContext &Context, QualType T, TypeSourceInfo *TSI, SourceLocation LParenLoc,
ArrayRef<Expr *> Args, SourceLocation RParenLoc) {
void *Mem = Context.Allocate(totalSizeToAlloc<Expr *>(Args.size()));
return new (Mem)
CXXUnresolvedConstructExpr(T, TSI, LParenLoc, Args, RParenLoc);
}
CXXUnresolvedConstructExpr *
CXXUnresolvedConstructExpr::CreateEmpty(const ASTContext &Context,
unsigned NumArgs) {
void *Mem = Context.Allocate(totalSizeToAlloc<Expr *>(NumArgs));
return new (Mem) CXXUnresolvedConstructExpr(EmptyShell(), NumArgs);
}
SourceLocation CXXUnresolvedConstructExpr::getBeginLoc() const {
return TSI->getTypeLoc().getBeginLoc();
}
CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(
const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs)
: Expr(CXXDependentScopeMemberExprClass, Ctx.DependentTy, VK_LValue,
OK_Ordinary),
Base(Base), BaseType(BaseType), QualifierLoc(QualifierLoc),
MemberNameInfo(MemberNameInfo) {
CXXDependentScopeMemberExprBits.IsArrow = IsArrow;
CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo =
(TemplateArgs != nullptr) || TemplateKWLoc.isValid();
CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope =
FirstQualifierFoundInScope != nullptr;
CXXDependentScopeMemberExprBits.OperatorLoc = OperatorLoc;
if (TemplateArgs) {
auto Deps = TemplateArgumentDependence::None;
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
Deps);
} else if (TemplateKWLoc.isValid()) {
getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
TemplateKWLoc);
}
if (hasFirstQualifierFoundInScope())
*getTrailingObjects<NamedDecl *>() = FirstQualifierFoundInScope;
setDependence(computeDependence(this));
}
CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(
EmptyShell Empty, bool HasTemplateKWAndArgsInfo,
bool HasFirstQualifierFoundInScope)
: Expr(CXXDependentScopeMemberExprClass, Empty) {
CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo =
HasTemplateKWAndArgsInfo;
CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope =
HasFirstQualifierFoundInScope;
}
CXXDependentScopeMemberExpr *CXXDependentScopeMemberExpr::Create(
const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
bool HasTemplateKWAndArgsInfo =
(TemplateArgs != nullptr) || TemplateKWLoc.isValid();
unsigned NumTemplateArgs = TemplateArgs ? TemplateArgs->size() : 0;
bool HasFirstQualifierFoundInScope = FirstQualifierFoundInScope != nullptr;
unsigned Size = totalSizeToAlloc<ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc, NamedDecl *>(
HasTemplateKWAndArgsInfo, NumTemplateArgs, HasFirstQualifierFoundInScope);
void *Mem = Ctx.Allocate(Size, alignof(CXXDependentScopeMemberExpr));
return new (Mem) CXXDependentScopeMemberExpr(
Ctx, Base, BaseType, IsArrow, OperatorLoc, QualifierLoc, TemplateKWLoc,
FirstQualifierFoundInScope, MemberNameInfo, TemplateArgs);
}
CXXDependentScopeMemberExpr *CXXDependentScopeMemberExpr::CreateEmpty(
const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope) {
assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
unsigned Size = totalSizeToAlloc<ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc, NamedDecl *>(
HasTemplateKWAndArgsInfo, NumTemplateArgs, HasFirstQualifierFoundInScope);
void *Mem = Ctx.Allocate(Size, alignof(CXXDependentScopeMemberExpr));
return new (Mem) CXXDependentScopeMemberExpr(
EmptyShell(), HasTemplateKWAndArgsInfo, HasFirstQualifierFoundInScope);
}
static bool hasOnlyNonStaticMemberFunctions(UnresolvedSetIterator begin,
UnresolvedSetIterator end) {
do {
NamedDecl *decl = *begin;
if (isa<UnresolvedUsingValueDecl>(decl))
return false;
// Unresolved member expressions should only contain methods and
// method templates.
if (cast<CXXMethodDecl>(decl->getUnderlyingDecl()->getAsFunction())
->isStatic())
return false;
} while (++begin != end);
return true;
}
UnresolvedMemberExpr::UnresolvedMemberExpr(
const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base,
QualType BaseType, bool IsArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin,
UnresolvedSetIterator End)
: OverloadExpr(
UnresolvedMemberExprClass, Context, QualifierLoc, TemplateKWLoc,
MemberNameInfo, TemplateArgs, Begin, End,
// Dependent
((Base && Base->isTypeDependent()) || BaseType->isDependentType()),
((Base && Base->isInstantiationDependent()) ||
BaseType->isInstantiationDependentType()),
// Contains unexpanded parameter pack
((Base && Base->containsUnexpandedParameterPack()) ||
BaseType->containsUnexpandedParameterPack())),
Base(Base), BaseType(BaseType), OperatorLoc(OperatorLoc) {
UnresolvedMemberExprBits.IsArrow = IsArrow;
UnresolvedMemberExprBits.HasUnresolvedUsing = HasUnresolvedUsing;
// Check whether all of the members are non-static member functions,
// and if so, mark give this bound-member type instead of overload type.
if (hasOnlyNonStaticMemberFunctions(Begin, End))
setType(Context.BoundMemberTy);
}
UnresolvedMemberExpr::UnresolvedMemberExpr(EmptyShell Empty,
unsigned NumResults,
bool HasTemplateKWAndArgsInfo)
: OverloadExpr(UnresolvedMemberExprClass, Empty, NumResults,
HasTemplateKWAndArgsInfo) {}
bool UnresolvedMemberExpr::isImplicitAccess() const {
if (!Base)
return true;
return cast<Expr>(Base)->isImplicitCXXThis();
}
UnresolvedMemberExpr *UnresolvedMemberExpr::Create(
const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base,
QualType BaseType, bool IsArrow, SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs, UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
unsigned NumResults = End - Begin;
bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
unsigned NumTemplateArgs = TemplateArgs ? TemplateArgs->size() : 0;
unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(
NumResults, HasTemplateKWAndArgsInfo, NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(UnresolvedMemberExpr));
return new (Mem) UnresolvedMemberExpr(
Context, HasUnresolvedUsing, Base, BaseType, IsArrow, OperatorLoc,
QualifierLoc, TemplateKWLoc, MemberNameInfo, TemplateArgs, Begin, End);
}
UnresolvedMemberExpr *UnresolvedMemberExpr::CreateEmpty(
const ASTContext &Context, unsigned NumResults,
bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) {
assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
unsigned Size = totalSizeToAlloc<DeclAccessPair, ASTTemplateKWAndArgsInfo,
TemplateArgumentLoc>(
NumResults, HasTemplateKWAndArgsInfo, NumTemplateArgs);
void *Mem = Context.Allocate(Size, alignof(UnresolvedMemberExpr));
return new (Mem)
UnresolvedMemberExpr(EmptyShell(), NumResults, HasTemplateKWAndArgsInfo);
}
CXXRecordDecl *UnresolvedMemberExpr::getNamingClass() {
// Unlike for UnresolvedLookupExpr, it is very easy to re-derive this.
// If there was a nested name specifier, it names the naming class.
// It can't be dependent: after all, we were actually able to do the
// lookup.
CXXRecordDecl *Record = nullptr;
auto *NNS = getQualifier();
if (NNS && NNS->getKind() != NestedNameSpecifier::Super) {
const Type *T = getQualifier()->getAsType();
assert(T && "qualifier in member expression does not name type");
Record = T->getAsCXXRecordDecl();
assert(Record && "qualifier in member expression does not name record");
}
// Otherwise the naming class must have been the base class.
else {
QualType BaseType = getBaseType().getNonReferenceType();
if (isArrow())
BaseType = BaseType->castAs<PointerType>()->getPointeeType();
Record = BaseType->getAsCXXRecordDecl();
assert(Record && "base of member expression does not name record");
}
return Record;
}
SizeOfPackExpr *
SizeOfPackExpr::Create(ASTContext &Context, SourceLocation OperatorLoc,
NamedDecl *Pack, SourceLocation PackLoc,
SourceLocation RParenLoc,
Optional<unsigned> Length,
ArrayRef<TemplateArgument> PartialArgs) {
void *Storage =
Context.Allocate(totalSizeToAlloc<TemplateArgument>(PartialArgs.size()));
return new (Storage) SizeOfPackExpr(Context.getSizeType(), OperatorLoc, Pack,
PackLoc, RParenLoc, Length, PartialArgs);
}
SizeOfPackExpr *SizeOfPackExpr::CreateDeserialized(ASTContext &Context,
unsigned NumPartialArgs) {
void *Storage =
Context.Allocate(totalSizeToAlloc<TemplateArgument>(NumPartialArgs));
return new (Storage) SizeOfPackExpr(EmptyShell(), NumPartialArgs);
}
QualType SubstNonTypeTemplateParmExpr::getParameterType(
const ASTContext &Context) const {
// Note that, for a class type NTTP, we will have an lvalue of type 'const
// T', so we can't just compute this from the type and value category.
if (isReferenceParameter())
return Context.getLValueReferenceType(getType());
return getType().getUnqualifiedType();
}
SubstNonTypeTemplateParmPackExpr::SubstNonTypeTemplateParmPackExpr(
QualType T, ExprValueKind ValueKind, NonTypeTemplateParmDecl *Param,
SourceLocation NameLoc, const TemplateArgument &ArgPack)
: Expr(SubstNonTypeTemplateParmPackExprClass, T, ValueKind, OK_Ordinary),
Param(Param), Arguments(ArgPack.pack_begin()),
NumArguments(ArgPack.pack_size()), NameLoc(NameLoc) {
setDependence(ExprDependence::TypeValueInstantiation |
ExprDependence::UnexpandedPack);
}
TemplateArgument SubstNonTypeTemplateParmPackExpr::getArgumentPack() const {
return TemplateArgument(llvm::makeArrayRef(Arguments, NumArguments));
}
FunctionParmPackExpr::FunctionParmPackExpr(QualType T, VarDecl *ParamPack,
SourceLocation NameLoc,
unsigned NumParams,
VarDecl *const *Params)
: Expr(FunctionParmPackExprClass, T, VK_LValue, OK_Ordinary),
ParamPack(ParamPack), NameLoc(NameLoc), NumParameters(NumParams) {
if (Params)
std::uninitialized_copy(Params, Params + NumParams,
getTrailingObjects<VarDecl *>());
setDependence(ExprDependence::TypeValueInstantiation |
ExprDependence::UnexpandedPack);
}
FunctionParmPackExpr *
FunctionParmPackExpr::Create(const ASTContext &Context, QualType T,
VarDecl *ParamPack, SourceLocation NameLoc,
ArrayRef<VarDecl *> Params) {
return new (Context.Allocate(totalSizeToAlloc<VarDecl *>(Params.size())))
FunctionParmPackExpr(T, ParamPack, NameLoc, Params.size(), Params.data());
}
FunctionParmPackExpr *
FunctionParmPackExpr::CreateEmpty(const ASTContext &Context,
unsigned NumParams) {
return new (Context.Allocate(totalSizeToAlloc<VarDecl *>(NumParams)))
FunctionParmPackExpr(QualType(), nullptr, SourceLocation(), 0, nullptr);
}
MaterializeTemporaryExpr::MaterializeTemporaryExpr(
QualType T, Expr *Temporary, bool BoundToLvalueReference,
LifetimeExtendedTemporaryDecl *MTD)
: Expr(MaterializeTemporaryExprClass, T,
BoundToLvalueReference ? VK_LValue : VK_XValue, OK_Ordinary) {
if (MTD) {
State = MTD;
MTD->ExprWithTemporary = Temporary;
return;
}
State = Temporary;
setDependence(computeDependence(this));
}
void MaterializeTemporaryExpr::setExtendingDecl(ValueDecl *ExtendedBy,
unsigned ManglingNumber) {
// We only need extra state if we have to remember more than just the Stmt.
if (!ExtendedBy)
return;
// We may need to allocate extra storage for the mangling number and the
// extended-by ValueDecl.
if (!State.is<LifetimeExtendedTemporaryDecl *>())
State = LifetimeExtendedTemporaryDecl::Create(
cast<Expr>(State.get<Stmt *>()), ExtendedBy, ManglingNumber);
auto ES = State.get<LifetimeExtendedTemporaryDecl *>();
ES->ExtendingDecl = ExtendedBy;
ES->ManglingNumber = ManglingNumber;
}
bool MaterializeTemporaryExpr::isUsableInConstantExpressions(
const ASTContext &Context) const {
// C++20 [expr.const]p4:
// An object or reference is usable in constant expressions if it is [...]
// a temporary object of non-volatile const-qualified literal type
// whose lifetime is extended to that of a variable that is usable
// in constant expressions
auto *VD = dyn_cast_or_null<VarDecl>(getExtendingDecl());
return VD && getType().isConstant(Context) &&
!getType().isVolatileQualified() &&
getType()->isLiteralType(Context) &&
VD->isUsableInConstantExpressions(Context);
}
TypeTraitExpr::TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc, bool Value)
: Expr(TypeTraitExprClass, T, VK_RValue, OK_Ordinary), Loc(Loc),
RParenLoc(RParenLoc) {
assert(Kind <= TT_Last && "invalid enum value!");
TypeTraitExprBits.Kind = Kind;
assert(static_cast<unsigned>(Kind) == TypeTraitExprBits.Kind &&
"TypeTraitExprBits.Kind overflow!");
TypeTraitExprBits.Value = Value;
TypeTraitExprBits.NumArgs = Args.size();
assert(Args.size() == TypeTraitExprBits.NumArgs &&
"TypeTraitExprBits.NumArgs overflow!");
auto **ToArgs = getTrailingObjects<TypeSourceInfo *>();
for (unsigned I = 0, N = Args.size(); I != N; ++I)
ToArgs[I] = Args[I];
setDependence(computeDependence(this));
}
TypeTraitExpr *TypeTraitExpr::Create(const ASTContext &C, QualType T,
SourceLocation Loc,
TypeTrait Kind,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc,
bool Value) {
void *Mem = C.Allocate(totalSizeToAlloc<TypeSourceInfo *>(Args.size()));
return new (Mem) TypeTraitExpr(T, Loc, Kind, Args, RParenLoc, Value);
}
TypeTraitExpr *TypeTraitExpr::CreateDeserialized(const ASTContext &C,
unsigned NumArgs) {
void *Mem = C.Allocate(totalSizeToAlloc<TypeSourceInfo *>(NumArgs));
return new (Mem) TypeTraitExpr(EmptyShell());
}
CUDAKernelCallExpr::CUDAKernelCallExpr(Expr *Fn, CallExpr *Config,
ArrayRef<Expr *> Args, QualType Ty,
ExprValueKind VK, SourceLocation RP,
FPOptionsOverride FPFeatures,
unsigned MinNumArgs)
: CallExpr(CUDAKernelCallExprClass, Fn, /*PreArgs=*/Config, Args, Ty, VK,
RP, FPFeatures, MinNumArgs, NotADL) {}
CUDAKernelCallExpr::CUDAKernelCallExpr(unsigned NumArgs, bool HasFPFeatures,
EmptyShell Empty)
: CallExpr(CUDAKernelCallExprClass, /*NumPreArgs=*/END_PREARG, NumArgs,
HasFPFeatures, Empty) {}
CUDAKernelCallExpr *
CUDAKernelCallExpr::Create(const ASTContext &Ctx, Expr *Fn, CallExpr *Config,
ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
SourceLocation RP, FPOptionsOverride FPFeatures,
unsigned MinNumArgs) {
// Allocate storage for the trailing objects of CallExpr.
unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
/*NumPreArgs=*/END_PREARG, NumArgs, FPFeatures.requiresTrailingStorage());
void *Mem = Ctx.Allocate(sizeof(CUDAKernelCallExpr) + SizeOfTrailingObjects,
alignof(CUDAKernelCallExpr));
return new (Mem)
CUDAKernelCallExpr(Fn, Config, Args, Ty, VK, RP, FPFeatures, MinNumArgs);
}
CUDAKernelCallExpr *CUDAKernelCallExpr::CreateEmpty(const ASTContext &Ctx,
unsigned NumArgs,
bool HasFPFeatures,
EmptyShell Empty) {
// Allocate storage for the trailing objects of CallExpr.
unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
/*NumPreArgs=*/END_PREARG, NumArgs, HasFPFeatures);
void *Mem = Ctx.Allocate(sizeof(CUDAKernelCallExpr) + SizeOfTrailingObjects,
alignof(CUDAKernelCallExpr));
return new (Mem) CUDAKernelCallExpr(NumArgs, HasFPFeatures, Empty);
}