llvm-for-llvmta/test/CodeGen/PowerPC/ppc-shrink-wrapping.ll

792 lines
24 KiB
LLVM
Raw Normal View History

2022-04-25 10:02:23 +02:00
; RUN: llc -mtriple=powerpc64le-unknown-linux-gnu -mcpu=pwr8 %s -o - -verify-machineinstrs | FileCheck %s --check-prefix=CHECK --check-prefix=ENABLE
; RUN: llc -mtriple=powerpc64le-unknown-linux-gnu %s -o - -enable-shrink-wrap=false -verify-machineinstrs | FileCheck %s --check-prefix=CHECK --check-prefix=DISABLE
;
; Note: Lots of tests use inline asm instead of regular calls.
; This allows to have a better control on what the allocation will do.
; Otherwise, we may have spill right in the entry block, defeating
; shrink-wrapping. Moreover, some of the inline asm statement (nop)
; are here to ensure that the related paths do not end up as critical
; edges.
; Initial motivating example: Simple diamond with a call just on one side.
; CHECK-LABEL: foo:
;
; Compare the arguments and return
; No prologue needed.
; ENABLE: cmpw 3, 4
; ENABLE-NEXT: bgelr 0
;
; Prologue code.
; At a minimum, we save/restore the link register. Other registers may be saved
; as well.
; CHECK: mflr
;
; Compare the arguments and jump to exit.
; After the prologue is set.
; DISABLE: cmpw 3, 4
; DISABLE-NEXT: bge 0, .[[EXIT_LABEL:LBB[0-9_]+]]
;
; Store %a on the stack
; CHECK: stw 3, {{[0-9]+([0-9]+)}}
; Set the alloca address in the second argument.
; CHECK-NEXT: addi 4, 1, {{[0-9]+}}
; Set the first argument to zero.
; CHECK-NEXT: li 3, 0
; CHECK-NEXT: bl doSomething
;
; With shrink-wrapping, epilogue is just after the call.
; Restore the link register and return.
; Note that there could be other epilog code before the link register is
; restored but we will not check for it here.
; ENABLE: mtlr
; ENABLE-NEXT: blr
;
; DISABLE: [[EXIT_LABEL]]:
;
; Without shrink-wrapping, epilogue is in the exit block.
; Epilogue code. (What we pop does not matter.)
; DISABLE: mtlr {{[0-9]+}}
; DISABLE-NEXT: blr
;
define i32 @foo(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
; Function Attrs: optsize
declare i32 @doSomething(i32, i32*)
; Check that we do not perform the restore inside the loop whereas the save
; is outside.
; CHECK-LABEL: freqSaveAndRestoreOutsideLoop:
;
; Shrink-wrapping allows to skip the prologue in the else case.
; ENABLE: cmplwi 3, 0
; ENABLE: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the link register
; CHECK: mflr {{[0-9]+}}
;
; DISABLE: cmplwi 3, 0
; DISABLE: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB.
; CHECK: slwi 3, [[SUM]], 3
;
; Jump to epilogue.
; DISABLE: b .[[EPILOG_BB:LBB[0-9_]+]]
;
; DISABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; DISABLE: slwi 3, 4, 1
; DISABLE: .[[EPILOG_BB]]: # %if.end
;
; Epilogue code.
; CHECK: mtlr {{[0-9]+}}
; CHECK: blr
;
; ENABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; ENABLE: slwi 3, 4, 1
; ENABLE-NEXT: blr
define i32 @freqSaveAndRestoreOutsideLoop(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %entry, %for.body
%i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ]
%sum.04 = phi i32 [ %add, %for.body ], [ 0, %for.preheader ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.04
%inc = add nuw nsw i32 %i.05, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
%shl = shl i32 %add, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %for.end
%sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ]
ret i32 %sum.1
}
declare i32 @something(...)
; Check that we do not perform the shrink-wrapping inside the loop even
; though that would be legal. The cost model must prevent that.
; CHECK-LABEL: freqSaveAndRestoreOutsideLoop2:
; Prologue code.
; Make sure we save the link register before the call
; CHECK: mflr {{[0-9]+}}
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB
; CHECK: %for.exit
; CHECK: mtlr {{[0-9]+}}
; CHECK: blr
define i32 @freqSaveAndRestoreOutsideLoop2(i32 %cond) {
entry:
br label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %for.body, %entry
%i.04 = phi i32 [ 0, %for.preheader ], [ %inc, %for.body ]
%sum.03 = phi i32 [ 0, %for.preheader ], [ %add, %for.body ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.03
%inc = add nuw nsw i32 %i.04, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
tail call void asm "nop", ""()
br label %for.end
for.end: ; preds = %for.body
ret i32 %add
}
; Check with a more complex case that we do not have save within the loop and
; restore outside.
; CHECK-LABEL: loopInfoSaveOutsideLoop:
;
; ENABLE: cmplwi 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the link register
; CHECK: mflr {{[0-9]+}}
;
; DISABLE: std
; DISABLE-NEXT: std
; DISABLE: cmplwi 3, 0
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB
; CHECK: bl somethingElse
; CHECK: slwi 3, [[SUM]], 3
;
; Jump to epilogue
; DISABLE: b .[[EPILOG_BB:LBB[0-9_]+]]
;
; DISABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; DISABLE: slwi 3, 4, 1
;
; DISABLE: .[[EPILOG_BB]]: # %if.end
; Epilog code
; CHECK: mtlr {{[0-9]+}}
; CHECK: blr
;
; ENABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; ENABLE: slwi 3, 4, 1
; ENABLE-NEXT: blr
define i32 @loopInfoSaveOutsideLoop(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %entry, %for.body
%i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ]
%sum.04 = phi i32 [ %add, %for.body ], [ 0, %for.preheader ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.04
%inc = add nuw nsw i32 %i.05, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
tail call void bitcast (void (...)* @somethingElse to void ()*)()
%shl = shl i32 %add, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %for.end
%sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ]
ret i32 %sum.1
}
declare void @somethingElse(...)
; Check with a more complex case that we do not have restore within the loop and
; save outside.
; CHECK-LABEL: loopInfoRestoreOutsideLoop:
;
; ENABLE: cmplwi 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the link register
; CHECK: mflr {{[0-9]+}}
;
; DISABLE: std
; DISABLE-NEXT: std
; DISABLE: cmplwi 3, 0
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; CHECK: bl somethingElse
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB.
; slwi 3, [[SUM]], 3
;
; DISABLE: b .[[EPILOG_BB:LBB[0-9_]+]]
;
; DISABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; DISABLE: slwi 3, 4, 1
; DISABLE: .[[EPILOG_BB]]: # %if.end
;
; Epilogue code.
; CHECK: mtlr {{[0-9]+}}
; CHECK: blr
;
; ENABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; ENABLE: slwi 3, 4, 1
; ENABLE-NEXT: blr
define i32 @loopInfoRestoreOutsideLoop(i32 %cond, i32 %N) nounwind {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %if.then
if.then: ; preds = %entry
tail call void bitcast (void (...)* @somethingElse to void ()*)()
br label %for.body
for.body: ; preds = %for.body, %if.then
%i.05 = phi i32 [ 0, %if.then ], [ %inc, %for.body ]
%sum.04 = phi i32 [ 0, %if.then ], [ %add, %for.body ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.04
%inc = add nuw nsw i32 %i.05, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
%shl = shl i32 %add, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %for.end
%sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ]
ret i32 %sum.1
}
; Check that we handle function with no frame information correctly.
; CHECK-LABEL: emptyFrame:
; CHECK: # %entry
; CHECK-NEXT: li 3, 0
; CHECK-NEXT: blr
define i32 @emptyFrame() {
entry:
ret i32 0
}
; Check that we handle inline asm correctly.
; CHECK-LABEL: inlineAsm:
;
; ENABLE: cmplwi 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the CSR used in the inline asm: r14
; ENABLE-DAG: li [[IV:[0-9]+]], 10
; ENABLE-DAG: std 14, -[[STACK_OFFSET:[0-9]+]](1) # 8-byte Folded Spill
;
; DISABLE: cmplwi 3, 0
; DISABLE-NEXT: std 14, -[[STACK_OFFSET:[0-9]+]](1) # 8-byte Folded Spill
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
; DISABLE: li [[IV:[0-9]+]], 10
;
; CHECK: nop
; CHECK: mtctr [[IV]]
;
; CHECK: .[[LOOP_LABEL:LBB[0-9_]+]]: # %for.body
; Inline asm statement.
; CHECK: addi 14, 14, 1
; CHECK: bdnz .[[LOOP_LABEL]]
;
; Epilogue code.
; CHECK: li 3, 0
; CHECK-DAG: ld 14, -[[STACK_OFFSET]](1) # 8-byte Folded Reload
; CHECK: nop
; CHECK: blr
;
; CHECK: [[ELSE_LABEL]]
; CHECK-NEXT: slwi 3, 4, 1
; DISABLE: ld 14, -[[STACK_OFFSET]](1) # 8-byte Folded Reload
; CHECK-NEXT: blr
;
define i32 @inlineAsm(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %entry, %for.body
%i.03 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ]
tail call void asm "addi 14, 14, 1", "~{r14}"()
%inc = add nuw nsw i32 %i.03, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
tail call void asm "nop", ""()
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %for.body, %if.else
%sum.0 = phi i32 [ %mul, %if.else ], [ 0, %for.exit ]
ret i32 %sum.0
}
; Check that we handle calls to variadic functions correctly.
; CHECK-LABEL: callVariadicFunc:
;
; ENABLE: cmplwi 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; CHECK: mflr {{[0-9]+}}
;
; DISABLE: cmplwi 3, 0
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Setup of the varags.
; CHECK: mr 4, 3
; CHECK-NEXT: mr 5, 3
; CHECK-NEXT: mr 6, 3
; CHECK-NEXT: mr 7, 3
; CHECK-NEXT: mr 8, 3
; CHECK-NEXT: mr 9, 3
; CHECK-NEXT: bl someVariadicFunc
; CHECK: slwi 3, 3, 3
; DISABLE: b .[[EPILOGUE_BB:LBB[0-9_]+]]
;
; ENABLE: mtlr {{[0-9]+}}
; ENABLE-NEXT: blr
;
; CHECK: .[[ELSE_LABEL]]: # %if.else
; CHECK-NEXT: slwi 3, 4, 1
;
; DISABLE: .[[EPILOGUE_BB]]: # %if.end
; DISABLE: mtlr
; CHECK: blr
define i32 @callVariadicFunc(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %if.then
if.then: ; preds = %entry
%call = tail call i32 (i32, ...) @someVariadicFunc(i32 %N, i32 %N, i32 %N, i32 %N, i32 %N, i32 %N, i32 %N)
%shl = shl i32 %call, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %if.then
%sum.0 = phi i32 [ %shl, %if.then ], [ %mul, %if.else ]
ret i32 %sum.0
}
declare i32 @someVariadicFunc(i32, ...)
; Make sure we do not insert unreachable code after noreturn function.
; Although this is not incorrect to insert such code, it is useless
; and it hurts the binary size.
;
; CHECK-LABEL: noreturn:
; DISABLE: mflr {{[0-9]+}}
;
; CHECK: cmplwi 3, 0
; CHECK-NEXT: bne{{[-]?}} 0, .[[ABORT:LBB[0-9_]+]]
;
; CHECK: li 3, 42
;
; DISABLE: mtlr {{[0-9]+}}
;
; CHECK-NEXT: blr
;
; CHECK: .[[ABORT]]: # %if.abort
;
; ENABLE: mflr {{[0-9]+}}
;
; CHECK: bl abort
; ENABLE-NOT: mtlr {{[0-9]+}}
define i32 @noreturn(i8 signext %bad_thing) {
entry:
%tobool = icmp eq i8 %bad_thing, 0
br i1 %tobool, label %if.end, label %if.abort
if.abort:
tail call void @abort() #0
unreachable
if.end:
ret i32 42
}
declare void @abort() #0
attributes #0 = { noreturn nounwind }
; Make sure that we handle infinite loops properly When checking that the Save
; and Restore blocks are control flow equivalent, the loop searches for the
; immediate (post) dominator for the (restore) save blocks. When either the Save
; or Restore block is located in an infinite loop the only immediate (post)
; dominator is itself. In this case, we cannot perform shrink wrapping, but we
; should return gracefully and continue compilation.
; The only condition for this test is the compilation finishes correctly.
;
; CHECK-LABEL: infiniteloop
; CHECK: blr
define void @infiniteloop() {
entry:
br i1 undef, label %if.then, label %if.end
if.then:
%ptr = alloca i32, i32 4
br label %for.body
for.body: ; preds = %for.body, %entry
%sum.03 = phi i32 [ 0, %if.then ], [ %add, %for.body ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.03
store i32 %add, i32* %ptr
br label %for.body
if.end:
ret void
}
; Another infinite loop test this time with a body bigger than just one block.
; CHECK-LABEL: infiniteloop2
; CHECK: blr
define void @infiniteloop2() {
entry:
br i1 undef, label %if.then, label %if.end
if.then:
%ptr = alloca i32, i32 4
br label %for.body
for.body: ; preds = %for.body, %entry
%sum.03 = phi i32 [ 0, %if.then ], [ %add, %body1 ], [ 1, %body2]
%call = tail call i32 asm "mftb $0, 268", "=r,~{r14}"()
%add = add nsw i32 %call, %sum.03
store i32 %add, i32* %ptr
br i1 undef, label %body1, label %body2
body1:
tail call void asm sideeffect "nop", "~{r14}"()
br label %for.body
body2:
tail call void asm sideeffect "nop", "~{r14}"()
br label %for.body
if.end:
ret void
}
; Another infinite loop test this time with two nested infinite loop.
; CHECK-LABEL: infiniteloop3
; CHECK: Lfunc_begin[[FUNCNUM:[0-9]+]]
; CHECK: bclr
; CHECK: Lfunc_end[[FUNCNUM]]
define void @infiniteloop3() {
entry:
br i1 undef, label %loop2a, label %body
body: ; preds = %entry
br i1 undef, label %loop2a, label %end
loop1: ; preds = %loop2a, %loop2b
%var.phi = phi i32* [ %next.phi, %loop2b ], [ %var, %loop2a ]
%next.phi = phi i32* [ %next.load, %loop2b ], [ %next.var, %loop2a ]
%0 = icmp eq i32* %var, null
%next.load = load i32*, i32** undef
br i1 %0, label %loop2a, label %loop2b
loop2a: ; preds = %loop1, %body, %entry
%var = phi i32* [ null, %body ], [ null, %entry ], [ %next.phi, %loop1 ]
%next.var = phi i32* [ undef, %body ], [ null, %entry ], [ %next.load, %loop1 ]
br label %loop1
loop2b: ; preds = %loop1
%gep1 = bitcast i32* %var.phi to i32*
%next.ptr = bitcast i32* %gep1 to i32**
store i32* %next.phi, i32** %next.ptr
br label %loop1
end:
ret void
}
@columns = external global [0 x i32], align 4
@lock = common global i32 0, align 4
@htindex = common global i32 0, align 4
@stride = common global i32 0, align 4
@ht = common global i32* null, align 8
@he = common global i8* null, align 8
; Test for a bug that was caused when save point was equal to restore point.
; Function Attrs: nounwind
; CHECK-LABEL: transpose
;
; Store of callee-save register saved by shrink wrapping
; FIXME: Test disabled: Improved scheduling needs no spills/reloads any longer!
; CHECKXX: std [[CSR:[0-9]+]], -[[STACK_OFFSET:[0-9]+]](1) # 8-byte Folded Spill
;
; Reload of callee-save register
; CHECKXX: ld [[CSR]], -[[STACK_OFFSET]](1) # 8-byte Folded Reload
;
; Ensure no subsequent uses of callee-save register before end of function
; CHECK-NOT: {{[a-z]+}} [[CSR]]
; CHECK: blr
define signext i32 @transpose() {
entry:
%0 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 1), align 4
%shl.i = shl i32 %0, 7
%1 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 2), align 4
%or.i = or i32 %shl.i, %1
%shl1.i = shl i32 %or.i, 7
%2 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 3), align 4
%or2.i = or i32 %shl1.i, %2
%3 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 7), align 4
%shl3.i = shl i32 %3, 7
%4 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 6), align 4
%or4.i = or i32 %shl3.i, %4
%shl5.i = shl i32 %or4.i, 7
%5 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 5), align 4
%or6.i = or i32 %shl5.i, %5
%cmp.i = icmp ugt i32 %or2.i, %or6.i
br i1 %cmp.i, label %cond.true.i, label %cond.false.i
cond.true.i:
%shl7.i = shl i32 %or2.i, 7
%6 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 4), align 4
%or8.i = or i32 %6, %shl7.i
%conv.i = zext i32 %or8.i to i64
%shl9.i = shl nuw nsw i64 %conv.i, 21
%conv10.i = zext i32 %or6.i to i64
%or11.i = or i64 %shl9.i, %conv10.i
br label %hash.exit
cond.false.i:
%shl12.i = shl i32 %or6.i, 7
%7 = load i32, i32* getelementptr inbounds ([0 x i32], [0 x i32]* @columns, i64 0, i64 4), align 4
%or13.i = or i32 %7, %shl12.i
%conv14.i = zext i32 %or13.i to i64
%shl15.i = shl nuw nsw i64 %conv14.i, 21
%conv16.i = zext i32 %or2.i to i64
%or17.i = or i64 %shl15.i, %conv16.i
br label %hash.exit
hash.exit:
%cond.i = phi i64 [ %or11.i, %cond.true.i ], [ %or17.i, %cond.false.i ]
%shr.29.i = lshr i64 %cond.i, 17
%conv18.i = trunc i64 %shr.29.i to i32
store i32 %conv18.i, i32* @lock, align 4
%rem.i = srem i64 %cond.i, 1050011
%conv19.i = trunc i64 %rem.i to i32
store i32 %conv19.i, i32* @htindex, align 4
%rem20.i = urem i32 %conv18.i, 179
%add.i = or i32 %rem20.i, 131072
store i32 %add.i, i32* @stride, align 4
%8 = load i32*, i32** @ht, align 8
%arrayidx = getelementptr inbounds i32, i32* %8, i64 %rem.i
%9 = load i32, i32* %arrayidx, align 4
%cmp1 = icmp eq i32 %9, %conv18.i
br i1 %cmp1, label %if.then, label %if.end
if.then:
%idxprom.lcssa = phi i64 [ %rem.i, %hash.exit ], [ %idxprom.1, %if.end ], [ %idxprom.2, %if.end.1 ], [ %idxprom.3, %if.end.2 ], [ %idxprom.4, %if.end.3 ], [ %idxprom.5, %if.end.4 ], [ %idxprom.6, %if.end.5 ], [ %idxprom.7, %if.end.6 ]
%10 = load i8*, i8** @he, align 8
%arrayidx3 = getelementptr inbounds i8, i8* %10, i64 %idxprom.lcssa
%11 = load i8, i8* %arrayidx3, align 1
%conv = sext i8 %11 to i32
br label %cleanup
if.end:
%add = add nsw i32 %add.i, %conv19.i
%cmp4 = icmp sgt i32 %add, 1050010
%sub = add nsw i32 %add, -1050011
%sub.add = select i1 %cmp4, i32 %sub, i32 %add
%idxprom.1 = sext i32 %sub.add to i64
%arrayidx.1 = getelementptr inbounds i32, i32* %8, i64 %idxprom.1
%12 = load i32, i32* %arrayidx.1, align 4
%cmp1.1 = icmp eq i32 %12, %conv18.i
br i1 %cmp1.1, label %if.then, label %if.end.1
cleanup:
%retval.0 = phi i32 [ %conv, %if.then ], [ -128, %if.end.6 ]
ret i32 %retval.0
if.end.1:
%add.1 = add nsw i32 %add.i, %sub.add
%cmp4.1 = icmp sgt i32 %add.1, 1050010
%sub.1 = add nsw i32 %add.1, -1050011
%sub.add.1 = select i1 %cmp4.1, i32 %sub.1, i32 %add.1
%idxprom.2 = sext i32 %sub.add.1 to i64
%arrayidx.2 = getelementptr inbounds i32, i32* %8, i64 %idxprom.2
%13 = load i32, i32* %arrayidx.2, align 4
%cmp1.2 = icmp eq i32 %13, %conv18.i
br i1 %cmp1.2, label %if.then, label %if.end.2
if.end.2:
%add.2 = add nsw i32 %add.i, %sub.add.1
%cmp4.2 = icmp sgt i32 %add.2, 1050010
%sub.2 = add nsw i32 %add.2, -1050011
%sub.add.2 = select i1 %cmp4.2, i32 %sub.2, i32 %add.2
%idxprom.3 = sext i32 %sub.add.2 to i64
%arrayidx.3 = getelementptr inbounds i32, i32* %8, i64 %idxprom.3
%14 = load i32, i32* %arrayidx.3, align 4
%cmp1.3 = icmp eq i32 %14, %conv18.i
br i1 %cmp1.3, label %if.then, label %if.end.3
if.end.3:
%add.3 = add nsw i32 %add.i, %sub.add.2
%cmp4.3 = icmp sgt i32 %add.3, 1050010
%sub.3 = add nsw i32 %add.3, -1050011
%sub.add.3 = select i1 %cmp4.3, i32 %sub.3, i32 %add.3
%idxprom.4 = sext i32 %sub.add.3 to i64
%arrayidx.4 = getelementptr inbounds i32, i32* %8, i64 %idxprom.4
%15 = load i32, i32* %arrayidx.4, align 4
%cmp1.4 = icmp eq i32 %15, %conv18.i
br i1 %cmp1.4, label %if.then, label %if.end.4
if.end.4:
%add.4 = add nsw i32 %add.i, %sub.add.3
%cmp4.4 = icmp sgt i32 %add.4, 1050010
%sub.4 = add nsw i32 %add.4, -1050011
%sub.add.4 = select i1 %cmp4.4, i32 %sub.4, i32 %add.4
%idxprom.5 = sext i32 %sub.add.4 to i64
%arrayidx.5 = getelementptr inbounds i32, i32* %8, i64 %idxprom.5
%16 = load i32, i32* %arrayidx.5, align 4
%cmp1.5 = icmp eq i32 %16, %conv18.i
br i1 %cmp1.5, label %if.then, label %if.end.5
if.end.5:
%add.5 = add nsw i32 %add.i, %sub.add.4
%cmp4.5 = icmp sgt i32 %add.5, 1050010
%sub.5 = add nsw i32 %add.5, -1050011
%sub.add.5 = select i1 %cmp4.5, i32 %sub.5, i32 %add.5
%idxprom.6 = sext i32 %sub.add.5 to i64
%arrayidx.6 = getelementptr inbounds i32, i32* %8, i64 %idxprom.6
%17 = load i32, i32* %arrayidx.6, align 4
%cmp1.6 = icmp eq i32 %17, %conv18.i
br i1 %cmp1.6, label %if.then, label %if.end.6
if.end.6:
%add.6 = add nsw i32 %add.i, %sub.add.5
%cmp4.6 = icmp sgt i32 %add.6, 1050010
%sub.6 = add nsw i32 %add.6, -1050011
%sub.add.6 = select i1 %cmp4.6, i32 %sub.6, i32 %add.6
%idxprom.7 = sext i32 %sub.add.6 to i64
%arrayidx.7 = getelementptr inbounds i32, i32* %8, i64 %idxprom.7
%18 = load i32, i32* %arrayidx.7, align 4
%cmp1.7 = icmp eq i32 %18, %conv18.i
br i1 %cmp1.7, label %if.then, label %cleanup
}