165 lines
6.9 KiB
LLVM
165 lines
6.9 KiB
LLVM
|
; RUN: llc -march=mips -relocation-model=static < %s \
|
||
|
; RUN: | FileCheck --check-prefixes=ALL,SYM32,O32,O32BE %s
|
||
|
; RUN: llc -march=mipsel -relocation-model=static < %s \
|
||
|
; RUN: | FileCheck --check-prefixes=ALL,SYM32,O32,O32LE %s
|
||
|
|
||
|
; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi o32 < %s \
|
||
|
; RUN-TODO: | FileCheck --check-prefixes=ALL,SYM32,O32 %s
|
||
|
; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi o32 < %s \
|
||
|
; RUN-TODO: | FileCheck --check-prefixes=ALL,SYM32,O32 %s
|
||
|
|
||
|
; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s \
|
||
|
; RUN: | FileCheck --check-prefixes=ALL,SYM32,N32,NEW,NEWBE %s
|
||
|
; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s \
|
||
|
; RUN: | FileCheck --check-prefixes=ALL,SYM32,N32,NEW,NEWLE %s
|
||
|
|
||
|
; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s \
|
||
|
; RUN: | FileCheck --check-prefixes=ALL,SYM64,N64,NEW,NEWBE %s
|
||
|
; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s \
|
||
|
; RUN: | FileCheck --check-prefixes=ALL,SYM64,N64,NEW,NEWLE %s
|
||
|
|
||
|
; Test the effect of varargs on floating point types in the non-variable part
|
||
|
; of the argument list as specified by section 2 of the MIPSpro N32 Handbook.
|
||
|
;
|
||
|
; N32/N64 are almost identical in this area so many of their checks have been
|
||
|
; combined into the 'NEW' prefix (the N stands for New).
|
||
|
;
|
||
|
; On O32, varargs prevents all FPU argument register usage. This contradicts
|
||
|
; the N32 handbook, but agrees with the SYSV ABI and GCC's behaviour.
|
||
|
|
||
|
@floats = global [11 x float] zeroinitializer
|
||
|
@doubles = global [11 x double] zeroinitializer
|
||
|
|
||
|
define void @double_args(double %a, ...)
|
||
|
nounwind {
|
||
|
entry:
|
||
|
%0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
|
||
|
store volatile double %a, double* %0
|
||
|
|
||
|
%ap = alloca i8*
|
||
|
%ap2 = bitcast i8** %ap to i8*
|
||
|
call void @llvm.va_start(i8* %ap2)
|
||
|
%b = va_arg i8** %ap, double
|
||
|
%1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2
|
||
|
store volatile double %b, double* %1
|
||
|
call void @llvm.va_end(i8* %ap2)
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
; ALL-LABEL: double_args:
|
||
|
; We won't test the way the global address is calculated in this test. This is
|
||
|
; just to get the register number for the other checks.
|
||
|
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
|
||
|
; SYM64-DAG: daddiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
|
||
|
|
||
|
; O32 forbids using floating point registers for the non-variable portion.
|
||
|
; N32/N64 allow it.
|
||
|
; O32BE-DAG: mtc1 $5, [[FTMP1:\$f[0-9]*[02468]+]]
|
||
|
; O32BE-DAG: mtc1 $4, [[FTMP2:\$f[0-9]*[13579]+]]
|
||
|
; O32LE-DAG: mtc1 $4, [[FTMP1:\$f[0-9]*[02468]+]]
|
||
|
; O32LE-DAG: mtc1 $5, [[FTMP2:\$f[0-9]*[13579]+]]
|
||
|
; O32-DAG: sdc1 [[FTMP1]], 8([[R2]])
|
||
|
; NEW-DAG: sdc1 $f12, 8([[R2]])
|
||
|
|
||
|
; The varargs portion is dumped to stack
|
||
|
; O32-DAG: sw $6, 16($sp)
|
||
|
; O32-DAG: sw $7, 20($sp)
|
||
|
; NEW-DAG: sd $5, 8($sp)
|
||
|
; NEW-DAG: sd $6, 16($sp)
|
||
|
; NEW-DAG: sd $7, 24($sp)
|
||
|
; NEW-DAG: sd $8, 32($sp)
|
||
|
; NEW-DAG: sd $9, 40($sp)
|
||
|
; NEW-DAG: sd $10, 48($sp)
|
||
|
; NEW-DAG: sd $11, 56($sp)
|
||
|
|
||
|
; Get the varargs pointer
|
||
|
; O32 has 4 bytes padding, 4 bytes for the varargs pointer, and 8 bytes reserved
|
||
|
; for arguments 1 and 2.
|
||
|
; N32/N64 has 8 bytes for the varargs pointer, and no reserved area.
|
||
|
; O32-DAG: addiu [[VAPTR:\$[0-9]+]], $sp, 16
|
||
|
; O32-DAG: sw [[VAPTR]], 4($sp)
|
||
|
; N32-DAG: addiu [[VAPTR:\$[0-9]+]], $sp, 8
|
||
|
; N32-DAG: sw [[VAPTR]], 4($sp)
|
||
|
; N64-DAG: daddiu [[VAPTR:\$[0-9]+]], $sp, 8
|
||
|
; N64-DAG: sd [[VAPTR]], 0($sp)
|
||
|
|
||
|
; Increment the pointer then get the varargs arg
|
||
|
; LLVM will rebind the load to the stack pointer instead of the varargs pointer
|
||
|
; during lowering. This is fine and doesn't change the behaviour.
|
||
|
; O32-DAG: addiu [[VAPTR]], [[VAPTR]], 8
|
||
|
; N32-DAG: addiu [[VAPTR]], [[VAPTR]], 8
|
||
|
; N64-DAG: daddiu [[VAPTR]], [[VAPTR]], 8
|
||
|
; O32-DAG: ldc1 [[FTMP1:\$f[0-9]+]], 16($sp)
|
||
|
; NEW-DAG: ldc1 [[FTMP1:\$f[0-9]+]], 8($sp)
|
||
|
; ALL-DAG: sdc1 [[FTMP1]], 16([[R2]])
|
||
|
|
||
|
define void @float_args(float %a, ...) nounwind {
|
||
|
entry:
|
||
|
%0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
|
||
|
store volatile float %a, float* %0
|
||
|
|
||
|
%ap = alloca i8*
|
||
|
%ap2 = bitcast i8** %ap to i8*
|
||
|
call void @llvm.va_start(i8* %ap2)
|
||
|
%b = va_arg i8** %ap, float
|
||
|
%1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2
|
||
|
store volatile float %b, float* %1
|
||
|
call void @llvm.va_end(i8* %ap2)
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
; ALL-LABEL: float_args:
|
||
|
; We won't test the way the global address is calculated in this test. This is
|
||
|
; just to get the register number for the other checks.
|
||
|
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
|
||
|
; SYM64-DAG: daddiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
|
||
|
|
||
|
; The first four arguments are the same in O32/N32/N64.
|
||
|
; The non-variable portion should be unaffected.
|
||
|
; O32-DAG: mtc1 $4, $f0
|
||
|
; O32-DAG: swc1 $f0, 4([[R2]])
|
||
|
; NEW-DAG: swc1 $f12, 4([[R2]])
|
||
|
|
||
|
; The varargs portion is dumped to stack
|
||
|
; O32-DAG: sw $5, 12($sp)
|
||
|
; O32-DAG: sw $6, 16($sp)
|
||
|
; O32-DAG: sw $7, 20($sp)
|
||
|
; NEW-DAG: sd $5, 8($sp)
|
||
|
; NEW-DAG: sd $6, 16($sp)
|
||
|
; NEW-DAG: sd $7, 24($sp)
|
||
|
; NEW-DAG: sd $8, 32($sp)
|
||
|
; NEW-DAG: sd $9, 40($sp)
|
||
|
; NEW-DAG: sd $10, 48($sp)
|
||
|
; NEW-DAG: sd $11, 56($sp)
|
||
|
|
||
|
; Get the varargs pointer
|
||
|
; O32 has 4 bytes padding, 4 bytes for the varargs pointer, and should have 8
|
||
|
; bytes reserved for arguments 1 and 2 (the first float arg) but as discussed in
|
||
|
; arguments-float.ll, GCC doesn't agree with MD00305 and treats floats as 4
|
||
|
; bytes so we only have 12 bytes total.
|
||
|
; N32/N64 has 8 bytes for the varargs pointer, and no reserved area.
|
||
|
; O32-DAG: addiu [[VAPTR:\$[0-9]+]], $sp, 12
|
||
|
; O32-DAG: sw [[VAPTR]], 4($sp)
|
||
|
; N32-DAG: addiu [[VAPTR:\$[0-9]+]], $sp, 8
|
||
|
; N32-DAG: sw [[VAPTR]], 4($sp)
|
||
|
; N64-DAG: daddiu [[VAPTR:\$[0-9]+]], $sp, 8
|
||
|
; N64-DAG: sd [[VAPTR]], 0($sp)
|
||
|
|
||
|
; Increment the pointer then get the varargs arg
|
||
|
; LLVM will rebind the load to the stack pointer instead of the varargs pointer
|
||
|
; during lowering. This is fine and doesn't change the behaviour.
|
||
|
; Also, in big-endian mode the offset must be increased by 4 to retrieve the
|
||
|
; correct half of the argument slot.
|
||
|
;
|
||
|
; O32-DAG: addiu [[VAPTR]], [[VAPTR]], 4
|
||
|
; N32-DAG: addiu [[VAPTR]], [[VAPTR]], 8
|
||
|
; N64-DAG: daddiu [[VAPTR]], [[VAPTR]], 8
|
||
|
; O32-DAG: lwc1 [[FTMP1:\$f[0-9]+]], 12($sp)
|
||
|
; NEWLE-DAG: lwc1 [[FTMP1:\$f[0-9]+]], 8($sp)
|
||
|
; NEWBE-DAG: lwc1 [[FTMP1:\$f[0-9]+]], 12($sp)
|
||
|
; ALL-DAG: swc1 [[FTMP1]], 8([[R2]])
|
||
|
|
||
|
declare void @llvm.va_start(i8*)
|
||
|
declare void @llvm.va_copy(i8*, i8*)
|
||
|
declare void @llvm.va_end(i8*)
|