llvm-for-llvmta/test/Analysis/ScalarEvolution/overflow-intrinsics.ll

311 lines
11 KiB
LLVM
Raw Normal View History

2022-04-25 10:02:23 +02:00
; RUN: opt -analyze -enable-new-pm=0 -scalar-evolution < %s | FileCheck %s
; RUN: opt -disable-output "-passes=print<scalar-evolution>" < %s 2>&1 | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
define void @f_sadd_0(i8* %a) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_0
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp slt i32 %tmp2, 16
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_sadd_1(i8* %a) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_1
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,16) S: [0,16)
; SCEV can prove <nsw> for the above induction variable; but it does
; not bother so before it sees the sext below since it is not a 100%
; obvious.
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
br label %cont
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp slt i32 %tmp2, 16
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_sadd_2(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_2
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<%for.body>
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
br label %cont
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cond = load volatile i1, i1* %c
br i1 %cond, label %for.body, label %for.cond.cleanup
}
define void @f_sadd_3(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_3
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %for.body ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body>
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %for.body ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
br i1 %tmp1, label %trap, label %for.body, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
}
define void @f_sadd_4(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_4
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %merge ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body>
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %merge ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
br i1 %tmp1, label %notrap, label %merge
notrap:
br label %merge
merge:
%tmp3 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp3, label %trap, label %for.body, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
}
define void @f_sadd_may_overflow(i8* %a, i1* %c) {
; CHECK-LABEL: Classifying expressions for: @f_sadd_may_overflow
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp1, %cont ]
; CHECK-NEXT: --> {0,+,1}<%for.body> U: full-set S: full-set
%i.04 = phi i32 [ 0, %entry ], [ %tmp1, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1)
%cond1 = load volatile i1, i1* %c
br i1 %cond1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap() #2, !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp1 = extractvalue { i32, i1 } %tmp0, 0
%cond = load volatile i1, i1* %c
br i1 %cond, label %for.body, label %for.cond.cleanup
}
define void @f_uadd(i8* %a) {
; CHECK-LABEL: Classifying expressions for: @f_uadd
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {0,+,1}<nuw><%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap(), !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp slt i32 %tmp2, 16
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_ssub(i8* nocapture %a) {
; CHECK-LABEL: Classifying expressions for: @f_ssub
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {15,+,-1}<%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.ssub.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap(), !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp sgt i32 %tmp2, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define void @f_usub(i8* nocapture %a) {
; CHECK-LABEL: Classifying expressions for: @f_usub
entry:
br label %for.body
for.cond.cleanup: ; preds = %cont
ret void
for.body: ; preds = %entry, %cont
; CHECK: %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
; CHECK-NEXT: --> {15,+,-1}<%for.body> U: [0,16) S: [0,16)
%i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ]
%idxprom = sext i32 %i.04 to i64
%arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom
store i8 0, i8* %arrayidx, align 1
%tmp0 = tail call { i32, i1 } @llvm.usub.with.overflow.i32(i32 %i.04, i32 1)
%tmp1 = extractvalue { i32, i1 } %tmp0, 1
br i1 %tmp1, label %trap, label %cont, !nosanitize !{}
trap: ; preds = %for.body
tail call void @llvm.trap(), !nosanitize !{}
unreachable, !nosanitize !{}
cont: ; preds = %for.body
%tmp2 = extractvalue { i32, i1 } %tmp0, 0
%cmp = icmp sgt i32 %tmp2, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup
; CHECK: Loop %for.body: max backedge-taken count is 15
}
define i32 @f_smul(i32 %val_a, i32 %val_b) {
; CHECK-LABEL: Classifying expressions for: @f_smul
%agg = tail call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %val_a, i32 %val_b)
; CHECK: %mul = extractvalue { i32, i1 } %agg, 0
; CHECK-NEXT: --> (%val_a * %val_b) U: full-set S: full-set
%mul = extractvalue { i32, i1 } %agg, 0
ret i32 %mul
}
define i32 @f_umul(i32 %val_a, i32 %val_b) {
; CHECK-LABEL: Classifying expressions for: @f_umul
%agg = tail call { i32, i1 } @llvm.umul.with.overflow.i32(i32 %val_a, i32 %val_b)
; CHECK: %mul = extractvalue { i32, i1 } %agg, 0
; CHECK-NEXT: --> (%val_a * %val_b) U: full-set S: full-set
%mul = extractvalue { i32, i1 } %agg, 0
ret i32 %mul
}
declare { i32, i1 } @llvm.sadd.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.ssub.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.usub.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.smul.with.overflow.i32(i32, i32) nounwind readnone
declare { i32, i1 } @llvm.umul.with.overflow.i32(i32, i32) nounwind readnone
declare void @llvm.trap() #2