326 lines
12 KiB
C++
326 lines
12 KiB
C++
|
//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the X86SelectionDAGInfo class.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "X86SelectionDAGInfo.h"
|
||
|
#include "X86ISelLowering.h"
|
||
|
#include "X86InstrInfo.h"
|
||
|
#include "X86RegisterInfo.h"
|
||
|
#include "X86Subtarget.h"
|
||
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
||
|
#include "llvm/CodeGen/SelectionDAG.h"
|
||
|
#include "llvm/CodeGen/TargetLowering.h"
|
||
|
#include "llvm/IR/DerivedTypes.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "x86-selectiondag-info"
|
||
|
|
||
|
static cl::opt<bool>
|
||
|
UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
|
||
|
cl::desc("Use fast short rep mov in memcpy lowering"));
|
||
|
|
||
|
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
|
||
|
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
|
||
|
// We cannot use TRI->hasBasePointer() until *after* we select all basic
|
||
|
// blocks. Legalization may introduce new stack temporaries with large
|
||
|
// alignment requirements. Fall back to generic code if there are any
|
||
|
// dynamic stack adjustments (hopefully rare) and the base pointer would
|
||
|
// conflict if we had to use it.
|
||
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
||
|
if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
|
||
|
return false;
|
||
|
|
||
|
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
|
||
|
DAG.getSubtarget().getRegisterInfo());
|
||
|
Register BaseReg = TRI->getBaseRegister();
|
||
|
for (unsigned R : ClobberSet)
|
||
|
if (BaseReg == R)
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
|
||
|
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
|
||
|
SDValue Size, Align Alignment, bool isVolatile,
|
||
|
MachinePointerInfo DstPtrInfo) const {
|
||
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
||
|
const X86Subtarget &Subtarget =
|
||
|
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
// If the base register might conflict with our physical registers, bail out.
|
||
|
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
|
||
|
X86::ECX, X86::EAX, X86::EDI};
|
||
|
assert(!isBaseRegConflictPossible(DAG, ClobberSet));
|
||
|
#endif
|
||
|
|
||
|
// If to a segment-relative address space, use the default lowering.
|
||
|
if (DstPtrInfo.getAddrSpace() >= 256)
|
||
|
return SDValue();
|
||
|
|
||
|
// If not DWORD aligned or size is more than the threshold, call the library.
|
||
|
// The libc version is likely to be faster for these cases. It can use the
|
||
|
// address value and run time information about the CPU.
|
||
|
if (Alignment < Align(4) || !ConstantSize ||
|
||
|
ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
|
||
|
// Check to see if there is a specialized entry-point for memory zeroing.
|
||
|
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
|
||
|
|
||
|
if (const char *bzeroName = (ValC && ValC->isNullValue())
|
||
|
? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
|
||
|
: nullptr) {
|
||
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
||
|
EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
|
||
|
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
|
||
|
TargetLowering::ArgListTy Args;
|
||
|
TargetLowering::ArgListEntry Entry;
|
||
|
Entry.Node = Dst;
|
||
|
Entry.Ty = IntPtrTy;
|
||
|
Args.push_back(Entry);
|
||
|
Entry.Node = Size;
|
||
|
Args.push_back(Entry);
|
||
|
|
||
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
||
|
CLI.setDebugLoc(dl)
|
||
|
.setChain(Chain)
|
||
|
.setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
|
||
|
DAG.getExternalSymbol(bzeroName, IntPtr),
|
||
|
std::move(Args))
|
||
|
.setDiscardResult();
|
||
|
|
||
|
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
|
||
|
return CallResult.second;
|
||
|
}
|
||
|
|
||
|
// Otherwise have the target-independent code call memset.
|
||
|
return SDValue();
|
||
|
}
|
||
|
|
||
|
uint64_t SizeVal = ConstantSize->getZExtValue();
|
||
|
SDValue InFlag;
|
||
|
EVT AVT;
|
||
|
SDValue Count;
|
||
|
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
|
||
|
unsigned BytesLeft = 0;
|
||
|
if (ValC) {
|
||
|
unsigned ValReg;
|
||
|
uint64_t Val = ValC->getZExtValue() & 255;
|
||
|
|
||
|
// If the value is a constant, then we can potentially use larger sets.
|
||
|
if (Alignment > Align(2)) {
|
||
|
// DWORD aligned
|
||
|
AVT = MVT::i32;
|
||
|
ValReg = X86::EAX;
|
||
|
Val = (Val << 8) | Val;
|
||
|
Val = (Val << 16) | Val;
|
||
|
if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned
|
||
|
AVT = MVT::i64;
|
||
|
ValReg = X86::RAX;
|
||
|
Val = (Val << 32) | Val;
|
||
|
}
|
||
|
} else if (Alignment == Align(2)) {
|
||
|
// WORD aligned
|
||
|
AVT = MVT::i16;
|
||
|
ValReg = X86::AX;
|
||
|
Val = (Val << 8) | Val;
|
||
|
} else {
|
||
|
// Byte aligned
|
||
|
AVT = MVT::i8;
|
||
|
ValReg = X86::AL;
|
||
|
Count = DAG.getIntPtrConstant(SizeVal, dl);
|
||
|
}
|
||
|
|
||
|
if (AVT.bitsGT(MVT::i8)) {
|
||
|
unsigned UBytes = AVT.getSizeInBits() / 8;
|
||
|
Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
|
||
|
BytesLeft = SizeVal % UBytes;
|
||
|
}
|
||
|
|
||
|
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
|
||
|
InFlag);
|
||
|
InFlag = Chain.getValue(1);
|
||
|
} else {
|
||
|
AVT = MVT::i8;
|
||
|
Count = DAG.getIntPtrConstant(SizeVal, dl);
|
||
|
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
|
||
|
InFlag = Chain.getValue(1);
|
||
|
}
|
||
|
|
||
|
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
|
||
|
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
|
||
|
Count, InFlag);
|
||
|
InFlag = Chain.getValue(1);
|
||
|
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
|
||
|
Dst, InFlag);
|
||
|
InFlag = Chain.getValue(1);
|
||
|
|
||
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
||
|
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
|
||
|
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
|
||
|
|
||
|
if (BytesLeft) {
|
||
|
// Handle the last 1 - 7 bytes.
|
||
|
unsigned Offset = SizeVal - BytesLeft;
|
||
|
EVT AddrVT = Dst.getValueType();
|
||
|
EVT SizeVT = Size.getValueType();
|
||
|
|
||
|
Chain =
|
||
|
DAG.getMemset(Chain, dl,
|
||
|
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
|
||
|
DAG.getConstant(Offset, dl, AddrVT)),
|
||
|
Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
|
||
|
isVolatile, false, DstPtrInfo.getWithOffset(Offset));
|
||
|
}
|
||
|
|
||
|
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
|
||
|
return Chain;
|
||
|
}
|
||
|
|
||
|
/// Emit a single REP MOVS{B,W,D,Q} instruction.
|
||
|
static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
|
||
|
const SDLoc &dl, SDValue Chain, SDValue Dst,
|
||
|
SDValue Src, SDValue Size, MVT AVT) {
|
||
|
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
|
||
|
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
|
||
|
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
|
||
|
const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
|
||
|
|
||
|
SDValue InFlag;
|
||
|
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
|
||
|
InFlag = Chain.getValue(1);
|
||
|
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
|
||
|
InFlag = Chain.getValue(1);
|
||
|
Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
|
||
|
InFlag = Chain.getValue(1);
|
||
|
|
||
|
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
|
||
|
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
|
||
|
return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
|
||
|
}
|
||
|
|
||
|
/// Emit a single REP MOVSB instruction for a particular constant size.
|
||
|
static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
|
||
|
const SDLoc &dl, SDValue Chain, SDValue Dst,
|
||
|
SDValue Src, uint64_t Size) {
|
||
|
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
|
||
|
DAG.getIntPtrConstant(Size, dl), MVT::i8);
|
||
|
}
|
||
|
|
||
|
/// Returns the best type to use with repmovs depending on alignment.
|
||
|
static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
|
||
|
uint64_t Align) {
|
||
|
assert((Align != 0) && "Align is normalized");
|
||
|
assert(isPowerOf2_64(Align) && "Align is a power of 2");
|
||
|
switch (Align) {
|
||
|
case 1:
|
||
|
return MVT::i8;
|
||
|
case 2:
|
||
|
return MVT::i16;
|
||
|
case 4:
|
||
|
return MVT::i32;
|
||
|
default:
|
||
|
return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
|
||
|
/// a constant size memory copy. In some cases where we know REP MOVS is
|
||
|
/// inefficient we return an empty SDValue so the calling code can either
|
||
|
/// generate a load/store sequence or call the runtime memcpy function.
|
||
|
static SDValue emitConstantSizeRepmov(
|
||
|
SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
|
||
|
SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
|
||
|
unsigned Align, bool isVolatile, bool AlwaysInline,
|
||
|
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
|
||
|
|
||
|
/// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
|
||
|
/// efficient.
|
||
|
if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
|
||
|
return SDValue();
|
||
|
|
||
|
/// If we have enhanced repmovs we use it.
|
||
|
if (Subtarget.hasERMSB())
|
||
|
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
|
||
|
|
||
|
assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
|
||
|
/// We assume runtime memcpy will do a better job for unaligned copies when
|
||
|
/// ERMS is not present.
|
||
|
if (!AlwaysInline && (Align & 3) != 0)
|
||
|
return SDValue();
|
||
|
|
||
|
const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
|
||
|
const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
|
||
|
const uint64_t BlockCount = Size / BlockBytes;
|
||
|
const uint64_t BytesLeft = Size % BlockBytes;
|
||
|
SDValue RepMovs =
|
||
|
emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
|
||
|
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
|
||
|
|
||
|
/// RepMov can process the whole length.
|
||
|
if (BytesLeft == 0)
|
||
|
return RepMovs;
|
||
|
|
||
|
assert(BytesLeft && "We have leftover at this point");
|
||
|
|
||
|
/// In case we optimize for size we use repmovsb even if it's less efficient
|
||
|
/// so we can save the loads/stores of the leftover.
|
||
|
if (DAG.getMachineFunction().getFunction().hasMinSize())
|
||
|
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
|
||
|
|
||
|
// Handle the last 1 - 7 bytes.
|
||
|
SmallVector<SDValue, 4> Results;
|
||
|
Results.push_back(RepMovs);
|
||
|
unsigned Offset = Size - BytesLeft;
|
||
|
EVT DstVT = Dst.getValueType();
|
||
|
EVT SrcVT = Src.getValueType();
|
||
|
Results.push_back(DAG.getMemcpy(
|
||
|
Chain, dl,
|
||
|
DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
|
||
|
DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
|
||
|
DAG.getConstant(BytesLeft, dl, SizeVT), llvm::Align(Align), isVolatile,
|
||
|
/*AlwaysInline*/ true, /*isTailCall*/ false,
|
||
|
DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
|
||
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
|
||
|
}
|
||
|
|
||
|
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
|
||
|
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
|
||
|
SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
|
||
|
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
|
||
|
// If to a segment-relative address space, use the default lowering.
|
||
|
if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
|
||
|
return SDValue();
|
||
|
|
||
|
// If the base registers conflict with our physical registers, use the default
|
||
|
// lowering.
|
||
|
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
|
||
|
X86::ECX, X86::ESI, X86::EDI};
|
||
|
if (isBaseRegConflictPossible(DAG, ClobberSet))
|
||
|
return SDValue();
|
||
|
|
||
|
const X86Subtarget &Subtarget =
|
||
|
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
|
||
|
|
||
|
// If enabled and available, use fast short rep mov.
|
||
|
if (UseFSRMForMemcpy && Subtarget.hasFSRM())
|
||
|
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
|
||
|
|
||
|
/// Handle constant sizes,
|
||
|
if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
|
||
|
return emitConstantSizeRepmov(
|
||
|
DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
|
||
|
Size.getValueType(), Alignment.value(), isVolatile, AlwaysInline,
|
||
|
DstPtrInfo, SrcPtrInfo);
|
||
|
|
||
|
return SDValue();
|
||
|
}
|