482 lines
16 KiB
C++
482 lines
16 KiB
C++
|
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the SSAUpdater class.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/TinyPtrVector.h"
|
||
|
#include "llvm/Analysis/InstructionSimplify.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include "llvm/IR/CFG.h"
|
||
|
#include "llvm/IR/Constants.h"
|
||
|
#include "llvm/IR/DebugLoc.h"
|
||
|
#include "llvm/IR/Instruction.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/Module.h"
|
||
|
#include "llvm/IR/Use.h"
|
||
|
#include "llvm/IR/Value.h"
|
||
|
#include "llvm/IR/ValueHandle.h"
|
||
|
#include "llvm/Support/Casting.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
|
||
|
#include <cassert>
|
||
|
#include <utility>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "ssaupdater"
|
||
|
|
||
|
using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
|
||
|
|
||
|
static AvailableValsTy &getAvailableVals(void *AV) {
|
||
|
return *static_cast<AvailableValsTy*>(AV);
|
||
|
}
|
||
|
|
||
|
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
|
||
|
: InsertedPHIs(NewPHI) {}
|
||
|
|
||
|
SSAUpdater::~SSAUpdater() {
|
||
|
delete static_cast<AvailableValsTy*>(AV);
|
||
|
}
|
||
|
|
||
|
void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
|
||
|
if (!AV)
|
||
|
AV = new AvailableValsTy();
|
||
|
else
|
||
|
getAvailableVals(AV).clear();
|
||
|
ProtoType = Ty;
|
||
|
ProtoName = std::string(Name);
|
||
|
}
|
||
|
|
||
|
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
|
||
|
return getAvailableVals(AV).count(BB);
|
||
|
}
|
||
|
|
||
|
Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
|
||
|
return getAvailableVals(AV).lookup(BB);
|
||
|
}
|
||
|
|
||
|
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
|
||
|
assert(ProtoType && "Need to initialize SSAUpdater");
|
||
|
assert(ProtoType == V->getType() &&
|
||
|
"All rewritten values must have the same type");
|
||
|
getAvailableVals(AV)[BB] = V;
|
||
|
}
|
||
|
|
||
|
static bool IsEquivalentPHI(PHINode *PHI,
|
||
|
SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
|
||
|
unsigned PHINumValues = PHI->getNumIncomingValues();
|
||
|
if (PHINumValues != ValueMapping.size())
|
||
|
return false;
|
||
|
|
||
|
// Scan the phi to see if it matches.
|
||
|
for (unsigned i = 0, e = PHINumValues; i != e; ++i)
|
||
|
if (ValueMapping[PHI->getIncomingBlock(i)] !=
|
||
|
PHI->getIncomingValue(i)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
|
||
|
Value *Res = GetValueAtEndOfBlockInternal(BB);
|
||
|
return Res;
|
||
|
}
|
||
|
|
||
|
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
|
||
|
// If there is no definition of the renamed variable in this block, just use
|
||
|
// GetValueAtEndOfBlock to do our work.
|
||
|
if (!HasValueForBlock(BB))
|
||
|
return GetValueAtEndOfBlock(BB);
|
||
|
|
||
|
// Otherwise, we have the hard case. Get the live-in values for each
|
||
|
// predecessor.
|
||
|
SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
|
||
|
Value *SingularValue = nullptr;
|
||
|
|
||
|
// We can get our predecessor info by walking the pred_iterator list, but it
|
||
|
// is relatively slow. If we already have PHI nodes in this block, walk one
|
||
|
// of them to get the predecessor list instead.
|
||
|
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
||
|
for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
|
||
|
BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
|
||
|
Value *PredVal = GetValueAtEndOfBlock(PredBB);
|
||
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
||
|
|
||
|
// Compute SingularValue.
|
||
|
if (i == 0)
|
||
|
SingularValue = PredVal;
|
||
|
else if (PredVal != SingularValue)
|
||
|
SingularValue = nullptr;
|
||
|
}
|
||
|
} else {
|
||
|
bool isFirstPred = true;
|
||
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
||
|
BasicBlock *PredBB = *PI;
|
||
|
Value *PredVal = GetValueAtEndOfBlock(PredBB);
|
||
|
PredValues.push_back(std::make_pair(PredBB, PredVal));
|
||
|
|
||
|
// Compute SingularValue.
|
||
|
if (isFirstPred) {
|
||
|
SingularValue = PredVal;
|
||
|
isFirstPred = false;
|
||
|
} else if (PredVal != SingularValue)
|
||
|
SingularValue = nullptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If there are no predecessors, just return undef.
|
||
|
if (PredValues.empty())
|
||
|
return UndefValue::get(ProtoType);
|
||
|
|
||
|
// Otherwise, if all the merged values are the same, just use it.
|
||
|
if (SingularValue)
|
||
|
return SingularValue;
|
||
|
|
||
|
// Otherwise, we do need a PHI: check to see if we already have one available
|
||
|
// in this block that produces the right value.
|
||
|
if (isa<PHINode>(BB->begin())) {
|
||
|
SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
|
||
|
PredValues.end());
|
||
|
for (PHINode &SomePHI : BB->phis()) {
|
||
|
if (IsEquivalentPHI(&SomePHI, ValueMapping))
|
||
|
return &SomePHI;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Ok, we have no way out, insert a new one now.
|
||
|
PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
|
||
|
ProtoName, &BB->front());
|
||
|
|
||
|
// Fill in all the predecessors of the PHI.
|
||
|
for (const auto &PredValue : PredValues)
|
||
|
InsertedPHI->addIncoming(PredValue.second, PredValue.first);
|
||
|
|
||
|
// See if the PHI node can be merged to a single value. This can happen in
|
||
|
// loop cases when we get a PHI of itself and one other value.
|
||
|
if (Value *V =
|
||
|
SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
|
||
|
InsertedPHI->eraseFromParent();
|
||
|
return V;
|
||
|
}
|
||
|
|
||
|
// Set the DebugLoc of the inserted PHI, if available.
|
||
|
DebugLoc DL;
|
||
|
if (const Instruction *I = BB->getFirstNonPHI())
|
||
|
DL = I->getDebugLoc();
|
||
|
InsertedPHI->setDebugLoc(DL);
|
||
|
|
||
|
// If the client wants to know about all new instructions, tell it.
|
||
|
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
||
|
return InsertedPHI;
|
||
|
}
|
||
|
|
||
|
void SSAUpdater::RewriteUse(Use &U) {
|
||
|
Instruction *User = cast<Instruction>(U.getUser());
|
||
|
|
||
|
Value *V;
|
||
|
if (PHINode *UserPN = dyn_cast<PHINode>(User))
|
||
|
V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
|
||
|
else
|
||
|
V = GetValueInMiddleOfBlock(User->getParent());
|
||
|
|
||
|
U.set(V);
|
||
|
}
|
||
|
|
||
|
void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
|
||
|
Instruction *User = cast<Instruction>(U.getUser());
|
||
|
|
||
|
Value *V;
|
||
|
if (PHINode *UserPN = dyn_cast<PHINode>(User))
|
||
|
V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
|
||
|
else
|
||
|
V = GetValueAtEndOfBlock(User->getParent());
|
||
|
|
||
|
U.set(V);
|
||
|
}
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
template<>
|
||
|
class SSAUpdaterTraits<SSAUpdater> {
|
||
|
public:
|
||
|
using BlkT = BasicBlock;
|
||
|
using ValT = Value *;
|
||
|
using PhiT = PHINode;
|
||
|
using BlkSucc_iterator = succ_iterator;
|
||
|
|
||
|
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
|
||
|
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
|
||
|
|
||
|
class PHI_iterator {
|
||
|
private:
|
||
|
PHINode *PHI;
|
||
|
unsigned idx;
|
||
|
|
||
|
public:
|
||
|
explicit PHI_iterator(PHINode *P) // begin iterator
|
||
|
: PHI(P), idx(0) {}
|
||
|
PHI_iterator(PHINode *P, bool) // end iterator
|
||
|
: PHI(P), idx(PHI->getNumIncomingValues()) {}
|
||
|
|
||
|
PHI_iterator &operator++() { ++idx; return *this; }
|
||
|
bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
|
||
|
bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
|
||
|
|
||
|
Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
|
||
|
BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
|
||
|
};
|
||
|
|
||
|
static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
|
||
|
static PHI_iterator PHI_end(PhiT *PHI) {
|
||
|
return PHI_iterator(PHI, true);
|
||
|
}
|
||
|
|
||
|
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
||
|
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
||
|
static void FindPredecessorBlocks(BasicBlock *BB,
|
||
|
SmallVectorImpl<BasicBlock *> *Preds) {
|
||
|
// We can get our predecessor info by walking the pred_iterator list,
|
||
|
// but it is relatively slow. If we already have PHI nodes in this
|
||
|
// block, walk one of them to get the predecessor list instead.
|
||
|
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
|
||
|
append_range(*Preds, SomePhi->blocks());
|
||
|
else
|
||
|
append_range(*Preds, predecessors(BB));
|
||
|
}
|
||
|
|
||
|
/// GetUndefVal - Get an undefined value of the same type as the value
|
||
|
/// being handled.
|
||
|
static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
|
||
|
return UndefValue::get(Updater->ProtoType);
|
||
|
}
|
||
|
|
||
|
/// CreateEmptyPHI - Create a new PHI instruction in the specified block.
|
||
|
/// Reserve space for the operands but do not fill them in yet.
|
||
|
static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
|
||
|
SSAUpdater *Updater) {
|
||
|
PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
|
||
|
Updater->ProtoName, &BB->front());
|
||
|
return PHI;
|
||
|
}
|
||
|
|
||
|
/// AddPHIOperand - Add the specified value as an operand of the PHI for
|
||
|
/// the specified predecessor block.
|
||
|
static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
|
||
|
PHI->addIncoming(Val, Pred);
|
||
|
}
|
||
|
|
||
|
/// ValueIsPHI - Check if a value is a PHI.
|
||
|
static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
|
||
|
return dyn_cast<PHINode>(Val);
|
||
|
}
|
||
|
|
||
|
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
|
||
|
/// operands, i.e., it was just added.
|
||
|
static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
|
||
|
PHINode *PHI = ValueIsPHI(Val, Updater);
|
||
|
if (PHI && PHI->getNumIncomingValues() == 0)
|
||
|
return PHI;
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
/// GetPHIValue - For the specified PHI instruction, return the value
|
||
|
/// that it defines.
|
||
|
static Value *GetPHIValue(PHINode *PHI) {
|
||
|
return PHI;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
/// Check to see if AvailableVals has an entry for the specified BB and if so,
|
||
|
/// return it. If not, construct SSA form by first calculating the required
|
||
|
/// placement of PHIs and then inserting new PHIs where needed.
|
||
|
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
|
||
|
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||
|
if (Value *V = AvailableVals[BB])
|
||
|
return V;
|
||
|
|
||
|
SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
|
||
|
return Impl.GetValue(BB);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// LoadAndStorePromoter Implementation
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
LoadAndStorePromoter::
|
||
|
LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
|
||
|
SSAUpdater &S, StringRef BaseName) : SSA(S) {
|
||
|
if (Insts.empty()) return;
|
||
|
|
||
|
const Value *SomeVal;
|
||
|
if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
|
||
|
SomeVal = LI;
|
||
|
else
|
||
|
SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
|
||
|
|
||
|
if (BaseName.empty())
|
||
|
BaseName = SomeVal->getName();
|
||
|
SSA.Initialize(SomeVal->getType(), BaseName);
|
||
|
}
|
||
|
|
||
|
void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
|
||
|
// First step: bucket up uses of the alloca by the block they occur in.
|
||
|
// This is important because we have to handle multiple defs/uses in a block
|
||
|
// ourselves: SSAUpdater is purely for cross-block references.
|
||
|
DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
|
||
|
|
||
|
for (Instruction *User : Insts)
|
||
|
UsesByBlock[User->getParent()].push_back(User);
|
||
|
|
||
|
// Okay, now we can iterate over all the blocks in the function with uses,
|
||
|
// processing them. Keep track of which loads are loading a live-in value.
|
||
|
// Walk the uses in the use-list order to be determinstic.
|
||
|
SmallVector<LoadInst *, 32> LiveInLoads;
|
||
|
DenseMap<Value *, Value *> ReplacedLoads;
|
||
|
|
||
|
for (Instruction *User : Insts) {
|
||
|
BasicBlock *BB = User->getParent();
|
||
|
TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
|
||
|
|
||
|
// If this block has already been processed, ignore this repeat use.
|
||
|
if (BlockUses.empty()) continue;
|
||
|
|
||
|
// Okay, this is the first use in the block. If this block just has a
|
||
|
// single user in it, we can rewrite it trivially.
|
||
|
if (BlockUses.size() == 1) {
|
||
|
// If it is a store, it is a trivial def of the value in the block.
|
||
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
||
|
updateDebugInfo(SI);
|
||
|
SSA.AddAvailableValue(BB, SI->getOperand(0));
|
||
|
} else
|
||
|
// Otherwise it is a load, queue it to rewrite as a live-in load.
|
||
|
LiveInLoads.push_back(cast<LoadInst>(User));
|
||
|
BlockUses.clear();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Otherwise, check to see if this block is all loads.
|
||
|
bool HasStore = false;
|
||
|
for (Instruction *I : BlockUses) {
|
||
|
if (isa<StoreInst>(I)) {
|
||
|
HasStore = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If so, we can queue them all as live in loads. We don't have an
|
||
|
// efficient way to tell which on is first in the block and don't want to
|
||
|
// scan large blocks, so just add all loads as live ins.
|
||
|
if (!HasStore) {
|
||
|
for (Instruction *I : BlockUses)
|
||
|
LiveInLoads.push_back(cast<LoadInst>(I));
|
||
|
BlockUses.clear();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Otherwise, we have mixed loads and stores (or just a bunch of stores).
|
||
|
// Since SSAUpdater is purely for cross-block values, we need to determine
|
||
|
// the order of these instructions in the block. If the first use in the
|
||
|
// block is a load, then it uses the live in value. The last store defines
|
||
|
// the live out value. We handle this by doing a linear scan of the block.
|
||
|
Value *StoredValue = nullptr;
|
||
|
for (Instruction &I : *BB) {
|
||
|
if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
|
||
|
// If this is a load from an unrelated pointer, ignore it.
|
||
|
if (!isInstInList(L, Insts)) continue;
|
||
|
|
||
|
// If we haven't seen a store yet, this is a live in use, otherwise
|
||
|
// use the stored value.
|
||
|
if (StoredValue) {
|
||
|
replaceLoadWithValue(L, StoredValue);
|
||
|
L->replaceAllUsesWith(StoredValue);
|
||
|
ReplacedLoads[L] = StoredValue;
|
||
|
} else {
|
||
|
LiveInLoads.push_back(L);
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
||
|
// If this is a store to an unrelated pointer, ignore it.
|
||
|
if (!isInstInList(SI, Insts)) continue;
|
||
|
updateDebugInfo(SI);
|
||
|
|
||
|
// Remember that this is the active value in the block.
|
||
|
StoredValue = SI->getOperand(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The last stored value that happened is the live-out for the block.
|
||
|
assert(StoredValue && "Already checked that there is a store in block");
|
||
|
SSA.AddAvailableValue(BB, StoredValue);
|
||
|
BlockUses.clear();
|
||
|
}
|
||
|
|
||
|
// Okay, now we rewrite all loads that use live-in values in the loop,
|
||
|
// inserting PHI nodes as necessary.
|
||
|
for (LoadInst *ALoad : LiveInLoads) {
|
||
|
Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
|
||
|
replaceLoadWithValue(ALoad, NewVal);
|
||
|
|
||
|
// Avoid assertions in unreachable code.
|
||
|
if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
|
||
|
ALoad->replaceAllUsesWith(NewVal);
|
||
|
ReplacedLoads[ALoad] = NewVal;
|
||
|
}
|
||
|
|
||
|
// Allow the client to do stuff before we start nuking things.
|
||
|
doExtraRewritesBeforeFinalDeletion();
|
||
|
|
||
|
// Now that everything is rewritten, delete the old instructions from the
|
||
|
// function. They should all be dead now.
|
||
|
for (Instruction *User : Insts) {
|
||
|
// If this is a load that still has uses, then the load must have been added
|
||
|
// as a live value in the SSAUpdate data structure for a block (e.g. because
|
||
|
// the loaded value was stored later). In this case, we need to recursively
|
||
|
// propagate the updates until we get to the real value.
|
||
|
if (!User->use_empty()) {
|
||
|
Value *NewVal = ReplacedLoads[User];
|
||
|
assert(NewVal && "not a replaced load?");
|
||
|
|
||
|
// Propagate down to the ultimate replacee. The intermediately loads
|
||
|
// could theoretically already have been deleted, so we don't want to
|
||
|
// dereference the Value*'s.
|
||
|
DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
|
||
|
while (RLI != ReplacedLoads.end()) {
|
||
|
NewVal = RLI->second;
|
||
|
RLI = ReplacedLoads.find(NewVal);
|
||
|
}
|
||
|
|
||
|
replaceLoadWithValue(cast<LoadInst>(User), NewVal);
|
||
|
User->replaceAllUsesWith(NewVal);
|
||
|
}
|
||
|
|
||
|
instructionDeleted(User);
|
||
|
User->eraseFromParent();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
LoadAndStorePromoter::isInstInList(Instruction *I,
|
||
|
const SmallVectorImpl<Instruction *> &Insts)
|
||
|
const {
|
||
|
return is_contained(Insts, I);
|
||
|
}
|